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ABSTRACT. In this paper, we introduce and study a new class of generalized nonlinear mixed
quasi-variational inequalities involving maximalη-monotone mapping. Using the resolvent op-
erator technique for maximalη-monotone mapping, we prove the existence of solution for this
kind of generalized nonlinear multi-valued mixed quasi-variational inequalities without com-
pactness and the convergence of iterative sequences generated by the new algorithm. We also
discuss the convergence and stability of the iterative sequence generated by the perturbed itera-
tive algorithm for solving a class of generalized nonlinear mixed quasi-variational inequalities.
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1. I NTRODUCTION

In recent years, variational inequalities have been generalized and extended in many differ-
ent directions using novel and innovative techniques. These have been used to study wider
classes of unrelated problems arising in optimization and control, economics and finance, trans-
portation and electrical networks, operations research and engineering sciences in a general and
unified framework, see [1] – [15], [18] – [27] and the references therein. An important and use-
ful generalization of variational inequality is called the variational inclusion. It is well known
that one of the most important and interesting problems in the theory of variational inequalities
is the development of an efficient and implementable algorithm for solving variational inequal-
ities. For the past years, many numerical methods have been developed for solving various
classes of variational inequalities, such as the projection method and its variant forms, linear
approximation, descent, and Newton’s methods.
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2 MAO-M ING JIN

Recently, Huang and Fang [10] introduced a new class of maximalη-monotone mappings
and proved the Lipschitz continuity of the resolvent operator for maximalη-monotone map-
pings in Hilbert spaces. They also introduced and studied a new class of generalized variational
inclusions involving maximalη-monotone mappings and constructed a new algorithm for solv-
ing this class of generalized variational inclusions by using the resolvent operator technique for
maximalη-monotone mappings.

The main purpose of this paper is to introduce and study a new class of generalized nonlinear
mixed quasi-variational inequalities involving maximalη-monotone mappings. Using the resol-
vent operator technique for maximalη-monotone mappings, we prove the existence of a solution
for this kind of generalized nonlinear multivalued mixed quasi-variational inequalities without
compactness and the convergence of iterative sequences generated by the new algorithm. We
also discuss the convergence and stability of the iterative sequence generated by the perturbed
iterative algorithm for solving a class of generalized nonlinear mixed quasi-variational inequal-
ities. The results shown in this paper improve and extend the previously known results in this
area.

2. PRELIMINARIES

Let H be a real Hilbert space endowed with a norm‖·‖ and an inner product〈·, ·〉, respec-
tively. Let 2H , CB(H), andH(·, ·) denote the family of all the nonempty subsets ofH, the
family of all the nonempty closed bounded subsets ofH, and the Hausdorff metric onCB(H),
respectively. Letη, N : H × H → H be two single-valued mappings with two variables and
g : H → H be a single-valued mapping. LetS, T, G : H → CB(H) be three multivalued
mappings andM : H ×H → 2H be a multivalued mapping such that for eacht ∈ H, M(·, t)
is maximalη-monotone withRan(g)

⋂
Dom M(·, t) 6= ∅. Now we consider the following

problem:
Findu ∈ H, x ∈ Su, y ∈ Tu, andz ∈ Gu such thatg(u) ∈ Dom(M(·, z)) and

(2.1) 0 ∈ N(x, y) + M(g(u), z)).

Problem (2.1) is called a generalized nonlinear multivalued mixed quasi-variational inequality.
Some special cases of the problem (2.1):

(I) If η(x, y) = x − y for all x, y in H andG is the identity mapping, then problem (2.1)
reduces to findingu ∈ H, x ∈ Su, y ∈ Tu such thatg(u) ∈ Dom(M(·, u)) and

(2.2) 0 ∈ N(x, y) + M(g(u), u).

Problem (2.2) is called the multivalued quasi-variational inclusion, which was studied
by Noor [18] – [22].

(II) If S, T are single-valued mappings andG is the identity mapping, then problem (2.1) is
equivalent to findingu ∈ H such thatg(u) ∈ Dom(M(·, u)) and

(2.3) 0 ∈ N(Su, Tu) + M(g(u), u)).

