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ABSTRACT. Supposef(z,y) is a positive homogeneous function definedldie R, x R,),

1
call Hy(a,b;p,q) = Hg‘;ig:;] """ homogeneous function with two parameters f(f, ) is

2nd differentiable, then the monotonicity in parameteesdq of Hy(a, b; p, ¢) depend on the
signs ofl; = (In f)y, for variablea andb depend on the sign db, = [(In f), In(y/z)], and

Iy, = [(In f), In(x/y)], respectively. As applications of these results, a serial of inequalities
for arithmetic mean, geometric mean, exponential mean, logarithmic mean, power-Exponential
mean and exponential-geometric mean are deduced.

Key words and phraseHomogeneous function with two parametefsmean with two-parameter, Monotonicity, Estimate
for lower and upper bounds.
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1. INTRODUCTION

The so-called two-parameter mean or extended mean values between two unequal positive
numbers: andb were defined first by K.B. Stolarsky in [10] as

([ ( alar—tr) e
(p(aq,bq)> p#qpq#0
1
aP —bP P
(p(lnaflnb)) p 7& O’ 9= 0
(11) E(aa b;pv Q) = ad—bd %
(q(lnaflnb)> p= 07 q 7& 0
exp (#a=int — 1) p—q#£0
L Vab p=q=0
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2 ZHEN-HANG YANG

The monotonicity of(a, b; p, ¢) has been researched by E. B. Leach and M. C. Sholander in
[4], and others also in [9/8] 7] 6,5,/11, 14] 15| 17] using different ideas and simpler methods.

As the generalized power-mean, C. Gini obtained a similar two-parameter type mean in [1].
That is:

1
(&) p#4q
(1.2) G(a,bip,q) =  exp(“natlilnb) ) — g0 .
Vab p=q=0

Recently, the sufficient and necessary conditions comparing the two-parameter mean with
the Gini mean were put forward by using the so-called concept of “strong inequalities” ([3]).
1

pP—q
)

From the above two-parameter type means, we find that their forms are(%%%)

wheref(z,y) is a homogeneous function efandy.
The main aim of this paper is to establish the concept of “two-parameter homogeneous func-
1

aP ,bP)

tions”, and study the monotonicity of functions in the form( (at bq)> " As applications

of the main results, we will deduce three inequality chains which contain the arithmetic, geo-
metric, exponential, logarithmic, power-exponential and exponential-geometric means, prove
an upper bound for the Stolarsky mean(in/[12], and present two estimated expressions for the
exponential mean.

2. BAsic CONCEPTS AND MAIN RESULTS

Definition 2.1. Assume thaf : U(S R, x R;) — R, is a homogeneous function of variable
x andy, and is continuous and exists first order partial derivativeh) € R, x R, with a # b,
(p,q) e RxR.If (1,1) ¢ U, then we define

(2.1) Hﬂm&nwz{%g%%rﬁ (p # q,pq # 0),
(2.2) Hy(a,b;p,p) = (lli_r)l;lef(a, b;p,q) = Gspla,b) (p=q#0),

where

3 P _ fe(z,y)Inx +yfy(z,y)l
(2.3) Gypla,b) = Gy (a”,17), G 4(z,y) = exp {x (x,y) nf:t(x’yy> (z,y)Iny |

f2(z,y) andf,(z,y) denote partial derivative to 1st and 2nd variablef of, y) respectively.
If (1,1) € U, then define further

.
24)  Hylabip0) = {%} (0 #0.q=0)
¢ p1)7 7
@5 Hlnoa= | DEE|T w=0gz0),
(2.6) Hy(a,5;0,0) = limH,(a, b p, 0) = JHEYIED (p=q=0).

From Lemmle(a, b; p, q) is still a homogeneous function of positive numbeiendb.
We call it a homogeneous function for positive numbeendb with two parameterg andq,
and call it a two-parameter homogeneous function for short. To avoid confusion, we also denote
it by Hs(p,q) or Hs(a,b) or Hy.
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HOMOGENEOUSFUNCTIONS WITH TWO PARAMETERS 3

If f(z,y) is a positivel-order homogeneous mean function definedRanx R, , then call
Hy(a, b; p, q) the two-parametef-mean of positive numbersandb.

