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ABSTRACT. In the present paper we establish new nonlinear retarded integral inequalities which
can be used as tools in certain applications. Some applications are also given to illustrate the
usefulness of our results.
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1. I NTRODUCTION

In [3] Lipovan obtained a useful upper bound on the following inequality:

(1.1) u2 (t) ≤ c2 +

∫ α(t)

0

[
f (s)u2 (s) + g (s)u (s)

]
ds,

and its variants, under some suitable conditions on the functions involved in (1.1). In fact, the
results given in [3] are the retarded versions of the inequalities established by Pachpatte in [4]
(see also [5]). However, the bounds provided on such inequalities in [3] (see also [1, p. 142])
are not directly applicable in the study of certain retarded differential and integral equations.
It is desirable to find new inequalities of the above type, which will prove their importance in
achieving a diversity of desired goals. The main purpose of this paper is to establish explicit
bounds on the general versions of (1.1) which can be used more effectively in the study of
certain classes of retarded differential and integral equations. The two independent variable
generalizations of the main results and some applications are also given.
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2 B.G. PACHPATTE

2. STATEMENT OF RESULTS

In what follows,R denotes the set of real numbers;R+ = [0,∞) , I = [t0, T ) , I1 = [x0, X) ,
I2 = [y0, Y ) are the given subsets ofR; ∆ = I1 × I2 and ′ denotes the derivative. The first
order partial derivatives of a functionz(x, y) for x, y ∈ R with respect tox andy are denoted by
D1z (x, y) andD2z (x, y) respectively. LetC(M,N) denote the class of continuous functions
from the setM to the setN .

Our main results are given in the following theorem.

Theorem 2.1.Letu, ai, bi ∈ C (I,R+) andαi ∈ C1 (I, I) be nondecreasing withαi (t) ≤ t on
I for i = 1, . . . , n. Letp > 1 andc ≥ 0 be constants.

(c1) If

(2.1) up (t) ≤ c+ p

n∑
i=1

∫ αi(t)

αi(t0)

[ai (s)u
p (s) + bi (s)u (s)] ds,

for t ∈ I, then

(2.2) u (t) ≤

{
A (t) exp

(
(p− 1)

n∑
i=1

∫ αi(t)

αi(t0)

ai (σ) dσ

)} 1
p−1

,

for t ∈ I, where

(2.3) A (t) = {c}
p−1

p + (p− 1)
n∑
i=1

∫ αi(t)

αi(t)

bi (σ) dσ,

for t ∈ I.
(c2) Letw ∈ C (R+,R+) be nondecreasing withw(u) > 0 on (0,∞) . If for t ∈ I,

(2.4) up (t) ≤ c+ p
n∑
i=1

∫ αi(t)

αi(t0)

[ai (s)u (s)w (u (s)) + bi (s)u (s)] ds,

then fort0 ≤ t ≤ t1,

(2.5) u (t) ≤

{
G−1

[
G (A (t)) + (p− 1)

n∑
i=1

∫ αi(t)

αi(t0)

ai (σ) dσ

]} 1
p−1

,

whereA(t) is defined by (2.3),G−1 is the inverse function of

(2.6) G (r) =

∫ r

r0

ds

w
(
s

1
p−1

) , r > 0,

r0 > 0 is arbitrary andt1 ∈ I is chosen so that

G (A (t)) + (p− 1)
n∑
i=1

∫ αi(t)

αi(t0)

ai (σ) dσ ∈ Dom
(
G−1

)
,

for all t lying in the intervalt0 ≤ t ≤ t1.

Remark 2.2. If we takep = 2, n = 1, α1 = α, a1 = f, b1 = g in Theorem 2.1, then we
recapture the inequalities given in [3] (see Corollary 2 and Theorem 1).

The following theorem deals with the two independent variable versions of the inequalities
established in Theorem 2.1 which can be used in certain applications.
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NONLINEAR RETARDED INTEGRAL INEQUALITIES 3

Theorem 2.3. Letu, ai, bi ∈ C (∆,R+) andαi ∈ C1 (I1, I1) , βi ∈ C1 (I2, I2) be nondecreas-
ing with αi (x) ≤ x on I1, βi (y) ≤ y on I2 for i = 1, . . . , n. Let p > 1 and c ≥ 0 be
constants.

