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Abstract

We consider the averages An(f) = 1/(n − 1)
∑n−1

r=1 f(r/n) and Bn(f) =
1/(n + 1)

∑n
r=0 f(r/n). If f is convex, then An(f) increases with n and Bn(f)

decreases. For the class of functions called superquadratic, a lower bound is
given for the successive differences in these sequences, in the form of a convex
combination of functional values, in all cases at least f(1/3n). Generalizations
are formulated in which r/n is replaced by ar/an and 1/n by 1/cn. Inequalities
are derived involving the sum

∑n
r=1(2r − 1)p.
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1. Introduction
For a functionf , define

(1.1) An(f) =
1

n− 1

n−1∑
r=1

f
( r

n

)
(n ≥ 2)

and

(1.2) Bn(f) =
1

n + 1

n∑
r=0

f
( r

n

)
(n ≥ 1),

the averages of values at equally spaced points in[0, 1], respectively, excluding
and including the end points. In [2] it was shown that iff is convex, thenAn(f)
increases withn, andBn(f) decreases. A typical application, found by taking
f(x) = − log x, is that(n!)1/n/(n + 1) decreases withn (this strengthens the
result of [6] that(n!)1/n/n is decreasing). Similar results for averages including
one end point can be derived, and have appeared independently in [5] and [4].

In this article, we generalize the theorems of [2] in two ways. First, we
present a class of functions for which a non-zero lower bound can be given for
the differencesAn+1(f)−An(f) and Bn−1(f)−Bn(f). Recall that a convex
function satisfies

f(y)− f(x) ≥ C(x)(y − x)

for all x, y, whereC(x) = f ′(x) (or, if f is not differentiable atx, any number
between the left and right derivatives atx). In [1], the authors introduced the
class ofsuperquadraticfunctions, defined as follows. A functionf , defined on
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an intervalI = [0, a] or [0,∞), is “superquadratic" if for eachx in I, there
exists a real numberC(x) such that

(SQ) f(y)− f(x) ≥ f(|y − x|) + C(x)(y − x)

for all y ∈ I. For non-negative functions, this amounts to being “more than
convex" in the sense specified. The term is chosen becausexp is superquadratic
exactly whenp ≥ 2, and equality holds in the definition whenp = 2. In Section
2, we shall record some of the elementary facts about superquadratic functions.
In particular, they satisfy a refined version of Jensen’s inequality for sums of the
form

∑n
r=1 λrf(xr), with extra terms inserted.

For superquadratic functions, lower bounds for the differences stated are
obtained in the form of convex combinations of certain values off . By the
refined Jensen inequality, they can be rewritten in the formf(1/3n)+S, where
S is another convex combination. These estimates preserve equality in the case
f(x) = x2. By a further application of the inequality, we show thatS is not less
thanf(a/n) (for Bn(f)), or f(a/(n + 3)) (for An(f)), wherea = 16

81
= (2

3
)4.

This simplifies our estimates to the sum of just two functional values, but no
longer preserving equality in the case ofx2.

We then present generalized versions in whichf(r/n) is replaced byf(ar/an)
and1/(n±1) is replaced by1/cn±1. Under suitable conditions on the sequences
(an) and(cn), we show that the generalizedAn(f) andBn(f) are still mono-
tonic for monotonic convex or concave functions. These theorems generalize
and unify results of the same sort in [4], which take one-end-point averages as
their starting point. At the same time, the previous lower-bound estimates for
superquadratic functions are generalized to this case.
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There is a systematic duality between the results forAn(f) andBn(f) at
every stage, but enough difference in the detail for it to be necessary to present
most of the proofs separately.

We finish with some applications of our results to sums and products involv-
ing odd numbers. For example, ifSn(p) =

∑n
r=1(2r − 1)p, then Sn(p)/(2n +

1)(2n− 1)p decreases withn for p ≥ 1, andSn(p)/(n+1)(2n− 1)p increases
with n when0 < p ≤ 1. Also, if Qn = 1·3·· · ··(2n−1), thenQ

1/(n−1)
n /(2n+1)

decreases withn.
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2. Superquadratic Functions
The definition (SQ) of “superquadratic" was given in the introduction. We say
thatf is subquadraticif −f is superquadratic.