Problem (2.3) is called a generalized nonlinear mixed quasi-variational inequality.
(III) If M(·, t) = ∂ϕ(·, t), whereϕ : H ×H → R

⋃
{+∞} is a functional such that for each

fixed t in H, ϕ(·, t) : H → R
⋃
{+∞} is lower semicontinuous andη-subdifferentiable

on H, and∂ϕ(·, t) denotes theη-subdifferential ofϕ(·, t), then problem (2.1) reduces
to the following problem:

Findu ∈ H, x ∈ Su andy ∈ Tu such that

(2.4) 〈N(x, y), η(v, g(u))〉 ≥ ϕ(g(u), z)− ϕ(v, z)
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M IXED QUASI-VARIATIONAL INEQUALITIES 3

for all v in H, which which appears to be a new one. Furthermore, ifN(x, y) = x − y
for all x, y in H, S, T are single-valued mappings andG is the identity mapping, then
problem (2.4) reduces to the general quasi-variational-like inclusion considered by Ding
and Luo [3].

(IV) If S, T : H → H are single-valued mappings,g is an identity mapping,N(x, y) = x−y
for all x, y in H, andM(·, t) = ∂ϕ for all t in H, where∂ϕ denotes theη-subdifferential
of a proper convex lower semicontinuous functionϕ : H → R

⋃
{+∞}, then problem

(2.1) reduces to the following problem:
Findu ∈ H such that

(2.5) 〈Su− Tu, η(v, u)〉 ≥ ϕ(u)− ϕ(v)

for all v in H, which is called the strongly nonlinear variational-like inclusion problem
considered by Lee et al. [15].

(V) If G is an identity mapping,η(x, y) = x − y andM(·, t) = ∂ϕ for eacht ∈ H, where
ϕ : H → R

⋃
{+∞} is a proper convex lower semicontinuous function onH and

g(H)
⋂

Dom(∂ϕ(·, t)) 6= ∅ for eacht ∈ H and∂ϕ(·, t) denotes the subdifferential of
functionϕ(·, t), then problem (2.1) reduces to findingu ∈ H, x ∈ Su andy ∈ Tu such
thatg(u) ∈ Dom(∂ϕ(·, t)) and

(2.6) 〈N(x, y), v − g(u)〉 ≥ ϕ(g(u))− ϕ(v)

for all v in H. Furthermore, ifN(x, y) = x − y for all x, y in H, andg is an identity
mapping, then the problem (2.6) is equivalent to the set-valued nonlinear generalized
variational inclusion considered by Huang [6] and, in turn, includes the variational in-
clusions studied by Hassouni and Moudafi [5] and Kazmi [14] as special cases.

For a suitable choice ofN, η,M, S, T,G, g, and for the spaceH, one can obtain a number
of known and new classes of variational inclusions, variational inequalities, and corresponding
optimization problems from the general set-valued variational inclusion problem (2.1). Further-
more, these types of variational inclusions enable us to study many important problems arising
in the mathematical, physical, and engineering sciences in a general and unified framework.

Definition 2.1. Let T be a selfmap ofH, x0 ∈ H and letxn+1 = f(T, xn) define an iteration
procedure which yields a sequence of points{xn}∞n=0 in H. Suppose that{x ∈ H : Tx = x} 6=
∅ and{xn}∞n=0 converges to a fixed pointx∗ of T . Let{yn} ⊂ H and letεn = ||yn+1−f(T, yn)||.
If lim

n→∞
εn = 0 implies that lim

n→∞
yn = x∗, then the iteration procedure defined byxn+1 =

f(T, xn) is said to beT -stable or stable with respect toT .

Lemma 2.1([16]). Let{an}, {bn}, and{cn} be three sequences of nonnegative numbers satis-
fying the following conditions: there existsn0 such that

an+1 ≤ (1− tn)an + bntn + cn,

for all n ≥ n0, wheretn ∈ [0, 1],
∑∞

n=0 tn = ∞, lim
n→∞

bn = 0 and
∑∞

n=0 cn < ∞. Then

lim
n→∞

an = 0.