(d1) If

(2.7) up (x, y) ≤ c+ p

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

[ai (s, t)u
p (s, t) + bi (s, t)u (s, t)] dtds,

for (x, y) ∈ ∆, then

(2.8) u (x, y) ≤

{
B (x, y) exp

(
(p− 1)

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ai (σ, τ) dτdσ

)} 1
p−1

,

for (x, y) ∈ ∆, where

(2.9) B (x, y) = {c}
p−1

p + (p− 1)
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi (σ, τ) dτdσ,

for (x, y) ∈ ∆.
(d2) Letw be as in Theorem 2.1, part(c2). If for (x, y) ∈ ∆,

(2.10) up (x, y) ≤ c+ p
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

[ai (s, t)u (s, t)w (u (s, t)) + bi (s, t)u (s, t)] dtds,

then, forx0 ≤ x ≤ x1, y0 ≤ y ≤ y1,

(2.11) u (x, y) ≤

{
G−1

[
G (B (x, y)) + (p− 1)

n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ai (σ, τ) dτdσ

]} 1
p−1

,

whereB(x, y) is defined by (2.9),G,G−1 are as in Theorem 2.1, part(c2) andx1 ∈ I1,
y1 ∈ I2 are chosen so that

G (B (x, y)) + (p− 1)
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ai (σ, τ) dτdσ ∈ Dom
(
G−1

)
,

for all x, y lying in the intervalx0 ≤ x ≤ x1, y0 ≤ y ≤ y1.

Remark 2.4. We note that the inequalities established in Theorem 2.3 can be extended very
easily for functions involving more than two independent variables (see [5]). If we takep = 2,
n = 1, α1 = α, β1 = β, a1 = f, b1 = g in Theorem 2.3, then we get the two independent
variable generalizations of the inequalities given in [3] (see Corollary 2 and Theorem 1). For
a slight variant of the inequality in Theorem 2.3 given in [3] and its two independent variable
version, see [6].

3. PROOFS OF THEOREMS 2.1 AND 2.3

We give the details of the proofs for(c1) and(d2) only; the proofs of(c2) and(d1) can be
completed by following the proofs of the above mentioned inequalities.

From the hypotheses we observe thatα′i (t) ≥ 0 for t ∈ I, α′i (x) ≥ 0 for x ∈ I1, βi (y) ≥ 0
for y ∈ I2.
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4 B.G. PACHPATTE

(c1) Let c > 0 and define a functionz(t) by the right hand side of (2.1). Thenz(t) > 0,

z (t0) = c, z(t) is nondecreasing fort ∈ I, u (t) ≤ {z (t)}
1
p and

z′ (t) = p

n∑
i=1

[ai (αi (t))u
p (αi (t)) + bi (αi (t))u (αi (t))]α

′
i (t)

≤ p
n∑
i=1

[
ai (αi (t)) z (αi (t)) + bi (αi (t)) {z (αi (t))}

1
p

]
α′i (t)

= p

n∑
i=1

[
ai (αi (t)) {z (αi (t))}1− 1

p + bi (αi (t))
]
{z (αi (t))}

1
pα′i (t)

≤ p

n∑
i=1

[
ai (αi (t)) {z (αi (t))}

p−1
p + bi (αi (t))

]
{z (t)}

1
pα′i (t)

i.e.

(3.1)
z′ (t)

{z (t)}
1
p

≤ p

n∑
i=1

[
ai (αi (t)) {z (αi (t))}

p−1
p + bi (αi (t))

]
α′i (t) .

By takingt = s in (3.1) and integrating it with respect tos from t0 to t we get

(3.2) {z (t)}
p−1

p ≤ {c}
p−1

p

+ (p− 1)

∫ t

t0

n∑
i=1

[
ai (αi (s)) {z (αi (s))}

p−1
p + bi (αi (s))

]
α′i (s) ds.

