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Abstract

In this paper we derive some new inequalities involving the gamma function T,
polygamma functions ¢ = I"/T" and ¢'. We also obtained two new sequences
converging to Euler-Mascheroni constant -y very quickly.
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Forx > 0 let I'(x) and ¢)(z) denote the Euler's gamma function and psi
(digamma) function, defined by

and )
w(m) — r (l’) Some New Inequalities for
F(:C) Gamma and Polygamma
Functions
respectively. The derivativesg,” ,x)"”, ... are known as polygamma functions. Neodet Bati
A good reference for these functions .|
The gamma and polygamma functions play a central role in the theory of
special functions and they are closely related to many of them such as the Rie- Title Page
mann zeta-function, the Clausen integral etc. They have many applications in Contents
mathematical physics and statistics. In the recent past, several articles have ap-
peared providing various inequalities for gamma and polygamma functions; see « dd
([21, 31, 140, 151, 161 171, [, 122, [24)). < >
Itis the aim of this paper to continue these investigations and to present some E—
new inequalities for the gamma function and some polygamma functions. Our
results also lead to two new sequences converging to the Euler- Mascheroni con- Close
stanty very quickly. Throughout this papet,= 1.461632144968362 denotes Quit
the only positive root of the-function (see [, p. 259; 6.3.19]).
Before establishing our main result we need to prove two lemmas. Page 3 of 20
Lemma 1.1. For z > 0, [@//(x)]Q + @D”(l’) > 0. J. Ineq. Pure and Appl. Math. 6(4) Art. 103, 2005
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Proof. To prove the lemma we define the functipfc) by
fl@) = (@) +¢"(x), x>0

Sincelim, ., f(z) = 0 in order to show thaf(x) > 0, it is sufficient to
show thatf(x) — f(z + 1) > 0 for 2 > 0. Now

1) fl2) = fle+1) = [W'(@) +¢" (@) = (2 + 1)) =¥z +1).

From the well-known difference equatidiixz + 1) = zT'(z) [8, (1.1.6)] it
follows easily that

1

(1.2) e+ 1) — i) = -
Differentiating both sides of this equality, we get
!/ / 1
(1.3) W(e+1) = (@) = .

Thus, (L.1) can be written as
f0) - fe+ 1) =5 (V- 1 o).

By [12, p. 2670], we have

. 11
concludingf(xz) — f(z + 1) > 0 for x > 0. This proves Lemma.1 ]
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Lemma 1.2. For z > 0, ¢'(z) e¥™® < 1.

Proof. By Lemmal.1lwe have

%(1/}(95) +Iny'(z)) >0, x>0.

Thus the function)(z) + In+/(z) is strictly increasing orf0, co). By [/] for
x > 0 we have

1 1
logz — = logz — —.
08T — — <Y(z) <logx 5
This gives
(1.5) zy) (x) e M < ! (2)e¥™ < xy (z) eV,
Using the asymptotic representation p. 260; 6.4.12]

1 1 1 1
/
V() z + 2 22 + 623 3025 +
which will be used only for real’s in this paper, we get
lim z¢'(z) = 1.

Hence, by (.5, we find that

(asz — oo, |arg z| < m),

(1.6) lim 9'(z) e¥@® = 1.

o 200

(1.7) lim [log ¢/ () + ()] = 0.

Now the proof follows from the monotonicity af(x) + In(¢)'(z)) and the limit
in (1.7) ]
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The main result of this paper is the following theorem.

Theorem 2.1. The functions), ¢’ andI" satisfy the following inequalities:

a) forz >1
Y(r) <log(x—1+e77),
and forz > 0.5
() > log(x — 0.5).

Both of the constants — e = 0.438540516 and 0.5 are best possible
with ~ is Euler-Mascheroni constant.

b) Forz > 0
—log2 —log (e¥/® — 1) < ¢(x) < —log(e"* — 1).
c) Forz > 2
V() > log(n?/6) — 7 — log(e!/* — 1).
d Forz>1
' "
V() > 67 C

e) Forx > 0andh >0

log(1 + h)'(z)) < ¢(x +h) —(x) < —log (1 — h)'(x + h))
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f) Forz > 0
Lo ey 1 1/(z+1)
1+ﬁ—e <1/J($)<?—1+6 :

g) Forz >1 .
logz — ¥(x) < 5 v'(a)

h) For x > 1
logz —1p(x) > (¢ = 1) ¢'(x + 1/2)

wherec = 1.461632144968362 is the only positive root of)— function
(see [, p. 259; 6.3.19)).

i) Forz > 1/2

[(z+1) > T(c)(x + 0.5)" 0P 105,

j) Forz > ¢ — 1 =0.461632144968362
T(z+1) <T(c)(z +2 — ¢)fr T2 /mebla —lte)er/m?,
HereI'(c) = 0.885603194410889; see [L, p. 259;6.3.9].

