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ABSTRACT. In this paper we derive some new inequalities involving the gamma functionΓ,
polygamma functionsψ = Γ′/Γ andψ′. We also obtained two new sequences converging to
Euler-Mascheroni constantγ very quickly.
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1. I NTRODUCTION

Forx > 0 let Γ(x) andψ(x) denote the Euler’s gamma function and psi (digamma) function,
defined by

Γ(x) =

∫ ∞

0

e−uux−1du

and

ψ(x) =
Γ′(x)

Γ(x)

respectively. The derivativesψ′,ψ′′,ψ′′′, . . . are known as polygamma functions. A good refer-
ence for these functions is [8].

The gamma and polygamma functions play a central role in the theory of special functions
and they are closely related to many of them such as the Riemann zeta-function, the Clausen
integral etc. They have many applications in mathematical physics and statistics. In the recent
past, several articles have appeared providing various inequalities for gamma and polygamma
functions; see ([2], [3], [4], [5], [6], [7], [10], [12], [14]).

It is the aim of this paper to continue these investigations and to present some new inequalities
for the gamma function and some polygamma functions. Our results also lead to two new
sequences converging to the Euler- Mascheroni constantγ very quickly. Throughout this paper,
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2 NECDET BATIR

c = 1.461632144968362 denotes the only positive root of theψ-function (see [1, p. 259;
6.3.19]).

Before establishing our main result we need to prove two lemmas.

Lemma 1.1. For x > 0, [ψ′(x)]2 + ψ′′(x) > 0.

Proof. To prove the lemma we define the functionf(x) by

f(x) = [ψ′(x)]2 + ψ′′(x), x > 0.

Sincelimx→∞ f(x) = 0 in order to show thatf(x) > 0, it is sufficient to show thatf(x) −
f(x+ 1) > 0 for x > 0. Now

(1.1) f(x)− f(x+ 1) = [ψ′(x)]2 + ψ′′(x)− [ψ′(x+ 1)]2 − ψ′′(x+ 1).

From the well-known difference equationΓ(x+1) = xΓ(x) [8, (1.1.6)] it follows easily that

(1.2) ψ(x+ 1)− ψ(x) =
1

x
.

Differentiating both sides of this equality, we get

(1.3) ψ′(x+ 1)− ψ′(x) = − 1

x2
.

Thus, (1.1) can be written as

f(x)− f(x+ 1) =
2

x2

(
ψ′(x)− 1

x
− 1

2x2

)
.

By [12, p. 2670], we have

(1.4) ψ′(x)− 1

x
− 1

2x2
> 0,

concludingf(x)− f(x+ 1) > 0 for x > 0. This proves Lemma 1.1 �

Lemma 1.2. For x > 0, ψ′(x) eψ(x) < 1.

Proof. By Lemma 1.1 we have

d

dx
(ψ(x) + lnψ′(x)) > 0, x > 0.

Thus the functionψ(x) + lnψ′(x) is strictly increasing on(0,∞). By [7] for x > 0 we have

log x− 1

x
< ψ(x) < log x− 1

2x
.

This gives

(1.5) xψ′(x) e−1/x < ψ′(x)eψ(x) < xψ′(x) e−1/2x.

Using the asymptotic representation [1, p. 260; 6.4.12]

ψ′(z) ∼ 1

z
+

1

2 z2
+

1

6 z3
− 1

30 z5
+ · · · (asz →∞, | arg z| < π),

which will be used only for realz’s in this paper, we get

lim
x→∞

xψ′(x) = 1.

Hence, by (1.5), we find that

(1.6) lim
x→∞

ψ′(x) eψ(x) = 1.
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or

(1.7) lim
x→∞

[logψ′(x) + ψ(x)] = 0.

Now the proof follows from the monotonicity ofψ(x) + ln(ψ′(x)) and the limit in (1.7) �

2. M AIN RESULTS

The main result of this paper is the following theorem.

Theorem 2.1.The functionsψ, ψ′ andΓ satisfy the following inequalities:

a) for x ≥ 1

ψ(x) ≤ log (x− 1 + e−γ),

and forx > 0.5

ψ(x) > log(x− 0.5).