Making the change of variables on the right hand side in (3.2)and rewriting we get

{z (t)}
p−1

p ≤ A (t) + (p− 1)
n∑
i=1

∫ αi(t)

αi(t0)

ai (σ) {z (σ)}
p−1

p dσ.

ClearlyA(t) is a continuous, positive and nondecreasing function fort ∈ I. Now by
following the idea used in the proof of Theorem 1 in [3] (see also [6]) we get

(3.3) {z (t)}
p−1

p ≤ A (t) exp

(
(p− 1)

n∑
i=1

∫ αi(t)

αi(t0)

ai (σ) dσ

)
.

Using (3.3) inu (t) ≤ {z (t)}
1
p we get the desired inequality in (2.2).

If c ≥ 0 we carry out the above procedure withc + ε instead ofc, whereε > 0 is an
arbitrary small constant, and subsequently pass the limitε→ 0 to obtain (2.2).

(d2) Let c > 0 and define a functionz(x, y) by the right hand side of (2.10). Thenz(x, y) >
0, z (x0, y) = z (x, y0) = c, z(x, y) is nondecreasing in(x, y) ∈ ∆, u (x, y) ≤
{z (x, y)}

1
p and

D2D1z (x, y)(3.4)

= p
n∑
i=1

[ai (αi (x) , βi (y))u (αi (x) , βi (y))w (u (αi (x) , βi (y)))

+bi (αi (x) , βi (y))u (αi (x) , βi (y))] β
′
i (y)α

′
i (x)
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NONLINEAR RETARDED INTEGRAL INEQUALITIES 5

≤ p

n∑
i=1

[
ai (αi (x) , βi (y)) {z (αi (x) , βi (y))}

1
p w
(
{z (αi (x) , βi (y))}

1
p

)
+bi (αi (x) , βi (y)) {z (αi (x) , βi (y))}

1
p

]
β′i (y)α

′
i (x)

≤ p

n∑
i=1

[ai (αi (x) , βi (y))w
(
{z (αi (x) , βi (y))}

1
p

)
+bi (αi (x) , βi (y))] {z (x, y)}

1
p β′i (y)α

′
i (x) .

From (3.4) we observe that

D2D1z (x, y)

{z (x, y)}
1
p

≤ p
n∑
i=1

[ai (αi (x) , βi (y))w
(
{z (αi (x) , βi (y))}

1
p

)

+bi (αi (x) , βi (y))] β
′
i (y)α

′
i (x) +

D1z (x, y)
[
D2 {z (x, y)}

1
p

]
[
{z (x, y)}

1
p

]2 ,

i.e.

(3.5) D2

(
D1z (x, y)

{z (x, y)}
1
p

)
≤ p

n∑
i=1

[ai (αi (x) , βi (y))w
(
{z (αi (x) , βi (y))}

1
p

)
+bi (αi (x) , βi (y))] β

′
i (y)α

′
i (x) ,

for (x, y) ∈ ∆. By keepingx fixed in (3.5), we sety = t and then, by integrating with
respect tot from y0 to y and using the fact thatD1z (x, y0) = 0, we have

(3.6)
D1z (x, y)

{z (x, y)}
1
p

≤ p

∫ y

y0

n∑
i=1

[ai (αi (x) , βi (t))w
(
{z (αi (x) , βi (t))}

1
p

)
+bi (αi (x) , βi (t))] β

′
i (t)α

′
i (x) dt.

Now by keepingy fixed in (3.6) and settingx = s and integrating with respect tos from
x0 to x we have

(3.7) {z (x, y)}
p−1

p ≤ {c}
p−1

p + (p− 1)

×
∫ x

x0

∫ y

y0

n∑
i=1

[ai (αi (s) , βi (t))w
(
{z (αi (s) , βi (t))}

1
p

)
+bi (αi (s) , βi (t))] β

′
i (t)α

′
i (s) dtds.

By making the change of variables on the right hand side of (3.7) and rewriting we have

(3.8) {z (x, y)}
p−1

p ≤ B (x, y) + (p− 1)
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ai (σ, τ)w
(
{z (σ, τ)}

1
p

)
dτdσ.