Remark 2.1. If f(z,y) is a positivel-order homogeneous function defined®®n x R, , and
is continuous and exists 1st order partial derivative, and satigfies) = f(y, x), then

Gyola,b) = Hs(a,b;0,0) = Vab.
In fact, by [2.3), we have
fz(1,1)Ina+ f,(1,1)Inb

f(L1)

Sincef(xz,y) is a positivel-order homogeneous function, from (3.1) of Lenjmg 3.2, we obtain
L fe(L1) 1A (LD)
f(1,1) f(L1)
If f(z,y) = f(y,z), thenf.(x,y) = f,(y,r), so we have
(2.8) fo(1,1) = f,(1,1).
By (2.7) and[(2.B), we get

Gyo(a,b) =exp = Hy(a,b;0,0).

2.7) ~1.

therebyG', = Vab.
Thus it can be seen that despite the fornf @f, y) we always havé{;(a, b;0,0) = Go(a,b) =

Vab, so long asf(z,y) is a positivel-order homogeneous symmetric function defined on
R, xR,.

Example 2.1.In Definition, letf(z,y) = L(z,y) = —%— (z,y > 0,z # y), we get

| Inz—Iny
(I.2), i.e.
()" p#apa 0
Li(ap,bp) p#0,q=0
(2.9) HL(CZ, b; p, Q) = L%(aq, bq) p=0,q#0 ~’
GL,p(aa b) p=4q 7& 0
| G(a,b) p=q¢=0
where

Remark 2.2. That

b
is called the exponential mean of unequal positive numbessd b, and is also called the

identical mean and denoted by, b). To avoid confusion, we adopt our terms and notations in
what follows.

E(a,b) = e (a )a (a,b> 0with a # b)
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Example 2.2.In Definition[2.1, letf(x,y) = A(z,y) = 2 (z,y > 0,2 # y), we get [(1.R),
ie.

(S5) 7" p#a
(210) HA(a’7 bap7 Q) = GA,p(&a b) pP=4q 7£ 0 ,

G(CL, b) b=qg= 0

whereG 4 ,(a,b) = Z,(a,b) = Z%(ap,bp) = Z,. Z(a,b) = a=bar is called the power-
exponential mean between positive numheandb.

1

Example 2.3.1In Definition letf(z,y) = E(x,y) = e ("”—>j’ (x,y > 0,2 # y), then

yy
E(a? bP) =
(E(qubq)) P#q
(2.11) He(a,b:p:a) =N Gpplab) p=q#0
G(a,b) p=q=0

whereGg ,(a,b) = Y,(a,b) = Y%(ap,bp) =Y, Y(a,b) = Ee'~ 77 is called the exponential-
geometric mean between positive numbermsndb, where ' = FE(a,b), L = L(a,b), G =
G(a,b).

Example 2.4.In Definition[2.3, letf(z,y) = D(x,y) = |x — y| (z,y > 0,z # y), then
w5 20

(2.12) Hp(a, b;p,q) = ‘a‘lqu p#4, pqF# ’
GD,p(av b) p=q#0

whereGp,(a,b) = Gp, = e%E%(ap, W) = e%Ep.

In order to avoid confusion, we renarf&, (a, b; p, q) (or E(a, b; p,q)) andH 4(a, b; p, q) (or
G(a,b;p,q)) as the two-parameter logarithmic mean and two-parameter arithmetic mean re-
spectively. In the same way, we c&l(a, b; p, ) in Examplg 2.B the two-parameter exponen-
tial mean.

In Examplég 2.14, sinc®(x, y) = |« —y| is not a certain mean between positive numbeasd
y, but one absolute value function of difference of two positive numbers, wé{gal, b; p, q)

a two-parameter homogeneous function of difference.

It is obvious that the conception of two-parameter homogeneous functions has greatly devel-
oped the extension of the concept of two-parameter means.