First, some immediate remarks. Forf(x) = x2, equality holds in (SQ), with
C(x) = 2x. Also, the definition, withy = x, forcesf(0) ≤ 0, from which it
follows that one can always takeC(0) to be 0. Iff is differentiable and satisfies
f(0) = f ′(0) = 0, then one sees easily that theC(x) appearing in the definition
is necessarilyf ′(x).

The definition allows some quite strange functions. For example, any func-
tion satisfying−2 ≤ f(x) ≤ −1 is superquadratic. However, for present pur-
poses, our real interest is in non-negative superquadratic functions. The follow-
ing lemma shows what these functions are like.

Lemma 2.1. Suppose thatf is superquadratic and non-negative. Thenf is
convex and increasing. Also, ifC(x) is as in (SQ), thenC(x) ≥ 0.

Proof. Convexity is shown in [1, Lemma 2.2]. Together withf(0) = 0 and
f(x) ≥ 0, this implies thatf is increasing. As mentioned already, we can take
C(0) = 0. Forx > 0 andy < x, we can rewrite (SQ) as

C(x) ≥ f(x)− f(y) + f(x− y)

x− y
≥ 0.

The next lemma (essentially Lemma 3.2 of [1]) gives a simple sufficient
condition. We include a sketch of the proof for completeness.
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Lemma 2.2. If f(0) = f ′(0) = 0 andf ′ is convex (resp. concave), thenf is
superquadratic (resp. subquadratic).

Proof. First, sincef ′ is convex andf ′(0) = 0, we havef ′(x) ≤ [x/(x +
y)]f ′(x + y) for x, y ≥ 0, and hencef ′(x) + f ′(y) ≤ f ′(x + y) (that is,
f ′ is superadditive). Now lety > x ≥ 0. Then

f(y)− f(x)− f(y − x)− (y − x)f ′(x) =

∫ y−x

0

[f ′(t + x)− f ′(t)− f ′(x)]dt

≥ 0.

Similarly for the casex > y ≥ 0.

Hencexp is superquadratic forp ≥ 2 and subquadratic for1 < p ≤ 2. (It is
also easily seen thatxp is subquadratic for0 < p ≤ 1, with C(x) = 0). Other
examples of superquadratic functions arex2 log x, sinh x and

f(x) =

{
0 for 0 ≤ x ≤ a,
(x− a)2 for x > a.

The converse of Lemma2.2is not true. In [1], it is shown where superquadratic
fits into the “scale of convexity" introduced in [3].

The refined Jensen inequality is as follows. Letµ be a probability measure
on a setE. Write simply

∫
x for

∫
E

xdµ.

Lemma 2.3.Letx be non-negative andµ-integrable, and letf be superquadratic.
Define the (non-linear) operatorT by: (Tx)(s) =

∣∣x(s)−
∫

x
∣∣. Then∫

(f ◦ x) ≥ f

(∫
x

)
+

∫
[f ◦ (Tx)].
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The opposite inequality holds iff is subquadratic.

Proof. Assumef is superquadratic. Write
∫

x = x. Then∫
(f ◦ x)− f(x) =

∫
[f(x(s))− f(x)]ds

≥
∫

f (|x(s)− x|) ds + C(x)

∫
(x(s)− x)ds

=

∫
(f ◦ Tx).

In fact, the converse holds: if the property stated in Lemma2.3holds for all
two-point measure spaces, thenf is superquadratic [1, Theorem 2.3].

Note thatT is a sublinear operator. Iteration of Lemma2.3 immediately
gives:

Lemma 2.4. If x ≥ 0 andf is superquadratic, then for eachk ≥ 2,∫
(f ◦ x) ≥ f

(∫
x

)
+ f

(∫
Tx

)
+ · · ·

+ f

(∫
T k−1x

)
+

∫
[f ◦ (T kx)].

and hence ∫
(f ◦ x) ≥

∞∑
k=0

f

(∫
T kx

)
.
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In this paper, we will be using the discrete case of Lemma2.3. It may be
helpful to restate this case in the style in which it will appear:Suppose thatf is
superquadratic. Letxr ≥ 0 (1 ≤ r ≤ n) and letx =

∑n
r=1 λrxr, whereλr ≥ 0

and
∑n

r=1 λr = 1. Then

n∑
r=1

λrf(xr) ≥ f(x) +
n∑

r=1

λrf(|xr − x|).

For x ∈ Rn, now writex(r) for therth component, and, as usual,‖x‖∞ =
max1≤r≤n |x(r)|. In this discrete situation, for theT defined above, it is easy to
show that‖T kx‖∞ converges to zero geometrically.