Both of the constants1− e−γ = 0.438540516 and 0.5 are best possible withγ is Euler-
Mascheroni constant.

b) For x > 0

− log 2− log (e1/x − 1) < ψ(x) < − log(e1/x − 1).

c) For x ≥ 2

ψ(x) > log(π2/6)− γ − log(e1/x − 1).

d) For x ≥ 1

ψ′(x) ≥ π2

6eγ
e−ψ(x).

e) For x > 0 andh > 0

log(1 + hψ′(x)) < ψ(x+ h)− ψ(x) < − log ( 1− hψ′(x+ h))

f) For x > 0

1 +
1

x2
− e−1/x < ψ′(x) <

1

x2
− 1 + e1/(x+1).

g) For x > 1

log x− ψ(x) <
1

2
ψ′(x)

h) For x > 1

log x− ψ(x) > (c− 1)ψ′(x+ 1/2)

wherec = 1.461632144968362 is the only positive root ofψ− function (see[1, p. 259;
6.3.19]).

i) For x ≥ 1/2

Γ(x+ 1) ≥ Γ(c)(x+ 0.5)x+0.5e−x+0.5.

j) For x ≥ c− 1 = 0.461632144968362

Γ(x+ 1) ≤ Γ(c)(x+ 2− c)6(x + 2 − c) eγ/π2

e6(−x − 1+c) eγ/π2

.

HereΓ(c) = 0.885603194410889; see[1, p. 259;6.3.9].
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Proof. Applying the mean value theorem to the functionlog Γ(x) on [u, u + 1] with u > 0 ,
there exists aθ depending onu such that for allu ≥ 0, 0 ≤ θ = θ(u) < 1 and

log Γ(u+ 1)− log Γ(u) = ψ(u+ θ (u)).

Using the well-known difference equationΓ(u+ 1) = uΓ(u), this becomes foru > 0

(2.1) ψ(u+ θ (u)) = log u.

First, we are going to show that the functionθ(u) has the following four properties:

P1 : θ is strictly increasing on(0,∞).

P2 : lim
u→∞

θ (u) = 1
2
.

P3 : θ′ is strictly decreasing on(0,∞) .

P4 : lim
u→∞

θ′(u) = 0.

Putu = eψ(t) with t > 0 in (2.1) to obtain

ψ(eψ(t) + θ(eψ(t))) = ψ(t).

Since the mappingt→ ψ(t) from (0,∞) to (−∞,∞) is bijective, we find that

(2.2) θ(eψ(t)) = t− eψ(t), t > 0.

Differentiating both sides of this equation, we get

(2.3) θ′(eψ(t)) =
1

ψ′(t) eψ(t)
− 1.

Thus by Lemma 1.2, we haveθ′(eψ(t)) > 0 for all t > 0. But since the mappingt→ eψ(t) from
(0,∞) to (0,∞) is also bijective this implies thatθ′(t) > 0 for all t > 0 , provingP1. It is
known that, for allt > 0

ψ(t) < log(t)− 1

2t
see [12, (2.11)] and

ψ(t) > log t− 1

2t
− 1

12t2
, t > 0

see [7]. By using these two inequalities we obtain that

t− te−1/ (2t) < θ(eψ(t)) = t− eψ(t) < t− te−1/ (2t)−1/ (12t2).

We can easily check that both of the bounds here tend to1/2 asx tends to infinity. Therefore,
we have

lim
u→∞

θ(eψ(u)) = lim
t→∞

θ(t) =
1

2
.

Differentiating both sides of (2.3), we obtain that

θ′′(eψ(t)) = −e
−2ψ(t)

ψ′(t)3
[(ψ′(t))2 + ψ′′(t)].

By Lemma 1.1[ψ′(t)]2 + ψ′′(t) > 0 for all t > 0 , hence, we find from this equality that
θ′′(eψ(t)) < 0 for all t > 0. Proceeding as above we conclude thatθ′′(t) < 0 for t > 0. This
provesP3. P4 follows immediately from (2.3) and the limit in (1.6).

Let e−γ ≤ t <∞, then by the monotonicity ofθ and propertyP2 of θ, we find that

(2.4) 1− e−γ = θ(e−γ) ≤ θ(t) < θ(∞) =
1

2
.

J. Inequal. Pure and Appl. Math., 6(4) Art. 103, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


SOME NEW INEQUALITIES FOR GAMMA AND POLYGAMMA FUNCTIONS 5

From (2.1) we can write

(2.5) θ(t) = ψ−1(log t)− t.

Substituting the value ofθ(t) into (2.4), we get

1− e−γ ≤ ψ−1(log t)− t < 0.5.

