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ABSTRACT. In this paper we derive some new inequalities involving the gamma funttion
polygamma functiong) = I'V/T" andv’. We also obtained two new sequences converging to
Euler-Mascheroni constantvery quickly.
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1. INTRODUCTION

Forz > 0 letT'(z) andy(z) denote the Euler's gamma function and psi (digamma) function,
defined by

[(x) :/ e “u" tdu
0

and @)
I'(x
respectively. The derivativeg' ;)" ,x)", ... are known as polygamma functions. A good refer-

ence for these functions is![8].

The gamma and polygamma functions play a central role in the theory of special functions
and they are closely related to many of them such as the Riemann zeta-function, the Clausen
integral etc. They have many applications in mathematical physics and statistics. In the recent
past, several articles have appeared providing various inequalities for gamma and polygamma
functions; see (2], 13],.[4],.15],16],[17],[[10],[112],.[14]).

Itis the aim of this paper to continue these investigations and to present some new inequalities
for the gamma function and some polygamma functions. Our results also lead to two new
sequences converging to the Euler- Mascheroni consteaty quickly. Throughout this paper,
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2 NECDETBATIR

¢ = 1.461632144968362 denotes the only positive root of thefunction (seel[l, p. 259;
6.3.19)).
Before establishing our main result we need to prove two lemmas.

Lemma 1.1. For z > 0, [¢'(z)]? + ¢"(x) > 0.
Proof. To prove the lemma we define the functiff) by
fx) = [¥'(@)* +¢"(x), 2>0.

Sincelim,_,, f(x) = 0 in order to show thaf(z) > 0, it is sufficient to show thaf(x) —
f(z+1) > 0forz > 0. Now

(1.1) fl@) = fla+1) = ' (@) +¢" () = ' (x + D = 4" (@ +1).
From the well-known difference equatiditz + 1) = «I'(x) [8l, (1.1.6)] it follows easily that

1
(1.2) b+ 1) — i) = -
Differentiating both sides of this equality, we get
/ / 1
(1.3) e+ 1) =) = —.

Thus, [1.1) can be written as

By [12, p. 2670], we have

(1.4) P(r)———=— >0,
concludingf(z) — f(z + 1) > 0 for z > 0. This proves Lemma 1.1 O
Lemma 1.2. For z > 0, ¢'(z) e¥@ < 1.

Proof. By Lemmd 1. we have

d

%(@/}(x) +1In¢'(z)) >0, x>0.

Thus the function)(x) + In¢’(z) is strictly increasing o0, co). By [7] for = > 0 we have

1 1

1 - — 1 - —.
0gT — — < Y(x) <logx 9

This gives

(1.5) 2y (x) e V" < o/ (2)e¥@ <z (z) eV,

Using the asymptotic representation [1, p. 260; 6.4.12]

) 11 1 1
Yiz) ~ ;+ 222 * 623 3025
which will be used only for reat’s in this paper, we get

lim z¢/'(z) = 1.

T— 00

4o (asz—>oo, \argz| <7T),

Hence, by[(1.5), we find that
(1.6) lim 9'(z) e¥@® = 1.

r—00
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or
(1.7) lim [log ¢/'(x) + ¢(x)] = 0.

Now the proof follows from the monotonicity @f(z) + In(¢/(z)) and the limitin[1.y) O

2. MAIN RESULTS

The main result of this paper is the following theorem.

Theorem 2.1. The functions), ¢' andI satisfy the following inequalities:
a) forz>1
P(z) <log(z —1+4e7),
and forx > 0.5
(x) > log(x — 0.5).