For monotonicity of two-parameter homogeneous functithsa, b; p, ¢), we have the fol-
lowing main results.

Theorem 2.3. Let f(x,y) be a positiver—order homogenous function defined GfE R x
R, ), and be second order differentiable. Iif = (In f),, > (<)0, then™H(p, q) is strictly
increasing (decreasing) in bofhandq on (—oo, 0) U (0, +00).
Corollary 2.4.

(1) Hi(p,q), Ha(p,q), He(p, q) are strictly increasing botlp andq on (—oo, +00),

(2) Hp(p, q) is strictly decreasing both andq on (—o0,0) U (0, +00).

Theorem 2.5. Let f(z,y) be a positivel-order homogeneous function definedGfi= R, x
R, ), and be second order differentiable.

J. Inequal. Pure and Appl. Math6(4) Art. 101, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

HOMOGENEOUSFUNCTIONS WITH TWO PARAMETERS 5

(1) If Lo = [(In f). In(y/z)], > (<)0, thenH(a, b) is strictly increasing (decreasing) in
a.

(2) If Iy = [(In f), In(z/y)], > (<)0, thenH;(a, b) is strictly increasing (decreasing) in
b.

Corollary 2.6. Hy(a,b), Hp(a,b) is strictly increasing in botla andb.

3. LEMMAS AND PROOFS OF THE MAIN RESULTS

For proving the main results in this article, we need some properties of homogeneous func-
tions in [16]. For convenience, we quote them as follows.

Lemma3.1.Let f(z,y), g(x,y) ben, m-order homogenous functions overespectively, then
f-g, f/g (g #0)aren + m,n — m-order homogenous functions ouverespectively.

If for a certainp with (27, y?) € Q, and fP(x,y) exists, thenf(z?,y?), fP(z,y) are both
np-order homogeneous functions o¥er

Lemma 3.2. Let f(z,y) be an-order homogeneous function overand f,, f,, both exist, then
fz, f, are both(n — 1)-order homogeneous functions o¥erfurthermore we have

(3.1 rfe +yfy =nf.
In particular, whenn = 1 and f(x, y) is second order differentiable ovex, then
(3.2) tfe +yfy =1,
(3.3) T foz + Yfoy =0,
(3.4) T fry + Yfyy = 0.

Lemma 3.3.Let f(z, y) be a positive:—order homogenous function definedlo= R, xR ),
and be second order differentiable. Set
T(t) = In f(a',b"), wherex = o',y = b",a,b > 0,

then

I f(z,y)
T ordy (0 f)ay-

Proof. Since f(z,y) is a positiven-order homogeneous function, frofn (3.1), we can obtain
z(lnf), +y(In f), =norz(lnf), =n—y(nf),, y(In f), =n —z(n f),, SO
_ad'fy(ah b)) Ina + 0 f,(a',0") Inb

T"(t) = —xyl,(Inb — Ina)?, wherel, =

(3.5) T'(t)

f(at,0")
(3.6) _ rfo(r,y)Ina+yf,(z,y)Inb
f(z,y)
(3.7) =z(Inf)yIna+y(ln f),Inb.
Hence

oT'(t)dx  OT'(t) dy
1/ e S R
() = Ox dt dy dt

= [y(In f),(Inb—1Ina) + nlnal a'lna
+[z(In f),(Ina — Inb) +nlnb], o' Inb
=y(ln f)yz(Inb—Ina)rlna+ z(In f),y(Ina —Inb)ylnb
= —2y(In f)zy(Inb — Ina)?
= —ayl;(Inb — Ina)?
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O

Lemma 3.4.Let f(x,y) be a positivel -order homogeneous function defined@i R, xR ),
and be second order differentiable. Set

o t:cfm(x,y) ot gt
S(t) = W,Wherex =a,y="0a,b>0,
then
S'(t) = xylz,, Wherely, = [(In f), In(y/z)], .
Proof.
oy felzy) L d [xfx(x y)]
) f(z,y) T f(z,y)
z(In f O(z(In f),) dy
=l ). { dy %}
x(In f), [ tl a—}—Mbtlnb]
dy
=z(In f), + (hlf) )eIna+y(z(ln f)s)y Inb].
By Lemma, thate(ln f), = % is a 0-order homogeneous function, fro@:%.l) of
Lemma[3.2, we obtairv [z(In f).], + y[z(ln f).], = 0 or z[z(ln f).], = —y[z(In f).],,

hence

S'(t)