Definition 2.2. A mappingg : H → H is said to be

(i) α-strongly monotone if there exists a constantα > 0 such that

〈g(u1)− g(u2), u1 − u2〉 ≥ α‖u1 − u2‖2,

for all ui ∈ H, i = 1, 2;
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4 MAO-M ING JIN

(ii) β-Lipschitz continuous if there exists a constantβ > 0 such that

‖g(u1)− g(u2)‖ ≤ β‖u1 − u2‖,

for all ui ∈ H, i = 1, 2.

Definition 2.3. A multivalued mappingS : H → CB(H) is said to be

(i) H-Lipschitz continuous if there exists a constantγ > 0 such that

H(Su1, Su2) ≤ γ‖u1 − u2‖,

for all ui ∈ H, i = 1, 2;
(ii) strongly monotone with respect to the first argument ofN(·, ·) : H ×H → H, if there

exists a constantµ > 0 such that

〈N(x1, ·)−N(x2, ·), u1 − u2〉 ≥ µ‖u1 − u2‖2,

for all xi ∈ Sui, ui ∈ H, i = 1, 2.

Definition 2.4. A mappingN(·, ·) : H×H → H is said to be Lipschitz continuous with respect
to the first argument if there exists a constantν > 0 such that

‖N(u1, ·)−N(u2, ·)‖ ≤ ν‖u1 − u2‖,

for all ui ∈ H, i = 1, 2.

In a similar way, we can define Lipschitz continuity ofN(·, ·) with respect to the second
argument.

Definition 2.5. Let η : H × H → H be a single-valued mapping. A multivalued mapping
M : H → 2H is said to be

(i) η-monotone if

〈x− y, η(u, v)〉 ≥ 0 for all u, v ∈ H, x ∈ Mu, y ∈ Mv;

(ii) strictly η-monotone if

〈x− y, η(u, v)〉 ≥ 0 for all u, v ∈ H, x ∈ Mu, y ∈ Mv

and equality holds if and only ifu = v;
(iii) strongly η-monotone if there exists a constantr > 0 such that

〈x− y, η(u, v)〉 ≥ r‖u− v‖2 for all u, v ∈ H, x ∈ Mu, y ∈ Mv;

(iv) maximalη-monotone ifM is η-monotone and(I + λM)(H) = H for anyλ > 0.

Remark 2.2.

(1) If η(u, v) = u − v for all u, v in H, then (i)-(iv) of Definition 2.5 reduce to the classi-
cal definitions of monotonicity, strict monotonicity, strong monotonicity, and maximal
monotonicity, respectively.

(2) Huang and Fang gave one example of maximalη-monotone mapping in [10].

Lemma 2.3([10]). Letη : H ×H → H be strictly monotone andM : H → 2H be a maximal
η-monotone mapping. Then the following conclusions hold:

(1) 〈x−y, η(u, v)〉 ≥ 0 for all (v, y) ∈ Graph(M) implies that(u, x) ∈ Graph(M), where
Graph(M) = {(u, x) ∈ H ×H : x ∈ Mu};

(2) the inverse mapping(I + λM)−1 is single-valued for anyλ > 0.
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Based on Lemma 2.3, we can define the resolvent operator for a maximalη-monotone map-
pingM as follows:

(2.7) JM
ρ (z) = (I + ρM)−1(z) for all z ∈ H,

whereρ > 0 is a constant andη : H ×H → H is a strictly monotone mapping.

Lemma 2.4([10]). Let η : H ×H → H be strongly monotone and Lipschtiz continuous with
constantsδ > 0 andτ > 0, respectively. LetM : H → 2H be a maximalη-monotone mapping.
Then the resolvent operatorJM

ρ for M is Lipschitz continuous with constantτ/δ, i.e.,

‖JM
ρ (u)− JM

ρ (v)‖ ≤ τ

δ
‖u− v‖ for all u, v ∈ H.

3. I TERATIVE ALGORITHMS

We first transfer problem (2.1) into a fixed point problem.