Proof. Applying the mean value theorem to the functiog I'(z) on [u, v + 1]
with v > 0, there exists & depending on; such that for alk: > 0, 0 < 6 =
6(u) < 1 and

logT'(u+ 1) —logI'(u) = ¥(u + 0 (u)).

Some New Inequalities for
Gamma and Polygamma
Functions

Necdet Batir

Title Page

Contents
44 44
< >
Go Back
Close
Quit
Page 7 of 20

J. Ineq. Pure and Appl. Math. 6(4) Art. 103, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:necdet_batir@hotmail.com
http://jipam.vu.edu.au/

Using the well-known difference equatidliu + 1) = « I'(u), this becomes for
u >0

(2.1) Y(u+0(u)) = logu.
First, we are going to show that the functiétu) has the following four
properties:
P : O is strictly increasing ofi0, o).
Py : lim 6 (u) = L.

Py : ' is strictly decreasing ofD), ) .
Py: lim ¢'(u) =0.

U—00

Putu = e*® with t > 0in (2.1) to obtain
YV +0(e"Y)) = u(1).
Since the mapping — () from (0, co) to (—oo, 00) is bijective, we find that
(2.2) B(e?®) =t — e t>0.
Differentiating both sides of this equation, we get

R
(2.3) 0 )_w(t)ew(t) 1.
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Thus by Lemmad..2, we haved’(e¥®) > 0 for all t > 0. But since the mapping
t — e¥® from (0, o) to (0, 0o) is also bijective this implies tha(¢) > 0 for
allt > 0, proving P;. It is known that, for alt > 0

1
t) <log(t) — —
U(t) < log(t) — o
seel? (2.11)] and
w(t) > logt — l — L t>0 Some New Inequalities for
& 2t 12¢%7 Gamma and Polygamma

Functions

see []. By using these two inequalities we obtain that NIRRT

E—te M O < g(eVD) = ¢ _ PO < _ o1/ D=1/ (1262)

Title Page
We can easily check that both of the bounds here terid2as« tends to J—
infinity. Therefore, we have
44 44
1
lim §(e”™) = lim 6(t) = 5 p N
Differentiating both sides ofX(3), we obtain that Go Back
Close
/() = 0 + 7 t) o
€ o ¢’(t)3 :
Page 9 of 20

By Lemmal.1 [¢'(t)]* + ¢"(t) > 0 for all ¢ > 0, hence, we find from this

equality that?” (e¥®)) < 0 for all t > 0. Proceeding as above we conclude that  s.ineq pure and Appl. math. 6(2) Art. 103, 2005
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0"(t) < 0 fort > 0. This provesPs. P, follows immediately from 2.3) and the

limitin (1.6).

Lete ™™ <t < oo, then by the monotonicity of and property?, of 6, we
find that
(2.4) l—e7=0(e) <0(t) <b(c0) =

From 2.1) we can write

(2.5) 0(t) = ¢y (logt) —t.

Substituting the value df(¢) into (2.4), we get

1—e? <t t(logt) —t <0.5.
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From the right inequality we get far > 0.5 TaTETE
(zx) > log(x — 0.5), <4« >
and similarly the left inequality gives far > 1 < >
Go Back
P(x) <log(x—14+e77).
Close
This proves a). In order to prove b) and c) we apply the mean value theorem to Quit

6 on the intervale?® ¢¥(+1]. Thus, there exists &such that) < §(¢) < 1

forallt > 0 and

Page 10 of 20

0 (ell}(t'i‘l)) s (ew(t)) _ (ew(t-i-l) _ ew(t ) 9’( P(t40( t))) J. Ineq. Pure and Appl. Math. 6(4) Art. 103, 2005

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:necdet_batir@hotmail.com
http://jipam.vu.edu.au/

which can be rewritten by2(2) as

1

(2.6) v (el/t — 1)

~ 1 = g (P,

By Py, the right-hand-side of this equation is greater than 0, which proves the

right inequality in b) by direct computation. It is clear that
0 (e¥tHD) — 9 (e¥W) =1 — ¥ (et — 1) < 0(c0) — 6(0) t>0.