(In f)z +ty [z(In f).], (Inb —Ina)
(In f)e + tzy(In f)zy(Inb — Ina)
(In f)z
(In f)a

+ zy(In f)zy(Inb" — Ina’)
+zy(In f)zy(lny — Inx)

I
B B B B

In

zy [y~ (In f)z + (In )z Iny/2)]
zy [(In f)a In(y/2)], = xyl2a.

0
Based on the above lemmas, then next we will go on proving the main results in this paper.

Proof of Theorer 2]|3Since (p, ¢) is symmetric with respect tp and ¢, we only need to
prove the monotonicity fop of In .
1) Whenp # g,

1 fle” ")  T(p)—T(q)
= e~ p_g
OlnHy (p Q)T’(p) —T(p) +T(q
dp (p—q)? '

Setg(p) = (p — )T"(p) — T(p) + T'(g), theng(q) = 0, ¢'(p) = (p — ¢)T"(p), and then exist
£ =q+0(p—q)with 6 € (0,1) by Mean-value Theorem, such that

OmH, glp) —gle) _ g€ _ (€—a)T"(&) "
= = = =(1-60)T"(¢).
Op (P—aq? pP—yq pP—q (1=6T"¢)
By Lemmd 3.87"(¢) = —ayli(Inb — Ina)?, x = af,y = b*. Obviously, when/; < (>)0, we
getalan > (<)0.
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2) Whenp = ¢, from (2.2) and[(36),

hﬁw:mGﬁﬂﬁﬂ:xﬁ@wmﬁ;$Mﬂwmy:T@%

1
0 g;—(f =T"(p) = —axyl,(Inb —Ina)?.
OlnHy
whenl; < (>)0, we get—3= > (<)0.
Combining 1) with 2), the proof is completed. OJ

Proof of Corollary{Z.4.1t follows from Theorenj 2.3 that the monotonicity &f;(p, ¢) depends
on the sign of; = (In f),,.

1) For f(z,y) = L(z,y),
L= (In f)y — — L

(r—y)?  ay(nz —Iny)?

= (VAP - ).

" ayr—y

By the well-known inequalityl.(z, y) > /zy ([13]), we havel, < 0.
2) For f(z,y) = A(z,y),

1

< 0.
(z +y)?

I = (lnf)xy ==
3) For f(z,y) = E(z,y),
L= (Inf)ey = e 2(z —y) — (z +y)(Inz — Iny)]

~ 2(Inz —1Iny) Ty

o (z—y)p [L(’) 2 }
By the well-known inequality..(z, y) < £ ([13]), we havel; < 0.
4) For f(z,y) = D(z,y),

L =(nf)y=——-—>0.
1 (Ilf)y (x—y)2>0
Applying mechanically Theorefn 2.3, we immediately obtain Corof(lary 2.4. O
Proof of Theorem 2]5.
1) Since

OlnH; 1 [pa?'f,(aP, bP) B qa® ' fo(a®,b9) ] S(p) — S(q)
da pP—q f(CLp, bp) f(aqa bq) a(p - Q)
by the Mean-value Theorem, there exits ¢ + 6(p — q) with § € (0, 1), such that

OlnH; S(p)—5()
da a(p — q)
From Lemmd 3}4,5'(¢) = xyly,, wherez = af,y = 5. Obviously ,if I, > 0, then
alg—ff > 0, s0'H(a, b) is strictly increasing in; If I, < 0, then?27 0, soH (a, b) is
strictly decreasing in.
2) It can be proved in the same way. O

=a15'(€).
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Proof of Corollary 2.6.
1) For f(z,y) = L(z,y),

B = (1 ) ()], = 2L,

By the well-known inequalitynz < x — 1 (z > 0,z # 1), we havel,, > 0.
2) For f(z,y) = D(z,y),

_x/y—1-In(x/y)

Lo = [(In f),1 = ,
2a [(nf)x D(y/fﬁ)]y (x—y)Q >0
SinceH(a,b), Hp(a,b) are both symmetric with respectdcandb, applying mechanically
Theorenj 2.p, we immediately obtain Corollgary|2.6. O

4. SOME APPLICATIONS

As direct applications of theorems and lemmas in this paper, we will present several examples
as follows.