Lemma 3.1. For givenu ∈ H, x ∈ Su, y ∈ Tu, andz ∈ Gu, (u, x, y, z) is a solution of the
problem (2.1) if and only if

(3.1) g(u) = JM(·,z)
ρ (g(u)− ρN(x, y)),

whereJ
M(·,z)
ρ = (I + ρM(·, z))−1 andρ > 0 is a constant.

Proof. This directly follows from the definition ofJM(·,u)
ρ . �

Remark 3.2. Equality (3.1) can be written as

u = (1− λ)u + λ[u− g(u) + JM(·,z)
ρ (g(u)− ρN(x, y))],

where0 < λ ≤ 1 is a parameter andρ > 0 is a constant. This fixed point formulation enables
us to suggest the following iterative algorithm for problem (2.1) as follows:

Algorithm 3.1. Let η, N : H ×H → H, g : H → H be single-valued mappings andS, T, G :
H → CB(H) be multivalued mappings. LetM : H × H → 2H be such that for each fixed
t ∈ H, M(·, t) : H → 2H is a maximalη-monotone mapping satisfyingg(u) ∈ Dom(M(·, z)).
For givenλ ∈ [0, 1], u0 ∈ H, x0 ∈ Su0, y0 ∈ Tu0 andz0 ∈ Gu0, let

u1 = (1− λ)u0 + λ
[
u0 − g(u0) + JM(·,z0)

ρ (g(u0)− ρN(x0, y0))
]
.

By Nadler [17], there existx1 ∈ Su1, y1 ∈ Tu1 andz1 ∈ Gu1 such that

‖x0 − x1‖ ≤ (1 + 1)H(Su0, Su1),

‖y0 − y1‖ ≤ (1 + 1)H(Tu0, Tu1),

‖z0 − z1‖ ≤ (1 + 1)H(Gu0, Gu1).

Let
u2 = (1− λ)u1 + λ

[
u1 − g(u1) + JM(·,z1)

ρ (g(u1)− ρN(x1, y1))
]
.

By induction, we can obtain sequences{un}, {xn}, {yn} and{zn} satisfying

(3.2)


un+1 = (1− λ)un + λ

[
un − g(un) + J

M(·,zn)
ρ (g(un)− ρN(xn, yn))

]
,

xn ∈ Sun, ‖xn − xn+1‖ ≤ (1 + (1 + n)−1)H(Sun, Sun+1),
yn ∈ Tun, ‖yn − yn+1‖ ≤ (1 + (1 + n)−1)H(Tun, Tun+1),
zn ∈ gun, ‖zn − zn+1‖ ≤ (1 + (1 + n)−1)H(Gun, Gun+1),

for n = 1, 2, 3, . . . , where0 < λ ≤ 1 andρ > 0 are both constants.

Now we construct a new pertured iterative algorithm for solving the generalized nonlinear
mixed quasi-variational inequality (2.3) as follows:

J. Inequal. Pure and Appl. Math., 7(3) Art. 114, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/
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Algorithm 3.2. Let η, N : H × H → H andS, T : H → H be single-valued mappings. Let
M : H × H → 2H be such that for each fixedt ∈ H, M(·, t) : H → 2H is a maximalη-
monotone mapping satisfyingg(u) ∈ Dom(M(·, u)). For givenu0 ∈ H, the perturbed iterative
sequence{un} is defined by

(3.3)

 un+1 = (1− αn)un + αn[vn − g(vn) + J
M(·,vn)
ρ (g(vn)− ρN(Svn, T vn))] + αnen,

vn = (1− βn)un + βn[un − g(un) + J
M(·,un)
ρ (g(un)− ρN(Sun, Tun))] + βnfn,

for n = 0, 1, 2, . . . , where{en} and{fn} are two sequences of the elements ofH introduced
to take into account possible inexact computation and the sequences{αn}, {βn} satisfy the
following conditions:

0 ≤ αn, βn ≤ 1(n ≥ 0), and
∞∑

n=0

αn = ∞.

Let {yn} be any sequence inH and define{εn} by

(3.4)


εn =

∥∥∥yn+1 −
{

(1− αn)yn + αn

[
xn − g(xn)

+J
M(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen

}∥∥∥ ,

xn = (1− βn)yn + βn

[
yn − g(yn) + J

M(·,yn)
ρ (g(yn)− ρN(Syn, T yn))

]
+ βnfn,

for n = 0, 1, 2, . . . .