Now fix λ ∈ I1, µ ∈ I2 such thatx0 ≤ x ≤ λ ≤ x1, y0 ≤ y ≤ µ ≤ y1. Then from (3.8)
we observe that

(3.9) {z (x, y)}
p−1

p ≤ B (λ, µ) + (p− 1)
n∑
i=1

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ai (σ, τ)w
(
{z (σ, τ)}

1
p

)
dτdσ,
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6 B.G. PACHPATTE

for x0 ≤ x ≤ λ, y0 ≤ y ≤ µ. Define a functionv(x, y) by the right hand side of
(3.9). Thenv(x, y) > 0, v (x0, y) = v (x, y0) = B (λ, µ) , v(x, y) is nondecreasing for

x0 ≤ x ≤ λ, y0 ≤ y ≤ µ, {z (x, y)}
p−1

p ≤ v (x, y) and

v (x, y) ≤ B (λ, µ) + (p− 1)
n∑
i=1

∫ αi(x)

αi(x0)

∫ β(y)

βi(y0)

ai (σ, τ)w
(
{v (σ, τ)}

1
p−1

)
dτdσ,

for x0 ≤ x ≤ λ, y0 ≤ y ≤ µ. Now by following the proof of Theorem 2.2, part(B1)
given in [7] (see also [6]) we get

(3.10) v (x, y) ≤ G−1

[
G (B (λ, µ)) + (p− 1)

n∑
i=1

∫ αi(x)

αi(x0)

∫ β(y)

βi(y0)

ai (σ, τ) dτdσ

]
,

for x0 ≤ x ≤ λ ≤ x1, y0 ≤ y ≤ µ ≤ y1. Since(λ, µ) is arbitrary, we get the desired
inequality in (2.11) from (3.10) and the fact that

u (x, y) ≤ {z (x, y)}
1
p ≤

{
[v (x, y)]

p
p−1

} 1
p

= {v (x, y)}
1

p−1 .

The proof of the case whenc ≥ 0 can be completed as mentioned in the proof of
Theorem 2.1, part(c1). The domainx0 ≤ x ≤ x1, y0 ≤ y ≤ y1 is obvious.

4. APPLICATIONS

In this section, we present some model applications which demonstrate the importance of our
results to the literature.

First consider the differential equation involving several retarded arguments

(4.1) xp−1 (t)x′ (t) = f (t, x (t− h1 (t)) , . . . , x (t− hn (t))) ,

for t ∈ I, with the given initial condition

(4.2) x (t0) = x0

wherep > 1 andx0 are constants,f ∈ C (I × Rn,R) and fori = 1, . . . , n, let hi ∈ C (I,R+)
be nonincreasing and such thatt − hi (t) ≥ 0, t − hi (t) ∈ C1 (I, I) , h′i (t) < 1, hi (t0) = 0.
For the theory and applications of differential equations with deviating arguments, see [2].

The following theorem deals with the estimate on the solution of the problem (4.1) – (4.2).

Theorem 4.1.Suppose that

(4.3) |f (t, u1, . . . , un)| ≤
n∑
i=1

bi (t) |ui| ,

wherebi (t) are as in Theorem 2.1. Let

(4.4) Qi = max
t∈I

1

1− h′i (t)
, i = 1, . . . , n.

If x(t) is any solution of the problem (4.1) – (4.2), then

(4.5) |x (t)| ≤

{
|x0|p−1 + (p− 1)

n∑
i=1

∫ t−hi(t)

t0

b̄i (σ) dσ

} 1
p−1

,

for t ∈ I, wherēbi (σ) = Qibi (σ + hi (s)) , σ, s ∈ I.
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NONLINEAR RETARDED INTEGRAL INEQUALITIES 7

Proof. The solutionx(t) of the problem (4.1) – (4.2) can be written as

(4.6) xp (t) = xp0 + p

∫ t

t0

f (s, x (s− h1 (s)) , . . . , x (s− hn (s))) ds.