Both of the constants— e~ = 0.438540516 and 0.5 are best possible withis Euler-
Mascheroni constant.

b) Forz > 0
—log2 —log (e/* — 1) < ¢(z) < —log(e"/* — 1).
c) Forxz > 2
Y(x) > log(m%/6) — v — log(e!* — 1).
d Forxz>1

e) Forz > 0andh > 0
log(1 4 h)'(z)) < (x +h) — () < —log (1 — hy'(z + h))
f) Forx >0
1+ % —e VT < (z) < % — 14 M,
g) Forz >1
log — (x) <  v/(x)
h) Forx > 1

logz — ¥(z) > (c— 1) ¥/'(x +1/2)
wherec = 1.461632144968362 is the only positive root of — function (sedl), p. 259;
6.3.19).
i) Forz >1/2
[(x+1) > T(c)(z + 0.5)" 02 #H05,
J) Forz > c—1=0.461632144968362
I(z+1) <T(c)(z + 2 — )0 +2 ) e/ 6w = 1+e) e /m?

HereI'(c¢) = 0.885603194410889; see[dl, p. 259;6.3.9]
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Proof. Applying the mean value theorem to the functiog I'(x) on [u,u + 1] with u > 0,
there exists & depending om such that foralk: > 0,0 < 6 = 6(u) < 1 and

logI'(u+ 1) —logI'(u) = ¢¥(u + 6 (u)).
Using the well-known difference equatidifu + 1) = u I'(u), this becomes fot > 0
(2.1) Y(u+ 0 (u)) = logu.
First, we are going to show that the functiéfu) has the following four properties:
P, : 6 is strictly increasing o0, co).
P, : lim 6 (u) = 1.

U—0o0 2
P : 0" is strictly decreasing off), o) .
Py: lim ¢'(u) =0.

U—0o0

Putu = ¢® with t > 0 in (2.1) to obtain
D" +6(e’V)) = (1)

Since the mapping — v (t) from (0, co) to (—oo, 00) is bijective, we find that

(2.2) B(e?D) =t — e > 0.
Differentiating both sides of this equation, we get
1
ey — =~ 1
(2.3) 0 (") G b

Thus by Lemma 1]2, we haw(e¥®) > 0 for all ¢ > 0. But since the mapping— ¢*® from
(0,00) to (0, 00) is also bijective this implies that' (t) > 0 for all ¢ > 0, proving P,. Itis
known that, for alt > 0
1
v(t) < log(t) — o
see[12, (2.11)] and
1 1
1 -
Y(t) > logt — o — 105
see[7]. By using these two inequalities we obtain that

t—te 1 ) < g(e¥D) =t — ¥ < ¢ — g1/ 201/ (126,

t>0

We can easily check that both of the bounds here teddZ@szx tends to infinity. Therefore,

we have

1
lim f(e¥™) = Jim 0(t) = 5.

U—00 2

Differentiating both sides of (2.3), we obtain that

e ) / 2 "
S W O? 9L
By Lemma L.1[¢'(¢)]> + ¢”(t) > 0 forall ¢t > 0, hence, we find from this equality that
0"(e*®) < 0 for all t > 0. Proceeding as above we conclude t#i4t) < 0 for t > 0. This
provesPs. P, follows immediately from[(2]3) and the limit if (1.6).

Lete™” <t < oo, then by the monotonicity af and propertyP, of 4, we find that

(2.4) 1= = f(e) < B(t) < B(cc) = %

9//(€w(t>) —
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From (2.1) we can write
(2.5) 0(t) = ¢ (logt) — t.
Substituting the value daf(¢) into (2.4), we get
1—e7 <9y '(logt) —t <0.5.

From the right inequality we get far > 0.5

Y(z) > log(x — 0.5),
and similarly the left inequality gives far > 1

Y(r) <log(z—1+4+e7).

This proves a). In order to prove b) and c) we apply the mean value theoreaontthe interval
[e¥®) e¥(tH1)], Thus, there exists @such that < §(t ) < 1forallt > 0and

0 (ew(t+1)) —0 (ezp(t)) _ (ew(t—H) )9/( P (t+4( )))’
which can be rewritten by (2.2) as
1

(2.6) — 1 =6ty

v (el/t — 1)

By P, the right-hand-side of this equation is greater than 0, which proves the right inequality
in b) by direct computation. It is clear that

1
0 (VD) — g (M) =1 — e¥O (et — 1) < f(o0) — A(0) = Y t>0.

After some simplification this proves the left inequality in b).