4. M AIN RESULTS

In this section, we first prove the existence of a solution of problem (2.1) and the convergence
of an iterative sequence generated by Algorithm 3.1.

Theorem 4.1. Let η : H × H → H be strongly monotone and Lipschitz continuous with
constantsδ and τ , respectively. LetS, T, G : H → CB(H) beH-Lipschitz continuous with
constantsα, β, γ, respectively,g : H → H beµ-Lipschitz continuous andν-strongly monotone.
LetN : H×H → H be Lipschitz continuous with respect to the first and second arguments with
constantsξ andζ, respectively, andS : H → CB(H) be strongly monotone with respect to the
first argument ofN(·, ·) with constantr. LetM : H ×H → 2H be a multivalued mapping such
that for each fixedt ∈ H, M(·, t) is maximalη-monotone. Suppose that there exist constants
ρ > 0 andκ > 0 such that for eachx, y, z ∈ H,

(4.1)
∥∥JM(·,x)

ρ (z)− JM(·,y)
ρ (z)

∥∥ ≤ κ‖x− y‖,

and

(4.2)



∣∣∣ρ− τr−δ(1−h)ζβ
τ(ξ2α2−ζ2β2)

∣∣∣ <

√
[τr−δ(1−h)ζβ]2−(ξ2α2−ζ2β2)(τ2−δ2(1−h)2)

τ(ξ2α2−ζ2β2)
,

τr > δ(1− h)ζβ +
√

(ξ2α2 − ζ2β2)(τ 2 − δ2(1− h)2), ξα > ζβ,

h = (1 + δτ−1)
√

1− 2ν + µ2 + κγ, ρτζβ < δ(1− h), h < 1.

Then the iterative sequences{un}, {xn}, {yn} and{zn} generated by Algorithm 3.1 converge
strongly tou∗, x∗, y∗ andz∗, respectively and(u∗, x∗, y∗, z∗) is a solution of problem (2.1).
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Proof. It follows from (3.2), (4.1) and Lemma 2.4 that

‖un+1 − un‖
=

∥∥(1− λ)(un − un−1) + λ
[
[un − un−1 − (g(un)− g(un−1))

+JM(·,zn)
ρ (g(un)− ρN(xn, yn))− JM(·,zn−1)

ρ (g(un−1)− ρN(xn−1, yn−1))
]∥∥

≤ (1− λ)‖un − un−1‖+ λ‖un − un−1 − (g(un+1)− g(un))‖
+ λ

∥∥JM(·,zn)
ρ (g(un)− ρN(xn, yn))− JM(·,zn)

ρ (g(un−1)− ρN(xn−1, yn−1))
∥∥

+ λ
∥∥JM(·,zn)

ρ (g(un−1)− ρN(xn−1, yn−1))

− JM(·,zn−1)
ρ (g(un−1)− ρN(xn−1, yn−1))

∥∥
≤ (1− λ)‖un − un−1‖+ λ‖un − un−1 − (g(un)− g(un−1))‖

+ λ
τ

δ
‖g(un)− g(un−1)− ρ(N(xn, yn)−N(xn−1, yn−1))‖+ λκ‖zn − zn−1‖

≤ (1− λ)‖un − un−1‖+ λ
(
1 +

τ

δ

)
‖un − un−1 − (g(un)− g(un−1))‖

+ λ
τ

δ
‖un − un−1 − ρ(N(xn, yn)−N(xn−1, yn))‖

+ λρ
τ

δ
‖N(xn−1, yn)−N(xn−1, yn−1)‖+ λκ‖zn − zn−1‖.(4.3)

Sinceg is strongly monotone and Lipschitz continuous, we obtain

‖un − un−1 − (g(un)− g(un−1))‖2

= ‖un − un−1‖2 − 2〈un − un−1, g(un)− g(un−1)〉+ ‖g(un)− g(un−1)‖2

≤ (1− 2ν + µ2)‖un − un−1‖2.(4.4)