Lemma 2.5.Letλ = min1≤r≤n λr and letx ≥ 0. Then‖Tx‖∞ ≤ (1−λ)‖x‖∞,
hence‖T kx‖∞ ≤ (1− λ)k‖x‖∞.

Proof. Note that|x(r)− x(s)| ≤ ‖x‖∞ for all r, s. So, for eachr,

(Tx)(r) =

∣∣∣∣∣
n∑

s=1

λs[x(r)− x(s)]

∣∣∣∣∣
≤

∑
s 6=r

λs|x(r)− x(s)|

≤ (1− λr)‖x‖∞.

It now follows easily that the second inequality in Lemma2.4 reverses for
subquadratic functions satisfying a conditionf(t) ≤ ctp for somep > 0. Hence
equality holds forf(x) = x2.
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Note. It is not necessarily true that
∫

Tx ≤
∫

x, and hence‖ · ‖∞ cannot
be replaced by‖ · ‖1 in Lemma2.5. Takeλr = 1/n for eachr, and letx =
(1, 0, . . . , 0). ThenTx =

(
1− 1

n
, 1

n
, . . . , 1

n

)
, giving

∫
Tx = 2(n− 1)/n2.
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3. The Basic Theorems
Throughout the following, the quantitiesAn(f) andBn(f) continue to be de-
fined by (1.1) and (1.2).

Theorem 3.1. If f is superquadratic on[0, 1], then forn ≥ 2,

(3.1) An+1(f)− An(f) ≥
n−1∑
r=1

λrf(xr),

where

λr =
2r

n(n− 1)
, xr =

n− r

n(n + 1)
.

Further,

(3.2) An+1(f)− An(f) ≥ f

(
1

3n

)
+

n−1∑
r=1

λrf(yr),

where

yr =
|2n− 1− 3r|

3n(n + 1)
.

The opposite inequalities hold iff is subquadratic.

Proof. Write ∆n = (n− 1)[An+1(f)− An(f)]. Then

∆n =
n− 1

n

n∑
r=1

f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n∑
r=1

(
r − 1

n
+

n− r

n

)
f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
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=
n−1∑
r=0

r

n
f

(
r + 1

n + 1

)
+

n−1∑
r=1

n− r

n
f

(
r

n + 1

)
−

n−1∑
r=1

f
( r

n

)
=

n−1∑
r=1

r

n

[
f

(
r + 1

n + 1

)
− f

( r

n

)]
+

n−1∑
r=1

n− r

n

[
f

(
r

n + 1

)
− f

( r

n

)]
.

We apply the definition of superquadratic to both the differences appearing in
the last line, noting that

r + 1

n + 1
− r

n
=

n− r

n(n + 1)
.

We obtain

∆n ≥
n−1∑
r=1

r

n
f

(
n− r

n(n + 1)

)
+

n−1∑
r=1

n− r

n
f

(
r

n(n + 1)

)
+

n−1∑
r=1

hrC
( r

n

)
,

where

hr =
r

n
· r + 1

n + 1
+

n− r

n
· r

n + 1
− r

n
= 0,

hence

∆n ≥ 2
n−1∑
r=1

r

n
f

(
n− r

n(n + 1)

)
,

which is equivalent to (3.1).
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We now apply Lemma2.3. Note that

n−1∑
r=1

r(n− r) =
1

2
(n− 1)n2 − 1

6
(n− 1)n(2n− 1)

=
1

6
(n− 1)n(n + 1),

hence
∑n−1

r=1 λrxr = 1/3n (denote this byx). So

xr − x =
n− r

n(n + 1)
− 1

3n
=

2n− 3r − 1

3n(n + 1)
,

and inequality (3.2) follows.

The proof of the dual result forBn(f) follows similar lines, but since the
algebraic details are critical, we set them out in full.

Theorem 3.2. If f is superquadratic on[0, 1], then forn ≥ 2,

(3.3) Bn−1(f)−Bn(f) ≥
n∑

r=1

λrf(xr),

where

λr =
2r

n(n + 1)
, xr =

n− r

n(n− 1)
.

Further,

(3.4) Bn−1(f)−Bn(f) ≥ f

(
1

3n

)
+

n∑
r=1

λrf(yr),
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where

yr =
|2n + 1− 3r|

3n(n− 1)
.