Example 4.1(a G-A inequality chain). By 1) of Corollary{2.4, forf (z,y) = A(z,y), L(z, y) and
E(x,y), Hs(p, q) are strictly increasing in bothandg. So there are

1
(4.2) Hy(a,b;0,0) < Hy(a,b;1,0) < Hy (a, b; 1, 5)
< Hf(a, b; 1, 1) < Hf(a, b; 1, 2).

From it we can obtain the following inequalities respectively, that are

2
4.2) Vab < L(a,b) < (@) < B(a,b) < 2 ; b,
Jab < &F b a+b \’ a? + b?
4.3 b< —— _— Z(a,b) < ——;
( ) ab < 2 <(\/5+\/E)<(a’)<a+b7
2
2 12
(4.4) Vab < Blab) < | —Z@Y |y p < B0
E <\/a7 \/E> E((I, b)
N . E(az,bQ) o . .
otice o5 = Z(a,b), then ) can be written into that
G2
(4.5) Vab < E(a,b) < Z? (ﬁ, \/E) < Eexp (1 — ﬁ) < Z(a,b).

The inequality [(4.2) was proved by [13], which shows that can be insdrtet; and £
betweenG: and A, so we call [(4.R) the G-A inequality chain. (#.3) apd [4.4) are the same in
form completely, so we call (4.1) the G-A inequality chain for homogeneous functions.
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Remark 4.1. That EE(‘(‘Z? = Z(a,b) is a new identical equation for mean. In fact,

PN
E(a,b)Z(a,b) =e! (E) bitaaita

b a a

b
— e praticagita 5-a

2 _ 9242

1 2
— e bb27a2 ab2,a2

— ! @ bQ_laQ_ a2 b?
() e

It shows thatZ(a,b) is not only one “geometric mean”, but also one ratio of one exponen-
tial mean to another. Thus inequalities involvidda, b) may be translated into inequalities
involving exponential mean.

Example 4.2(An estimation for upper bound of Stolarsky mear). From 2) of Corollary 2./4,
we can prove expediently an estimation for the upper bound of the Stolarsky mean presented by
[12]:

1 bP —aP \r 1
Sy(a,b) < p™r(a+b)withp > 2, whereS,(a,b :<—> :

In fact, from 2) of Corollary 2}4, whemp,q € (—o0,0) U (0,+00), Hp(p,q) is strictly
decreasing in both andg, so wherp > 2, we haveH (a, b; 1,p) < Hp(a,b;1,2).
Notice

aP — bP
a—>

(4.6) HD<a,b;p,1>—( )’”—pﬁ—lspm,b) > 0),

thus wherp > 2, we obtairmp%lsp(a, b) < QﬁSQ(a, b)=a+b,i.e.5,(a,b) < pﬁ(a +b).

Example 4.3(Reversed inequalities and estimations for exponential meanBy 1) of Corol-
lary[2.4,H,,(p, q) is strictly increasing in both andg, so wherp; € (0, 1), ps € (1, +00), we
have

Hr(a,b;p1,1) < Hp(a,b;1,1) < Hila,b;ps, 1),
i.e.
4.7) Sp, (a,b) < E(a,b) < Sp,(a,b).

On the other hand, By 2) of Corollafy 2.4, wheny € (—o0,0) U (0, +00), Hp(p,q) is
strictly monotone decreasing in battandg. So wherp, € (0,1), p, € (1, +00), we have
(4.8) Hpl(a,b;p1,1) > Hp(a,b;1,1) > Hp(a,b;ps, 1).