SinceS isH-Lipschitz continuous and strongly monotone with respect to the first argument of
N(·, ·) andN is Lipschitz continuous with respect to the first argument, we have

‖un − un−1 − ρ(N(xn, yn)−N(xn−1, yn))‖2

= ‖un − un−1‖2 − 2ρ〈un − un−1, N(xn, yn)−N(xn−1, yn)〉
+ ρ2‖N(xn, yn)−N(xn−1, yn)‖2

≤ (1− 2ρr + ρ2ξ2(1 + n−1)2α2)‖un − un−1‖2.(4.5)

Further, sinceT, G areH-Lipschitz continuous andN is Lipschitz continuous with respect to
the second argument, we get

‖N(xn−1, yn)−N(xn−1, yn−1)‖ ≤ ζ‖yn − yn−1‖ ≤ ζβ(1 + n−1)‖un − un−1‖,(4.6)

‖zn − zn−1‖ ≤ γ(1 + n−1)‖un − un−1‖.(4.7)

By (4.3) – (4.7), we obtain

‖un − un−1‖ ≤ (1− λ + λ(1 + τδ−1)
√

1− 2ν + µ2

+ λτδ−1
√

1− 2ρr + ρ2ξ2(1 + n−1)2α2

+ λρτδ−1ζβ(1 + n−1) + λκγ(1 + n−1)

= (1− λ + λhn + λtn(ρ))‖un − un−1‖
= θn‖un − un−1‖,(4.8)
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where

hn = (1 + τδ−1)
√

1− 2ν + µ2 + κγ(1 + n−1),

tn(ρ) = τδ−1
√

1− 2ρr + ρ2ξ2(1 + n−1)2α2 + ρτδ−1ζβ(1 + n−1) and

θn = 1− λ + λhn + λtn(ρ).

Lettingθ = 1− λ + λh + λt(ρ), where

h = (1 + τδ−1)
√

1− 2ν + µ2 + κγ and t(ρ) = τδ−1
√

1− 2ρr + ρ2ξ2α2 + ρτδ−1ζβ,

we have thathn → h, tn(ρ) → t(ρ) andθn → θ asn →∞. It follows from condition (4.2) that
θ < 1. Henceθn < 1 for n sufficiently large. Therefore, (4.8) implies that{un} is a Cauchy
sequence inH and so we can assume thatun → u∗ ∈ H asn →∞. By the Lipschitz continuity
of S, T andG we obtain

‖xn − xn−1‖ ≤ (1 + (1 + n)−1)H(Sun, Sun−1) ≤ α(1 + (1 + n)−1)‖un − un−1‖,
‖yn − yn−1‖ ≤ (1 + (1 + n)−1)H(Tun, Tun−1) ≤ β(1 + (1 + n)−1)‖un − un−1‖,
‖zn − zn−1‖ ≤ (1 + (1 + n)−1)H(Gun, Gun−1) ≤ γ(1 + (1 + n)−1)‖un − un−1‖.

It follows that {xn}, {yn} and {zn} are also Cauchy sequences inH. We can assume that
xn → x∗, yn → y∗ andzn → z∗, respectively. Note that forxn ∈ Sun, we have

d(x∗, Su∗) ≤ ‖x∗ − xn‖+ d(xn, Su∗)

≤ ‖x∗ − xn‖+H(Sun, Su∗)

≤ ‖x∗ − xn‖+ α‖un − u∗‖ → 0,

asn → ∞. Hence we must havex∗ ∈ Su∗. Similarly, we can show thaty∗ ∈ Tu∗ and
z∗ ∈ Gu∗. From

un+1 = (1− λ)un + λ
[
un − g(un) + JM(·,zn)

ρ (g(un)− ρN(xn, yn))
]
,

it follows that

g(u∗) = JM(·,z∗)
ρ (g(u∗)− ρN(x∗, y∗)).

By Lemma 3.1,(u∗, x∗, y∗, z∗) is a solution of problem (2.1). This completes the proof. �

Remark 4.2. For an appropriate and suitable choice of the mappingsη, N, S, T,G, g, M and
the spaceH, we can obtain several known results in [1], [3], [5] – [8], [14], [18] – [22], [24] –
[26] as special cases of Theorem 4.1.