Since fort > 2t + 6(t) > 1 + 4(1) and#’ is strictly decreasing of0, co) by P, we must
have fort > 2 that
(2.7 o' (e

P(t+a(t Ge?

M <@ V)=0(e) == —1.

Making use of[(2.6) proves c).
We now prove e). By applying the mean value theorer tm the intervale?®, ¢¥(t+h)]
(t>0,h>0), we get

O(e?Hh)) — g(e¥ W) = (e¥tHh) _ ¥ (¥ (tHa)),

where0 < a < h. Employing [2.2) and (2]3) , this can be written as
h
e¥(t+h) _ o(t)
By the monotonicity of) andy, we havey’ (e?(+)) < ¢/ (e¥®)) andd’ (e (t+2)) > ¢/ (e¥ (1),
Thus by the above inequality and these two inequalities we find that

h vy — 1
i o L <Y (") = W (t)er®

(2.8) —1 =0 (")

and
h

eb(tth) _ ov(t)
After brief computation, these inequalities yield

1
Y(t+h)y
—1>0e ( )) Y (t 4 h)evth) -t

(2.9) P(x+h) —(x) > log(1l+ h)'(z))
and
(2.10) Yz +h) —Y(x) < —log(l — h)'(x + h)).
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These prove e).
Puth = 1in (2.9) and[(2.10) and then uge (1.2) and]|(1.3) to get after some computations

V'(z) < el/®—1
and .
¢/($) > 1+ P —e /7,
In the first inequality replace by = + 1 and use[(1]2) to get
/ 1 1/(z+1
These prove f). By (2]|3) we have for> 1

o' (V™) = 1<) =)= — —1.

1
P (e

From these inequalities we obtain after simple computations that,for

(2.11) W (t) >~V

and this proves d).
To prove g) and h) we apply the mean value theorem(to+ 6 (¢)) (¢t > 0) in (2.1) on the
interval [ 0, 6 (¢)] to find that

logt = (1) + ()¢ (t + o)),
where0 < «(t) < 6(t). Sinced is strictly increasing and’ is strictly decreasing of0, o),
andd(1) = ¢ — 1 by (2.8), this gives for > 1
1 /
log ¢ —(t) < 3¥/(1)
and

logt —(t) > (¢ — 1)y (t+ %) :

From these two equations with the help of f) we prove h) and i).
In order to prove i) and j) integrate both sides|of [2.1) ovet v < x to obtain

/11‘ Y(u+0(u))du = /lr log udu.
Making the change of variable= ¢¥(") on the left hand side this becomes py [2.1)
(2.12) / e Y)Y (t)e?Vdt = xlogr — z + 1.
Sincey(t) > 0 forallt > ¢, andy/(t)e?® < 1 by Lemmg 1.p we find that, far > 1

z+0(x)
zlogr —oz+1< / Y(t)dt =logT'(z + 0(x)) — logT'(c)
or
zlogx —x+1+logl'(c) <logD'(z + 6(x)).
Again using the monotonicity df, this can be rewritten after some simplifications asifor 3

1 z+1/2
[(z+1)>T(c) (x + 5) e~ TH/2,
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This proves i). By[(2.1]1) andl (2..2) we have for 1 that
71'2 z+0(x) 2 2

zlogr —x+1> — w(t)dt:llogF(x+9(w))—l

log T’
~ 6er J, 6e7 6e” og1'(c)

or
2 2

™ ™
T logI'(c) > Ber logI'(xz + 6(x)).
Since forx > 1, §(x) > ¢ — 1 from this inequality we find that

6e7 6e7 6e”

rlogr —x+ 1+

5 +1logT'(c) > logT'(z + ¢ —1).
Replacingz by x — ¢ + 2 we getforz > ¢ — 1

F(:zc + 1) < F(c)(:zc 49— C)6(:C+2—c)e“f/7r266(—93—1+c)e“f/7r2’
which proves ). Thus, we have completed the proof of the theorem. 0J
Corollary 2.2. For any integem > 1 the following inequalities involving harmonic numbers
and factorial hold.

a.
v +log(n +0.5) < H, <v+log(n —1+e'7).
The constants.5 ande! = — 1 are the best possible.