The opposite inequalities hold iff is subquadratic.

Proof. Let ∆n = (n + 1)[Bn−1(f)−Bn(f)]. Then

∆n =
n + 1

n

n−1∑
r=0

f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n−1∑
r=0

(
r + 1

n
+

n− r

n

)
f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n∑
r=1

r

n
f

(
r − 1

n− 1

)
+

n−1∑
r=0

n− r

n
f

(
r

n− 1

)
−

n∑
r=0

f
( r

n

)
=

n∑
r=1

r

n

[
f

(
r − 1

n− 1

)
− f

( r

n

)]
+

n−1∑
r=0

n− r

n

[
f

(
r

n− 1

)
− f

( r

n

)]
.

Apply the definition of superquadratic, noting that∣∣∣∣ r − 1

n− 1
− r

n

∣∣∣∣ =
n− r

n(n− 1)
.

We obtain

∆n ≥
n∑

r=1

r

n
f

(
n− r

n(n− 1)

)
+

n−1∑
r=0

n− r

n
f

(
r

n(n− 1)

)
+

n∑
r=0

krC
( r

n

)
,
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where

kr =
r

n
· r − 1

n− 1
+

n− r

n
· r

n− 1
− r

n
= 0,

hence

∆n ≥ 2
n∑

r=1

r

n
f

(
n− r

n(n− 1)

)
,

which is equivalent to (3.3). Exactly as in Theorem3.1, we see that
∑n

r=1 λrxr

= 1/3n, and (3.4) follows.

Remark 3.1. These proofs, simplified by not introducing the functional values
of f on the right-hand side, reproduce Theorems 1 and 2 of [2] for convex
functions.

Remark 3.2. Since these inequalities reverse for subquadratic functions, they
become equalities forf(x) = x2, which is both superquadratic and subquadratic.
In this sense, they are optimal for the hypotheses: nothing has been lost. How-
ever, this is at the cost of fairly complicated expressions. Clearly, iff is also
non-negative, then we have the simple lower estimatef(1/3n). in both results.
In the casef(x) = x2, it is easily seen that

An(f) =
1

3
− 1

6n
, Bn(f) =

1

3
+

1

6n
,

hence

An+1(f)− An(f) =
1

6n(n + 1)
, Bn−1(f)−Bn(f) =

1

6n(n− 1)
,

so the termf(1/3n) = 1/9n2 gives about two thirds of the true value.
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Averages including one end-point. Let

Dn(f) =
1

n

n−1∑
r=0

f
( r

n

)
, En(f) =

1

n

n∑
r=1

f
( r

n

)
.

If f(0) = 0, then

Dn(f) =
n− 1

n
An(f), En(f) =

n + 1

n
Bn(f).

For an increasing, convex functionf , we can add a constant to ensure that
f(0) = 0, and it follows thatDn(f) is increasing andEn(f) is decreasing
([2, Theorem 3A]; also, with direct proof, [5] and [4]). Further, we have

Dn+1(f)−Dn(f) =
n

n + 1
[An+1(f)− An(f)] +

1

n(n + 1)
An(f)

and

En−1(f)− En(f) =
n

n− 1
[Bn−1(f)−Bn(f)] +

1

n(n− 1)
Bn(f).

For non-negative, superquadraticf , we automatically havef(0) = 0, so we
can read off lower bounds for these differences from the corresponding ones
for An(f) andBn(f). With regard to the second term, note that for convex
functions, we always haveAn(f) ≥ A2(f) = f(1

2
) andBn(f) ≥

∫ 1

0
f .
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4. Estimates in Terms of Two Functional Values
For non-negative superquadratic functions, we now give lower estimates for the
second term in (3.2) and (3.4) in the form of the value at one point, at the cost
of losing exactness for the functionf(x) = x2. We shall prove:

Theorem 4.1. If f is superquadratic and non-negative, then forn ≥ 3,

An+1(f)− An(f) ≥ f

(
1

3n

)
+ f

(
16

81(n + 3)

)
.

Theorem 4.2. If f is superquadratic and non-negative, then for alln ≥ 2,

Bn−1(f)−Bn(f) ≥ f

(
1

3n

)
+ f

(
16

81n

)
.

The factor16
81

seems a little less strange if regarded as(2
3
)4.