Now we prove the convergence and stability of the iterative sequence generated by the Algo-
rithm 3.2.

Theorem 4.3. Let η : H × H → H be strongly monotone and Lipschitz continuous with
constantsδ and τ , respectively. LetS, T : H → H be Lipschitz continuous with constants
α, β, respectively,g : H → H beµ-Lipschitz continuous andν-strongly monotone. LetN :
H × H → H be Lipschitz continuous with respect to the first and second arguments with
constantsξ andζ, respectively, andS : H → H be strongly monotone with respect to the first
argument ofN(·, ·) with constantr. LetM : H ×H → 2H be a multivalued mapping such that
for each fixedt ∈ H, M(·, t) is maximalη-monotone. Suppose that there exist constantsρ > 0
andκ > 0 such that for eachx, y, z ∈ H,

(4.9)
∥∥JM(·,x)

ρ (z)− JM(·,y)
ρ (z)

∥∥ ≤ κ‖x− y‖,
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and

(4.10)



∣∣∣ρ− τr−δ(1−h)ζβ
τ(ξ2α2−ζ2β2)

∣∣∣ <

√
[τr−δ(1−h)ζβ]2−(ξ2α2−ζ2β2)(τ2−δ2(1−h)2)

τ(ξ2α2−ζ2β2)
,

τr > δ(1− h)ζβ +
√

(ξ2α2 − ζ2β2)(τ 2 − δ2(1− h)2), ξα > ζβ,

h = (1 + δτ−1)
√

1− 2ν + µ2 + κ, ρτζβ < δ(1− h), h < 1.

If lim
n→∞

‖en‖ = 0, lim
n→∞

‖fn‖ = 0, then

(I) The sequence{un} defined by Algorithm 3.2 converges strongly to the unique solution
u∗ of problem (2.3).

(II) If
∑∞

n=0 εn < ∞, then lim
n→∞

yn = u∗.

(III) If lim
n→∞

yn = u∗, then lim
n→∞

εn = 0.

Proof. (I) It follows from Theorem 4.1 that there existsu∗ ∈ H which is a solution of problem
(2.3) and so

(4.11) g(u∗) = JM(·,u∗)
ρ (g(u∗)− ρN(Su∗, Tu∗)).

From (4.9), (4.11) and Algorithm 3.2, it follows that

‖un+1 − u∗‖

=
∥∥∥(1− αn)(un − u∗)− αn

[
vn − u∗ − (g(vn)− g(u∗))

+ JM(·,vn)
ρ (g(vn)− ρN(Svn, T vn))

− JM(·,u∗)
ρ (g(u∗)− ρN(Su∗, Tu∗))

]
+ αnen

∥∥∥
≤ (1− αn)‖un − u∗‖+ αn‖vn − u∗ − (g(vn)− g(u∗))‖+ αn‖en‖

+ αn

∥∥∥JM(·,vn)
ρ (g(vn)− ρN(Svn, T vn))− JM(·,vn)

ρ (g(u∗)− ρN(Su∗, Tu∗))
∥∥∥

+ αn

∥∥JM(·,vn)
ρ (g(u∗)− ρN(Su∗, Tu∗))− JM(·,u∗)

ρ (g(u∗)− ρN(Su∗, Tu∗))
∥∥

≤ (1− αn)‖un − u∗‖+ αn‖vn − u∗ − (g(vn)− g(u∗))‖+ αn‖en‖

+ αn
τ

δ
‖g(vn)− g(u∗)− ρ(N(Svn, T vn)−N(Su∗, Tu∗))‖+ αnκ‖vn − u∗‖

≤ (1− αn)‖un − u∗‖+ αn

(
1 +

τ

δ

)
‖un − u∗ − (g(vn)− g(u∗))‖+ αn‖en‖

+ αn
τ

δ
‖vn − u∗ − ρ(N(Svn, T vn)−N(Su∗, T vn))‖

+ αnρ
τ

δ
‖N(Su∗, T vn)−N(Su∗, Tu∗)‖+ αnκ‖vn − u∗‖.(4.12)