= 57
After some simplification this proves the left inequality in b).

Since fort > 2,t 4+ 6(t) > 1+ §(1) and@’ is strictly decreasing ofD, co)
by P;, we must have fot > 2 that

(2.7) 0 (VD)) < ¢/ (P W) = g/ (e7) =
Making use of 2.6) proves c).
We now prove e). By applying the mean value theorerfi tm the interval

[e¥®] ¥t (¢ > 0, h > 0), we get
(M) — g(e¥ D) = (PN — ¥ g (e¥(tHa)y

where0 < a < h. Employing @.2) and @.3) , this can be written as

h

(2.8) R _ oo

— 1= gf(ew(wa)).
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By the monotonicity of) andy, we havey’ (e?(+2) < ¢'(e¥®)) andd’ (e?(++2) >
¢'(e¥+h), Thus by the above inequality and these two inequalities we find that

h

k- ey L
o) e~ 1<) = 1

and
h

e¥(t+h) — ev(t)

Y(t+h)y
—1>0(e ( )) Tt 4 h)evth) -1

After brief computation, these inequalities yield

(2.9) Uz +h) —P(x) > log(1+ h)'(z))
and
(2.10) Y(x+h) —(z) < —log(l — h)'(x + h)).

These prove e).

Puth = 11in (2.9 and .10 and then usel(2) and (L.3) to get after some
computations
Y () <e/* —1

and
/ 1 1 —I/LIJ
77/) (ZL‘) > 1+ ; —e .

In the first inequality replace by x + 1 and use 1.2) to get

1
P(x) < = — L+,
T
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These prove f). By4.3) we have fort > 1
_ L
PO

From these inequalities we obtain after simple computations that,for

o'V ) = —1< (D) =¢(e) = = — 1.

2
W () > W_e—w(t)’

2.11
( ) — 6e

and this proves d).
To prove g) and h) we apply the mean value theorem(to+ 6 (¢)) (¢t > 0)
in (2.1) on the interval 0, 6 (¢)] to find that

logt = ¥(t) + 0()Y'(t + a(t)),

where0 < «(t) < 0(t). Sinced is strictly increasing and’ is strictly decreas-
ing on(0,00), andf(1) = ¢ — 1 by (2.5), this gives fort > 1

log £ — (1) < 59/(1)
and

logt —(t) > (¢ — 1)y (t+ %) :

From these two equations with the help of f) we prove h) and i).
In order to prove i) and j) integrate both sides &flj overl < u < x to
obtain

/j Wb(u+ 0(w))du = /1 log udu.
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Making the change of variable = ¢¥(*) on the left hand side this becomes by
(2.1)

z+0(x)
(2.12) / V()Y (t)e?Ddt = xlogr — z + 1.

Sincey(t) > 0forallt > ¢, andy/(t)e¥® < 1 by Lemmal.2we find that, for
z>1

z+0(x)
zlogr —x+1< / Y(t)dt =logI'(z + 0(x)) —logI'(c)

or
zlogx —x+1+logl(c) <logl'(x + 0(x)).

Again using the monotonicity df, this can be rewritten after some simplifica-
tions as forr > 1

z+1/2
['(z+1) >TI(c) (x + 5) e~ T2,

This proves i). By 2.11) and ¢.12 we have forz > 1 that

2 x+0(x) ’7T2 7T2
rloge —x+1> 6o /. Y(t)dt = o7 logT'(x + 0(x)) — e logI'(¢)
or 2 =
zlogr —x+ 1+ 6?logF(C) > 6o log'(z + 6(x)).

Some New Inequalities for
Gamma and Polygamma
Functions

Necdet Batir

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 14 of 20

J. Ineq. Pure and Appl. Math. 6(4) Art. 103, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:necdet_batir@hotmail.com
http://jipam.vu.edu.au/

Since forz > 1, 6(z) > ¢ — 1 from this inequality we find that

6e” 6e7 6e”
izaflogsv— %$+i2 +logl'(c) > logl'(x +c—1).
T T s

Replacingr by x — c+ 2 we getforz > c— 1
T(z+1) <T(c)(x + 2 — ¢)8t2-a)e7/m S(-alia)er/n®

which proves j). Thus, we have completed the proof of the theorem. [

Corollary 2.2. For any integemn > 1 the following inequalities involving har-
monic numbers and factorial hold.

a.
v +log(n +0.5) < H, <v+log(n —1+e7).

The constants.5 ande!~ — 1 are the best possible.