We give the proof forBn(f) first, since there are some extra complications
in the case ofAn(f). Let λr andyr be as in Theorem3.2. By Lemma2.3,
discarding the extra terms arising from the definition of superquadratic, we have∑n

r=1 λrf(yr) ≥ f(y), wherey = y(n) =
∑n

r=1 λryr. We give a lower bound
for y(n).

Lemma 4.3. Let S =
∑n

r=1 r|2n + 1− 3r|. Letm be the greatest integer such
that3m ≤ 2n + 1. Then

S = 2m(m + 1)(n−m).
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Proof. For anym,
m∑

r=1

r(2n + 1− 3r) =
1

2
m(m + 1)(2n + 1)− 1

2
m(m + 1)(2m + 1)

= m(m + 1)(n−m).

In particular,
∑n

r=1 r(2n + 1− 3r) = 0. With m now as stated, it follows that

S =
m∑

r=1

r(2n + 1− 3r) +
n∑

r=m+1

r(3r − 2n− 1)

= 2
m∑

r=1

r(2n + 1− 3r)

= 2m(m + 1)(n−m).

Conclusion of the proof of Theorem4.2. With this notation, we have

y(n) =
2S

3n2(n + 1)(n− 1)
.

If we insert 3m ≤ 2n + 1 and n − m ≤ 1
3
(n + 1), we obtainy(n) ≥

(2− 1
n
)(8/81n), not quite the stated result. However,3m is actually one of2n−

1, 2n, 2n + 1. The exact expressions fory(n) in the three cases, are, respec-
tively:

8

81n
· (2n− 1)(n + 1)

(n− 1)n
,

8

81
· 2n + 3

n2 − 1
,

8

81n
· (2n + 1)(n + 2))

n(n + 1)
.
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In each case, it is clear thaty(n) ≥ 16/81n.

We now return to Theorem4.1. Let λr andyr be as defined in Theorem3.1.

Lemma 4.4. Let S =
∑n−1

r=1 r|2n − 1 − 3r|, and letm be the smallest integer
such that3m ≥ 2n− 1. Then

S = 2(m− 1)m(n−m).

Proof. Similar to Lemma4.3, using the fact that (for anym):

m−1∑
r=1

r(2n− 1− 3r) = (m− 1)m(n−m).

Conclusion of the proof of Theorem4.1.
Case 3m = 2n− 1 (so thatn = 2, 5, . . .). Then

y(n) =
8

81
· (n− 2)(2n− 1)

n2(n− 1)
.

The statementy(n) ≥ 16/[81(n + 3)] is equivalent to3n2 − 13n + 6 ≥ 0,
which occurs for alln ≥ 4.
Case3m = 2n (son = 3, 6, . . .). Then

y(n) =
8

81
· (2n− 3)

(n + 1)(n− 1)
,
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which is not less than16/[81(n + 3)] when3n ≥ 7.
Case3m = 2n + 1 (son = 4, 7, . . .). Then

y(n) =
8

81

(n− 1)(2n + 1)

n2(n + 1)
.

This time we note thaty(n) ≥ 16/[81(n+2)] is equivalent ton2−3n−2 ≥ 0,
which occurs for alln ≥ 4.

Note. More precisely, the proof shows thaty(2) = 0, y(3) = 1
27

andy(5) = 2
75

,
while in all other casesy(n) ≥ 16/[81(n + 2)].

In principle, the process can be iterated, as in Lemma2.4. After complicated
evaluations, one finds that the next term is of the order off(1/30n).
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5. Generalized Versions
We now formulate generalized versions of the earlier results in whichf(r/n)
is replaced byf(ar/an) and1/(n ± 1) is replaced by1/cn±1, under suitable
conditions on the sequences(an) and (cn). For increasing convex functions,
we show that the generalizedAn(f) andBn(f) are still monotonic. There are
companion results for decreasing or concave functions, with some of the hy-
potheses reversed. The results of [4] follow as special cases. For superquadratic
functions, we obtain suitable generalizations of the lower bounds given in (3.1)
and (3.3).

Theorem 5.1.

(i) Let (an)n≥1 and (cn)n≥0 be sequences such thatan > 0 and cn > 0 for
n ≥ 1 and:

(A1) c0 = 0 andcn is increasing,

(A2) cn+1 − cn is decreasing forn ≥ 0,

(A3) cn(an+1/an − 1) is decreasing forn ≥ 1.