By the Lipschitz continuity ofN, S, T, g and the strong monotonicity ofS andg, we obtain

‖vn − u∗ − (g(vn)− g(u∗))‖2 ≤ (1− 2ν + µ2)‖vn − u∗‖2,(4.13)

‖vn − u∗ − ρ(N(Svn, T vn)−N(Su∗, T vn))‖2 ≤ (1− 2ρr + ρ2ξ2α2)‖vn − u∗‖2,(4.14)

‖N(Su∗, T vn)−N(Su∗, Tu∗))‖ ≤ ζβ‖vn − u∗‖.(4.15)

It follows from (4.12) – (4.15) that

(4.16) ‖un+1 − u∗‖ ≤ (1− αn)‖un − u∗‖+ θαn‖vn − u∗‖+ αn‖en‖,
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where

θ = κ + (1 + τδ−1)
√

1− 2ν + µ2 + τδ−1
√

1− 2ρr + ρ2ξ2α2 + ρτδ−1ζβ.

Similarly, we have

(4.17) ‖vn − u∗‖ ≤ (1− βn)‖un − u∗‖+ θβn‖un − u∗‖+ βn‖fn‖.
From (4.16) and (4.17), we have

‖un+1 − u∗‖ ≤ [1− αn(1− θ)(1 + θβn)]‖un − u∗‖+ αnβnθ‖fn‖+ αn‖en‖
Condition (4.10) implies that0 < θ < 1, and so

(4.18) ‖un+1 − u∗‖ ≤ [1− αn(1− θ)]‖un − u∗‖+ αn(1− θ)dn,

wheredn = (βnθ‖fn‖ + ‖en‖)(1 − θ)−1 → 0, asn → ∞. It follows from (4.18) and Lemma
2.1 thatun → u∗ asn →∞.

Now we prove thatu∗ is a unique solution of problem (2.3). In fact, ifu is also a solution of
problem (2.3), then

g(u) = JM(·,u)
ρ (g(u)− ρN(Su, Tu)),

and, as the proof of (4.16), we have

‖u∗ − u‖ ≤ θ‖u∗ − u‖,
where0 < θ < 1 and sou∗ = u. This completes the proof of Conclusion (I).

Next we prove Conclusion (II). Using (3.4) we obtain

‖yn+1 − u∗‖
≤

∥∥yn+1 −
{
(1− αn)yn + αn

[
xn − g(xn)

+ JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen

}∥∥
+

∥∥(1− αn)yn + αn

[
xn − g(xn)

+ JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen − u∗

∥∥
=

∥∥(1− αn)yn + αn

[
xn − g(xn)(4.19)

+ JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen − u∗

∥∥ + εn.

As the proof of inequality (4.18), we have

(4.20)
∥∥(1− αn)yn + αn

[
xn − g(xn) + JM(·,xn)

ρ (g(xn)− ρN(Sxn, Txn))
]
+ αnen − u∗

∥∥
≤ (1− αn(1− θ))‖yn − u∗‖+ αn(1− θ)dn.

It follows from (4.19) and (4.20) that

(4.21) ‖yn+1 − u∗‖ ≤ (1− αn(1− θ))‖yn − u∗‖+ αn(1− θ)dn + εn.

Since
∑∞

n=0 εn < ∞, dn → 0, and
∑∞

n=0 αn < ∞. It follows that (4.21) and Lemma 2.1 that
lim

n→∞
yn = u∗.

Now we prove Conclusion (III). Suppose thatlim
n→∞

yn = u∗. Then we have

εn =
∥∥yn+1 − (1− αn)yn + αn

[
xn

− g(xn) + JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen

∥∥
≤ ‖yn+1 − u∗‖+

∥∥(1− αn)yn + αn

[
xn

− g(xn) + JM(·,xn)
ρ (g(xn)− ρN(Sxn, Txn))

]
+ αnen − u∗

∥∥
≤ ‖yn+1 − u∗‖+ (1− αn(1− θ))‖yn − u∗‖+ αn(1− θ)dn → 0
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asn →∞. This completes the proof. �
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