From the right inequality we get forx > 0.5

ψ(x) > log(x− 0.5),

and similarly the left inequality gives forx ≥ 1

ψ(x) ≤ log (x− 1 + e−γ).

This proves a). In order to prove b) and c) we apply the mean value theorem toθ on the interval
[eψ(t), eψ(t+1)]. Thus, there exists aδ such that0 < δ(t) < 1 for all t > 0 and

θ (eψ(t+1))− θ (eψ(t)) = (eψ(t+1) − eψ(t)) θ′(eψ(t+δ(t))),

which can be rewritten by (2.2) as

(2.6)
1

eψ(t)(e1/t − 1)
− 1 = θ′(eψ(t+δ(t))).

By P1, the right-hand-side of this equation is greater than 0, which proves the right inequality
in b) by direct computation. It is clear that

θ (eψ(t+1))− θ (eψ(t)) = 1− eψ(t)(e1/t − 1) < θ(∞)− θ(0) =
1

2
, t > 0.

After some simplification this proves the left inequality in b).
Since fort > 2, t + δ(t) > 1 + δ(1) andθ′ is strictly decreasing on(0,∞) by P3, we must

have fort > 2 that

(2.7) θ′(eψ(t+δ(t))) < θ′(eψ(1)) = θ′(e−γ) =
6eγ

π2
− 1.

Making use of (2.6) proves c).
We now prove e). By applying the mean value theorem toθ on the interval[eψ(t), eψ(t+h)]

(t > 0, h > 0), we get

θ(eψ(t+h))− θ(eψ(t)) = (eψ(t+h) − eψ(t))θ′(eψ(t+a)),

where0 < a < h. Employing (2.2) and (2.3) , this can be written as

(2.8)
h

eψ(t+h) − eψ(t)
− 1 = θ′(eψ(t+a)).

By the monotonicity ofθ andψ, we haveθ′(eψ(t+a)) < θ′(eψ(t)) andθ′(eψ(t+a)) > θ′(eψ(t+h)).
Thus by the above inequality and these two inequalities we find that

h

eψ(t+h) − eψ(t)
− 1 < θ′(eψ(t)) =

1

ψ′(t)eψ(t)
− 1

and
h

eψ(t+h) − eψ(t)
− 1 > θ′(eψ(t+h)) =

1

ψ′(t+ h)eψ(t+h)
− 1.

After brief computation, these inequalities yield

(2.9) ψ(x+ h)− ψ(x) > log(1 + hψ′(x))

and

(2.10) ψ(x+ h)− ψ(x) < − log(1− hψ′(x+ h)).
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These prove e ).
Puth = 1 in (2.9) and (2.10) and then use (1.2) and (1.3) to get after some computations

ψ′(x) < e1/x − 1

and

ψ′(x) > 1 +
1

x2
− e−1/x.

In the first inequality replacex by x+ 1 and use (1.2) to get

ψ′(x) <
1

x2
− 1 + e1/(x+1).

These prove f). By (2.3) we have fort ≥ 1

θ′(eψ(t)) =
1

ψ′(t)eψ(t)
− 1 < θ′(eψ(1)) = θ′(e−γ) =

6eγ

π2
− 1.

From these inequalities we obtain after simple computations that, fort ≥ 1

(2.11) ψ′(t) ≥ π2

6eγ
e−ψ(t),

and this proves d).
To prove g) and h) we apply the mean value theorem toψ(t + θ (t)) (t > 0) in (2.1) on the

interval[ 0, θ (t)] to find that

log t = ψ(t) + θ(t)ψ′(t+ α(t)),

where0 < α(t) < θ(t). Sinceθ is strictly increasing andψ′ is strictly decreasing on(0,∞),
andθ(1) = c− 1 by (2.5), this gives fort > 1

log t− ψ(t) <
1

2
ψ′(t)

and

log t− ψ(t) > (c− 1)ψ′
(
t+

1

2

)
.

From these two equations with the help of f) we prove h) and i).
In order to prove i) and j) integrate both sides of (2.1) over1 ≤ u ≤ x to obtain∫ x

1

ψ(u+ θ(u))du =

∫ x

1

log udu.

Making the change of variableu = eψ(t) on the left hand side this becomes by (2.1)

(2.12)
∫ x+θ(x)

c

ψ(t)ψ′(t)eψ(t)dt = x log x− x+ 1.