Given a functionf , let

An[f, (an), (cn)] = An(f) =
1

cn−1

n−1∑
r=1

f

(
ar

an

)
for n ≥ 2. Suppose thatf is convex, non-negative, increasing and differ-
entiable on an intervalJ including all the pointsar/an for r < n. Then
An(f) increases withn.
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(ii) Suppose thatf is decreasing onJ and that (A3) is reversed, with the other
hypotheses unchanged. ThenAn(f) increases withn.

(iii) Suppose thatf is concave, non-negative and increasing onJ , and that
(A2) and (A3) are both reversed, with the other hypotheses unchanged.
ThenAn(f) decreases withn.

Proof. First, consider case (i). Let

∆n = cn−1[An+1(f)− An(f)] =
cn−1

cn

n∑
r=1

f

(
ar

an+1

)
−

n−1∑
r=1

f

(
ar

an

)
.

We follow the proof of Theorem3.1, with appropriate substitutions. At the first
step, where we previously expressedn − 1 as(r − 1) + (n − r), we now use
(A2): we havecr − cr−1 ≥ cn − cn−1, hence

cn−1 ≥ cr−1 + (cn − cr)

for r < n. Using only the fact thatf is non-negative, the previous steps then
lead to

(5.1) ∆n ≥
n−1∑
r=1

cr

cn

[
f

(
ar+1

an+1

)
− f

(
ar

an

)]

+
n−1∑
r=1

cn − cr

cn

[
f

(
ar

an+1

)
− f

(
ar

an

)]
.

(The conditionc0 = 0 is needed at the last step).
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Forx, y ∈ J , we havef(y)−f(x) ≥ C(x)(y−x), whereC(x) = f ′(x) ≥ 0.
So

∆n ≥
n−1∑
r=1

hrC

(
ar

an

)
,

where, by (A3),

hr =
cr

cn

· ar+1

an+1

+
cn − cr

cn

· ar

an+1

− ar

an

=
ar

cnan+1

(
cr

ar+1

ar

+ cn − cr − cn
an+1

an

)
≥ 0.

In case (ii), we haveC(x) ≤ 0, and by reversing (A3), we ensure thathr ≤ 0.
In case (iii), the reversal of (A2) has the effect of reversing the inequality

in (5.1). We now havef(y) − f(x) ≤ C(x)(y − x), with C(x) ≥ 0, and the
reversal of (A3) again giveshr ≤ 0.

The theorem simplifies pleasantly whencn = an, because condition (A3)
now says the same as (A2).

Corollary 5.2. Let (an)n≥0 be an increasing sequence witha0 = 0 anda1 > 0.
Let f be increasing and non-negative onJ . LetAn(f) be as above, withcn =
an. If an+1 − an is decreasing andf is convex, thenAn(f) increases withn. If
an+1 − an is increasing andf is concave, thenAn(f) decreases withn.

We note that the termc0 does not appear in the definition ofAn(f). Its role
is only to ensure thatc2 − c1 ≤ c1. Also, the differentiability condition is only
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to avoid infinite gradient at any pointar/an that coincides with an end point of
J .

Simply inserting the definition of superquadratic, we obtain:

Theorem 5.3. Let (an), (cn) andAn(f) be as in Theorem5.1(i). Suppose that
f is superquadratic and non-negative onJ . Then

An+1(f)− An(f) ≥ 1

cncn−1

n−1∑
r=1

crf

(∣∣∣∣ar+1

an+1

− ar

an

∣∣∣∣)

+
1

cncn−1

n−1∑
r=1

(cn − cr)f

(∣∣∣∣ar

an

− ar

an+1

∣∣∣∣) .

Note that if(an) is increasing, then there is clearly no need for the second
modulus sign in Theorem5.3. Furthermore, it is easily checked that, with the
other hypotheses, this implies thatan+1/an is decreasing, so that the first mod-
ulus sign is redundant as well.

We now formulate the dual results forBn(f). We need an extra hypothesis,
(B4).

Theorem 5.4.

(i) Let (an)n≥0 and (cn)n≥0 be sequences such thatan > 0 and cn > 0 for
n ≥ 1 and:

(B1) c0 = 0 andcn is increasing,

(B2) cn − cn−1 is increasing forn ≥ 1,
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(B3) cn(1− an−1/an) is increasing forn ≥ 1,

(B4) eithera0 = 0 or (an) is increasing.