2
log (%) —log(eV/™ ) —1) < H, <~ —log[e!/™ 1) —1].

1 n+1/2
n! > T'(c) (n + 5) e /2

and
n!<T(c)(n+2— C)G(n+2—c)e“f/7r266(—n—1+c)a/7r27

whereH,, = Y_}'_, 1 is then™ harmonic number.
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Proof. Letx > 2. Then by £.2) we have
(V@) = 1 — V@) > gDy =2 _ #®) — 9 _ o1,
Thus a short calculation gives for> 2
Y(r) <log(z —2+ 7).

It is well known thaty)(n + 1) = H, — v for all integersn > 1 (see [,
p. 258, 6.3.2]), thus replacing by n + 1 here proves a). Using the identity
¥(n+ 1) = H, — v again, the proof of b) follows from Theorethlb by
replacingz by n + 1. c) follows, too, from replacing by a natural numben

sincel'(n + 1) = nl. This completes the proof of the corollary. O
Now define
an=1+1+1+-~-+l—log<n+1>
2 3 n 2
and

1 1 1
=14+ -4+ -4+ =41 1/(nt1) _ 1y
16} —|—2+3—|— —i—n—irog(e )

Clearlylim,, ., a;, = 7. Since

1
lim |log (e "V — 1) 4 log (n - 5)] =0,

it is also obvious thalim,, ... 3, = 7
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Thus the arithmetic mean of, and 3, converges toy as well. We define

The rate of convergence of, has been investigated by De Temple and he

has shown that

«y, +
,Yn 2

Bn
2

1

—— <
24(n+ 12 ¢

11 1
=l+g+g+ -+

3

-

2

- 1
24n?’

1 61/ (n+1) _

n+1/2

1).

see [L1]. We have not investigated the rate of convergencg,oénd~,,, but
numerical experiments indicate as illustrated on the following table%hebn-
verges toy more rapidly thany, and,y,, converges toy much more rapidly than
botha,, andg,.

Table 1: Comparison between some terme.pf 3, and-,,.

n On ﬂn TIn |an - 7| |ﬂn - 7| |’Yn - ’Y|

1 0.5945348911 0.567247870 0.58089138( 0.017319226 0.009967794 0.00367571
2 0.583709268 0.572679728 0.578194498 0.006493603 0.004535936 0.00097883
3 0.580570364 0.574641783 0.577606074 0.003354699 0.00257388[L 0.00039040
4 0.579255936 0.575561532 0.577408734 0.00204027]1 0.001654132 0.00019306
5 0.5785852411 0.57606433} 0.57732478p 0.001369576 0.00115132}7 0.00010912
10 | 0.577592996 0.5768718550.577232426 0.00037733[1 0.000343809 0.00001676
50 | 0.577232002 0.577199646 0.577215824 0.00001633} 0.000016018 0.00000015
100 | 0.5772197900.577211580 0.57721565H 0.000004125 0.000004084 0.00000002
500 | 0.57721583[1 0.577215498 0.577215685 0.000000166 0.000000166 0.00000000
100Q 0.5772157060.5772156283 0.577215666 0.00000004{L 0.000000041 0.00000000

O O O OF S OO WO
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We want to make some remarks on our results.

i) Numerical experiments indicate that the function— 6'(x) is strictly
completely monotonic, but it seems difficult to prove this. For example,
even to prove tha®”’(z) > 0 (z > 0), we need to show the following
complicated inequality.

w/(x)z//"(x) -3 (wll(x))Q -3 (w’(x))Qw”(x) -9 (wl(m))‘l <0, >0 Some New Inequalities for

Gamma and Polygamma
Functions

If we prove this, applying the mean value theoren¥t® for all posi-

tive integersn on [e¥®) ¢¥(+1)], we may obtain many other interesting Necdet Batir
inequalities involving polygamma functions.
. Title P
i) In our method presented here we used the mean value theorem. Instead, He rage
by using Taylor Theorem up to higher derivatives, we may get sharpenings Contents
of the bounds we find here. For example, by applying the Taylor Theorem <« S
tolog'(x) on|t,t + 1] (¢ > 0) up to the second derivative, we get
< >
1
logt = (t) + 5@/}' (t+a(t), 0<a(t) <l Go Back
L. - - . Close
Investigating the monotonicity property and the limitaft) will be very _
interesting and can lead to very sharp inequalities for polygamma func- Quit
tions. We showed that the limit ef(¢) ast tends tooco is 1/3 provided Page 18 of 20

that this limit exists .
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