Sinceψ(t) ≥ 0 for all t ≥ c, andψ′(t)eψ(t) < 1 by Lemma 1.2 we find that, forx > 1

x log x− x+ 1 <

∫ x+θ(x)

c

ψ(t)dt = log Γ(x+ θ(x))− log Γ(c)

or
x log x− x+ 1 + log Γ(c) < log Γ(x+ θ(x)).

Again using the monotonicity ofθ, this can be rewritten after some simplifications as forx ≥ 1
2

Γ(x+ 1) > Γ(c)

(
x+

1

2

)x+1/2

e−x+1/2.
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This proves i). By (2.11) and (2.12) we have forx ≥ 1 that

x log x− x+ 1 ≥ π2

6eγ

∫ x+θ(x)

c

ψ(t)dt =
π2

6eγ
log Γ(x+ θ(x))− π2

6eγ
log Γ(c)

or

x log x− x+ 1 +
π2

6eγ
log Γ(c) ≥ π2

6eγ
log Γ(x+ θ(x)).

Since forx ≥ 1, θ(x) ≥ c− 1 from this inequality we find that

6eγ

π2
x log x− 6eγ

π2
x+

6eγ

π2
+ log Γ(c) ≥ log Γ(x+ c− 1).

Replacingx by x− c+ 2 we get forx ≥ c− 1

Γ(x+ 1) ≤ Γ(c)(x+ 2− c)6(x+2−c)eγ/π2

e6(−x−1+c)eγ/π2

,

which proves j). Thus, we have completed the proof of the theorem. �

Corollary 2.2. For any integern ≥ 1 the following inequalities involving harmonic numbers
and factorial hold.

a.
γ + log(n+ 0.5) < Hn ≤ γ + log(n− 1 + e1−γ).

The constants0.5 ande1−γ − 1 are the best possible.
b.

log

(
π2

6

)
− log(e1/(n+1) − 1) < Hn < γ − log[e1/(n+1) − 1].

c.

n! > Γ(c)

(
n+

1

2

)n+1/2

e−n+1/2

and
n! < Γ(c)(n+ 2− c)6(n+2−c)eγ/π2

e6(−n−1+c)eγ/π2

,

whereHn =
∑n

k=1
1
k

is thenth harmonic number.

Proof. Let x ≥ 2. Then by (2.2) we have

θ(eψ(x)) = x− eψ(x) ≥ θ(eψ(2)) = 2− eψ(2) = 2− e1−γ.

Thus a short calculation gives forx ≥ 2

ψ(x) ≤ log (x− 2 + e1−γ).

It is well known thatψ(n + 1) = Hn − γ for all integersn ≥ 1 (see [1, p. 258, 6.3.2]), thus
replacingx by n+ 1 here proves a). Using the identityψ(n+ 1) = Hn − γ again, the proof of
b) follows from Theorem 2.1b by replacingx by n + 1. c) follows, too, from replacingx by a
natural numbern sinceΓ(n+ 1) = n!. This completes the proof of the corollary. �

Now define

αn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log

(
n+

1

2

)
and

βn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
+ log(e1/(n+1) − 1).

Clearly limn→∞ αn = γ. Since

lim
n→∞

[
log (e1/ (n+1) − 1) + log

(
n+

1

2

)]
= 0,
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it is also obvious thatlimn→∞ βn = γ.
Thus the arithmetic mean ofαn andβn converges toγ as well. We define

γn =
αn + βn

2
= 1 +

1

2
+

1

3
+ · · ·+ 1

n
+

1

2
log

(
e1/ (n+1) − 1

n+ 1/2

)
.

The rate of convergence ofαn has been investigated by De Temple and he has shown that

1

24(n+ 1)2
< αn − γ <

1

24n2
,

see [11]. We have not investigated the rate of convergence ofβn andγn, but numerical experi-
ments indicate as illustrated on the following table thatβn converges toγ more rapidly thanαn
and,γn converges toγ much more rapidly than bothαn andβn.