Given a functionf , let

Bn[f, (an), (cn)] = Bn(f) =
1

cn+1

n∑
r=0

f

(
ar

an

)
.

for n ≥ 1. Suppose thatf is convex, non-negative, increasing and differ-
entiable on an intervalJ including all the pointsar/an for 1 ≤ r ≤ n.
ThenBn(f) decreases withn.

(ii) Suppose thatf is decreasing onJ and that (B3) and (B4) are both re-
versed, with the other hypotheses unchanged. ThenBn(f) decreases with
n.

(iii) Suppose thatf is concave, non-negative and increasing onJ , and that
(B2), (B3), (B4) are all reversed, with the other hypotheses unchanged.
ThenBn(f) increases withn.

Proof. We adapt the proof of Theorem3.2. Forn ≥ 2, let

∆n = cn+1[Bn−1(f)−Bn(f)] =
cn+1

cn

n−1∑
r=0

f

(
ar

an−1

)
−

n∑
r=0

f

(
ar

an

)
.

Using (B2) in the formcn+1 ≥ cr+1+(cn−cr), together with the non-negativity
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of f , we obtain

(5.2) ∆n ≥
n−1∑
r=1

cr

cn

[
f

(
ar−1

an−1

)
− f

(
ar

an

)]

+
n−1∑
r=0

cn − cr

cn

[
f

(
ar

an−1

)
− f

(
ar

an

)]
.

Separating out the termr = 0, we now have in case (i)

∆n ≥
n−1∑
r=1

krC

(
ar

an

)
+ δn,

where δn = f(a0/an−1)− f(a0/an). Condition (B4) ensures thatδn ≥ 0 (note
that we do not need differentiability at the pointa0/an), and (B3) gives

kr =
cr

cn

· ar−1

an−1

+
cn − cr

cn

· ar

an−1

− ar

an

=
ar

cnan−1

(
cr

ar−1

ar

+ cn − cr − cn
an−1

an

)
≥ 0.

In case (ii), the reversed hypotheses giveC(x) ≤ 0, kr ≤ 0 andδn ≥ 0.
In case (iii), the inequality in (5.2) is reversed, andC(x) ≥ 0, kr ≤ 0 and

δn ≤ 0.
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Corollary 5.5. Let (an)n≥0 be an increasing sequence witha0 = 0 anda1 > 0.
Let f be increasing and non-negative onJ . LetBn(f) be as above, withcn =
an. If an − an−1 is increasing andf is convex, thenBn(f) decreases withn. If
an − an−1 is decreasing andf is concave, thenBn(f) increases withn.

Theorem 5.6. Let (an), (cn) andBn(f) be as in Theorem5.4(i). Suppose that
f is superquadratic and non-negative onJ . Then

Bn−1(f)−Bn(f) ≥ 1

cncn+1

n−1∑
r=1

crf

(∣∣∣∣ar

an

− ar−1

an−1

∣∣∣∣)

+
1

cncn+1

n−1∑
r=0

(cn − cr)f

(∣∣∣∣ ar

an−1

− ar

an

∣∣∣∣) .

Relation to the theorems of [4] . The theorems of [4] (in some cases, slightly
strengthened) are cases of our Theorems5.1 and5.4. More exactly, by taking
cn = n in Theorem5.1, we obtain Theorem 2 of [4], strengthened by replacing
1/n by 1/(n− 1). By takingcn = an+1 in Theorem5.1, we obtain Theorem 3
of [4]; of course, the hypothesis fails to simplify as in Corollary5.2. Theorems
A and B of [4] bear a similar relationship to our Theorem5.4. In the way seen
in Section3, results for one-end-point averages (or their generalized forms)
can usually be derived from those forAn(f) andBn(f). Also, one-end-point
averages lead to more complication in the proofs: ultimately, this can be traced
to the fact that the analogues of the originalhr andkr no longer cancel to zero.
All these facts indicate thatAn(f) andBn(f) are the natural averages for this
study.
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At this level of generality, it is hardly worth formulating generalizations of
the original (3.2) and (3.4) for superquadratic functions. However, in some
particular cases one can easily calculate the term corresponding to the previous
f(1/3n). For example, in Theorem5.3, with cn = n andan = 2n − 1, we
obtain the lower estimatef(xn), where

xn =
4n + 1

3(4n2 − 1)
.