From (4.6), (4.3), (4.4) and making the change of variables we have

|x (t)|p ≤ |x0|p + p

∫ t

t0

n∑
i=1

bi (s) |x (s− hi (s))| ds(4.7)

≤ |x0|p + p

n∑
i=1

∫ t−hi(t)

t0

b̄i (σ) |x (σ)| dσ,

for t ∈ I. Now a suitable application of the inequality in Theorem 2.1, part(c1) (whenai = 0 )
to (4.7) yields the required estimate in (4.5). �

Next, we obtain an explicit bound on the solution of a retarded partial differential equation
of the form

(4.8) D2

(
zp−1 (x, y)D1z (x, y)

)
= F (x, y, z (x− h1 (x) , y − g1 (y)) , . . . , z (x− hn (x) , y − gn (y))) ,

for (x, y) ∈ ∆, with the given initial boundary conditions

(4.9) z (x, y0) = e1 (x) , z (x0, y) = e2 (y) , e1 (x0) = e2 (y0) = 0,

wherep > 1 is a constant,F ∈ C (∆× Rn,R) , e1 ∈ C1 (I1,R), e2 ∈ C1 (I2,R), andhi ∈
C (I1,R+) , gi ∈ C (I2,R+) are nonincreasing and such thatx − hi (x) ≥ 0, x − hi (x) ∈
C1 (I1, I1) , y−gi (y) ≥ 0, y−gi (y) ∈ C1 (I2, I2) , h

′
i (t) < 1, g′i (t) < 1, hi (x0) = gi (y0) = 0

for i = 1, . . . , n; x ∈ I1, y ∈ I2. For the study of special versions of equation (4.8), we refer
interested readers to [8].

Theorem 4.2.Suppose that

(4.10) |F (x, y, u1, . . . , un)| ≤
n∑
i=1

bi (x, y) |ui| ,

(4.11) |ep1 (x) + ep2 (y)| ≤ c,

wherebi (x, y) andc are as in Theorem 2.3. Let

(4.12) Mi = max
x∈I1

1

1− h′i (x)
, Ni = max

y∈I2

1

1− g′i (y)
, i = 1, . . . , n.

If z(x, y) is any solution of the problem (4.8) – (4.9), then

(4.13) |z (x, y)| ≤

{
{c}

p−1
p + (p− 1)

n∑
i=1

∫ φi(x)

φi(x0)

∫ ψi(y)

ψi(y0)

b̄i (σ, τ) dτdσ

} 1
p−1

,

for x ∈ I1, y ∈ I2, whereφi (x) = x− hi (x) , x ∈ I1, ψi (y) = y − ψi (y) , y ∈ I2, b̄i (σ, τ) =
MiNibi (σ + hi (s) , τ + gi (t)) for σ, s ∈ I1; τ, t ∈ I2.
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Proof. It is easy to see that the solutionz(x, y) of the problem (4.8) – (4.9) satisfies the equiva-
lent integral equation

(4.14) zp (x, y) = ep1 (x) + ep2 (y) + p

∫ x

x0

∫ y

y0

F (s, t, z (s− h1 (s) , t− g1 (t)) ,

. . . , z (s− hn (s) , t− gn (t)))dtds.

From (4.14), (4.10)-(4.12) and making the change of variables we have

|z (x, y)|p ≤ c+ p

∫ x

x0

∫ y

y0

n∑
i=1

bi (s, t) |z (s− hi (s) , t− gi (t))|dtds(4.15)

≤ c+ p

n∑
i=1

∫ φi(x)

φi(x0)

∫ ψi(y)

ψi(y0)

b̄i (σ, τ) |z (σ, τ)|dτdσ.

Now a suitable application of the inequality given in Theorem 2.3, part(d1) (whenai = 0) to
(4.15) yields (4.13). �

Remark 4.3. From Theorem 4.1, it is easy to observe that the inequalities given in [3] cannot be
used to obtain an estimate on the solution of the problem (4.1) – (4.2). Various other applications
of the inequalities given here is left to another work.
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