2
log (%) —log(e¥™) 1) < H, < v — log[e!/® 1) —1].

1 n+1/2
n! > T'(c) (n + §> e /2

and
nl < F(C) (n + 2 o c)6(n+2—c)e'Y/7r266(—n—1+c)e'7/7r2’

whereH, = Y/, 1 is then™ harmonic number.
Proof. Letz > 2. Then by[(Z2.R) we have
BV @) = 1 — ¥E) > (V) = 9 — ¥ — 9 _ 17
Thus a short calculation gives for> 2
() <log(z —2+e'™7).

It is well known thaty(n 4+ 1) = H,, — ~ for all integersn > 1 (seel1, p. 258, 6.3.2]), thus
replacinge by n + 1 here proves a). Using the identityn + 1) = H,, — v again, the proof of
b) follows from Theorem 2]1b by replacingby n + 1. c) follows, too, from replacing by a
natural number. sincel'(n + 1) = n!. This completes the proof of the corollary. O
Now define
il by .
=TT noe\"T o
and
By = 1_‘_1+1+...+l+10g(61/("+1)_1)
" 2 3 n '
Clearlylim,, ., a,, = 7. Since

1
lim |log (e ™Y — 1) 4 log <n + 5)} =0,
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it is also obvious thalim,, .., 5, = 7.
Thus the arithmetic mean af, and 3, converges toy as well. We define

n:—: —_— —_— DR —_— —O —
i 2 273 n 2 B\ T2

The rate of convergence af, has been investigated by De Temple and he has shown that

1
— Ly < —,
2Un+ 12 "M TS o2

see[11]. We have not investigated the rate of convergengg ahd~,,, but numerical experi-
ments indicate as illustrated on the following table thatonverges toy more rapidly thanv,
and,~, converges toy much more rapidly than boih, andg,,.

Table 2.1: Comparison between some terms,of 3,, and-~,,.

an Br, Y, loon — 1B — | |7 — 1l
0.5945348910.5672478700.5808913810.0173192260.0099677940.003675 7 1

n
1
2 0.5837092680.5726797280.5781944980.0064936080.0045359360.00097883
3
4

0.5805703640.5746417830.5776060740.0033546990.002573881 0.00039040
0.5792559360.5755615320.5774087340.0020402710.0016541320.00019306
5 0.5785852410.5760643370.5773247890.0013695760.001151327 0.000109124
10 | 0.5775929960.5768718550.5772324260.0003773310.0003438090.00001676
50 | 0.5772320020.5771996460.5772158240.000016337 0.0000160180.00000015
100 | 0.5772197900.5772115800.57721565%0.0000041250.000004084 0.00000002
500 | 0.5772158310.5772154980.57721568%50.0000001660.0000001660.00000000
1000| 0.5772157060.5772156280.5772156660.000000041 0.000000041 0.00000000

OO O W40 O WO

3. CONCLUSION

We want to make some remarks on our results.

i) Numerical experiments indicate that the function— ¢'(x) is strictly completely
monotonic, but it seems difficult to prove this. For example, even to prové'ttia) >
0 (x > 0), we need to show the following complicated inequality.

V(@) (@) = 3 (" (2))* = 3 (¢ ()" () = 2(¢(2))" <0, x>0

If we prove this, applying the mean value theorend#td for all positive integers: on
[e¥®), ¥+ we may obtain many other interesting inequalities involving polygamma
functions.

i) In our method presented here we used the mean value theorem. Instead, by using Taylor
Theorem up to higher derivatives, we may get sharpenings of the bounds we find here.
For example, by applying the Taylor TheoremdgI'(x) on[t,t + 1] (¢ > 0) up to the
second derivative, we get

logt = (t) + %W (t+at), 0<a(t)<l.

Investigating the monotonicity property and the limit@®ft) will be very interesting
and can lead to very sharp inequalities for polygamma functions. We showed that the
limit of «(¢) ast tends toco is 1/3 provided that this limit exists .
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