Remark 5.1. Our proofs extend without change to three sequences: let

An(f) =
1

cn−1

n−1∑
r=1

f

(
ar

bn

)
, Bn(f) =

1

cn+1

n∑
r=0

f

(
ar

bn

)
.

Conditions (A3) and (B3) become, respectively,

cr(ar+1/ar − 1) ≥ cn(bn+1/bn − 1) for r < n,

cn(1− bn−1/bn) ≥ cr(1− ar−1/ar) for r ≤ n.

Condition (B4) becomes: eithera0 = 0 or (bn) is increasing.
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6. Applications to Sums and Products Involving
Odd Numbers

Let

Sn(p) =
n∑

r=1

(2r − 1)p.

Note thatSn(1) = n2. We write alsoS∗n(p) = Sn(p) − 1. It is shown in
[2, Proposition 12] thatSn(p)/np+1 increases withn if p ≥ 1 or p < 0, and
decreases withn if 0 ≤ p ≤ 1. (This result is derived from a theorem on mid-
point averages1

n

∑n
r=1 f [(2r − 1)/2n] requiring bothf and its derivative to be

convex or concave; note however that it is trivial forp ≤ −1.) We shall apply
our theorems to derive some companion results forSn(p) andS∗n(p).

Note first that ifcn = n andan = 2n + 1, then

cn

(
an+1

an

− 1

)
= cn

(
1− an−1

an

)
=

2n

2n + 1
,

which increases withn. If cn = n andan = 2n− 1, then

cn

(
an+1

an

− 1

)
= cn

(
1− an−1

an

)
=

2n

2n− 1
,

which decreases withn.

Proposition 6.1. If p ≥ 1, then

Sn(p)

(2n + 1)(2n− 1)p
decreases with n,
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S∗n(p)

(2n− 1)(2n + 1)p
increases with n.

Proof. Let f(x) be the convex functionxp. The first statement is given by
Corollary 5.5, with a0 = 0 andan = 2n − 1 for n ≥ 1. The second one is
given by Corollary5.2, with a0 = 0 andan = 2n + 1 for n ≥ 1.

The casep = 1 shows that we cannot replaceS∗n(p) by Sn(p) in the sec-
ond statement. Also, this statement does not follow in any easy way from the
theorem of [2].

The sense in which reversal occurs atp = 1 is seen in the next result. Also,
we can formulate two companion statements (corresponding ones were not in-
cluded in Proposition6.1, because they would be weaker than the given state-
ments).

Proposition 6.2. If 0 < p ≤ 1, then

Sn(p)

(2n− 1)(2n + 1)p
and

S∗n(p)

(n− 1)(2n + 1)p
decrease with n,

and

S∗n(p)

(2n + 1)(2n− 1)p
and

Sn(p)

(n + 1)(2n− 1)p
increase with n.

Proof. The functionf(x) = xp is now concave. The first decreasing expression
is given by Corollary5.2with a0 = 0 andan = 2n − 1 for n ≥ 1. The second
one is given by Theorem5.1(iii) with cn = n andan = 2n + 1.
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The first increasing expression is given by Corollary5.5 with a0 = 0 and
an = 2n + 1 for n ≥ 1. The second one is given by Theorem5.4(iii) with
cn = n anda0 = 0, an = 2n− 1 for n ≥ 1. Recall that differentiability at0 is
not required.

Proposition 6.3. If p > 0, then

(2n + 1)p

n− 1
S∗n(−p)

increases withn.

Proof. Apply Theorem5.1(ii) to the decreasing convex functionf(x) = x−p,
with cn = n andan = 2n + 1.

We remark that, unlike [2, Proposition 12], this statement is not trivial when
p = 1. Again, we cannot replaceS∗n(p) by Sn(p).

Finally, we derive a result for the productQn = 1 · 3 · · · · · (2n − 1). It
follows from [2, Theorem 4] thatQ1/n

n /n decreases withn (though this is not
stated explicitly in [2]). Our variant is less neat to state than the theorem of [2],
but not a consequence of it.

Proposition 6.4. The quantity 1
2n+1

Q
1/(n−1)
n decreases withn.

Proof. Takef(x) = − log x, which is decreasing, convex and non-negative on
(0, 1). Again apply Theorem5.1(ii) with cn = n andan = 2n + 1. (Alterna-
tively, we can apply Theorem5.1(iii) to f(x) = log x + K, whereK is chosen
so thatlog(1/2n) + K > 0.)
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