Table 2.1: Comparison between some terms ofαn , βn andγn.

n αn βn γn |αn − γ| |βn − γ| |γn − γ|
1 0.5945348910.5672478700.5808913810.0173192260.0099677940.003675716
2 0.5837092680.5726797280.5781944980.0064936030.0045359360.000978833
3 0.5805703640.5746417830.5776060740.0033546990.0025738810.000390409
4 0.5792559360.5755615320.5774087340.0020402710.0016541320.000193069
5 0.5785852410.5760643370.5773247890.0013695760.0011513270.000109124
10 0.5775929960.5768718550.5772324260.0003773310.0003438090.000016761
50 0.5772320020.5771996460.5772158240.0000163370.0000160180.000000159
100 0.5772197900.5772115800.5772156550.0000041250.0000040840.000000020
500 0.5772158310.5772154980.5772156850.0000001660.0000001660.000000000
1000 0.5772157060.5772156230.5772156660.0000000410.0000000410.000000000

3. CONCLUSION

We want to make some remarks on our results.

i) Numerical experiments indicate that the functionx → θ′(x) is strictly completely
monotonic, but it seems difficult to prove this. For example, even to prove thatθ′′′(x) >
0 (x > 0), we need to show the following complicated inequality.

ψ′(x)ψ′′′(x)− 3 (ψ′′(x))2 − 3 (ψ′(x))2ψ′′(x)− 2 (ψ′(x))4 < 0, x > 0

If we prove this, applying the mean value theorem toθ(n) for all positive integersn on
[eψ(t), eψ(t+1)], we may obtain many other interesting inequalities involving polygamma
functions.

ii) In our method presented here we used the mean value theorem. Instead, by using Taylor
Theorem up to higher derivatives, we may get sharpenings of the bounds we find here.
For example, by applying the Taylor Theorem tolog Γ(x) on [t, t+ 1] (t > 0) up to the
second derivative, we get

log t = ψ (t) +
1

2
ψ′ (t+ α(t)), 0 < α(t) < 1.

Investigating the monotonicity property and the limit ofα(t) will be very interesting
and can lead to very sharp inequalities for polygamma functions. We showed that the
limit of α(t) ast tends to∞ is 1/3 provided that this limit exists .

J. Inequal. Pure and Appl. Math., 6(4) Art. 103, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


SOME NEW INEQUALITIES FOR GAMMA AND POLYGAMMA FUNCTIONS 9

REFERENCES

[1] M. ABRAMOWITZ AND I.A. STEGUN,Handbook of Mathematical Functions, Dover, New York,
1965.

[2] H. ALZER, Sharp inequalities for digamma and polygamma functions,Forum Math., 16 (2004),
181–221.

[3] H. ALZER AND S. RUSCHEWEYH, A subadditive property of the gamma function,J. Math. Anal.
Appl., 285(2003), 564–577.

[4] H. ALZER AND J. WELLS, Inequalities for the polygamma functions,SIAM J. Math. Anal., 29(6)
(1998), 1459–1466.

[5] H. ALZER, On some inequalities for the gamma and psi functions,Math. Comp., 66(217) (1997),
373–389.

[6] H. ALZER, Some gamma function inequalities ,Math. Comp., 60(201) (1993), 337–346.

[7] G.D. ANDERSONAND S.L. QIU, A monotonicity property of the gamma function,Proc. Amer.
Math. Soc., 125(11) (1997), 3355–3362.

[8] G.E. ANDREWS, R. ASKEYAND R. ROY,Special Functions, Cambridge University Press, 1999.

[9] CHAO-PING CHENAND CHAO-PING FENG, Monotonicity results for gamma function,J. In-
equal. Pure and Appl. Math., 4(2) (2003), Art. 44. [ONLINE:http://jipam.vu.edu.au/
article.php?sid=282 ]

[10] W.E. CLARK AND M.E.H. ISMAIL, Inequalities involving gamma and psi function,Anal. Appl.,
1(129) (2003), 129–140.

[11] D.W. De TEMPLE, A quicker convergence to Euler’s constant,Amer. Math. Monthly, 100(5)
(1993), 468–470.

[12] A. ELBERT AND A. LAFORGIA, On some properties of the gamma function,Proc. Amer. Math.
Soc., 128(9) (2000), 2667–2673.

[13] B.J. ENGLISHAND G. ROUSSEAU, Bounds for certain harmonic sums,J. Math. Anal. Appl., 206
(1997), 428–441.

[14] H. VOGT AND J. VOIGT, A monotonicity property of theΓ-function,J. Inequal. Pure Appl. Math.,
3(5) (2002), Art. 73. [ONLINE:http://jipam.vu.edu.au/article.php?sid=225 ]

J. Inequal. Pure and Appl. Math., 6(4) Art. 103, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/article.php?sid=282
http://jipam.vu.edu.au/article.php?sid=282
http://jipam.vu.edu.au/article.php?sid=225
http://jipam.vu.edu.au/

	1. Introduction
	2. Main Results
	3. Conclusion
	References