From [4.6), [(4.B) can be written into

1 1

P> Spy(a,b) < eE(a,b) < pi*" Sy, (a,b)
or

1 1

1 - 1 p1—
(49) Ep§2 1SP2(a>b> < E(CL, b) < gpl 1Sp1 (a’ab)‘
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Combining [4.7) with[(4.9), we have

1 =
(4.10) S, (a,b) < E(a,b) < Ep”l’lSpl(a,b), wherep, € (0, 1),
| ——
(4.11) gpg’TlSpQ (a,b) < E(a,b) < Sp,(a,b), wherep, € (1,400).
. 1
In particular, whem, = 5P = 2, by (4.10), |(4.111), we get
2 2
4
(4.12) (M) < E(a,b) < - (M) :
2 e 2
2 (a+b a+b

4.1 - E :
@13 2 (%57) < Bat) <
The inequalities (4.12) and (4]13) may be denoted simply by
(4.14) A+G<E<Z—LA+G,

2 e 2
(4.15) gA < E < A.

(&

The inequalities@M) anfl (4]15) make certain a bound of error that exponentiaFhezan
estimated by4 or 2£€.
REFERENCES
[1] C. GINI, Diuna formula comprensiva delle medMetron,13 (1938), 3-22.

[2] BAINI GUO, SHIQIN ZHANG AND FENG QI, An elementary proof of monotonicity for extend
mean values with two parametelathematics in Practice and TheoB&(2) (1999), 169-173.

[3] P.A. HASTO, A Montonicity property of ratios of symmetric homogeneous mehmsequal. Pure
and Appl. Math, 3(5) (2005), Art. 48. [ONLINEhttp://jipam.vu.edu.au/article.

php?sid=223 |.

[4] E.B. LEACH AND M.C. SHOLANDER, Extended mean valuganer. Math. Monthly85 (1978),
84-90.

[5] E.B. LEACH AND M.C. SHOLANDER, Extended mean valueks ,Math. Anal. Appl, 92 (1983),
207-223.

[6] FENG QI, Logarithmic convexities of the extended mean valdelspndon Math. Soctp appear.

[7] FENG QI, Generalized weighted mean values with two parameters, Proceedings of the Royal So-
ciety of London, SeriesMathematical, Physical and Engineering Sciencé&s4(1978) (1998).
2723-2732.

[8] FENG QI, On a two-parameter family of nonhomogeneous mean valaggkang Journal of Math-
ematics29(2) (1998), 155-163.

[9] FENG QI, Generalized abstracted mean valdelequal. Pure and Appl. Mathl(1) (2000), Art.
4. [ONLINE http://jipam.vu.edu.au/article.php?sid=97 .

[10] K.B. STOLARSKY, Generalizations of the logarithmic medfath. Mag.,48 (1975), 87-92.

[11] MINGBAO SUN, Inequality for two-parameter mean of convex FunctMathematics in Practice
and Theory27(3) (1997), 193-197.

[12] MINQI SHI AND HUANNAN SHI, An upper bound for extend logarithmic meah, Math., 5
(1997), 37-38.

J. Inequal. Pure and Appl. Math6(4) Art. 101, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/article.php?sid=223
http://jipam.vu.edu.au/article.php?sid=223
http://jipam.vu.edu.au/article.php?sid=97
http://jipam.vu.edu.au/

HOMOGENEOUSFUNCTIONS WITH TWO PARAMETERS 11

[13] ZHENHANG YANG, Exponential mean and logarithmic me&fathematics in Practice and The-
ory, 4 (1987), 76-78.

[14] ZHENHANG YANG, Inequalities for power mean of convex functidiathematics in Practice
and Theory20(1) (1990), 93-96

[15] ZHENHANG YANG, Inequalities for general mean of convex functibtdgathematics in Practice
and Theory33(8) (2003), 136-141.

[16] ZHENHANG YANG, Simple discriminance for convexity of homogeneous functions and applica-
tions, Study in College Mathematicg4) (2004), 14-19.

[17] Zs. PALES, Inequalities for differences of poweisMath. Anal. Appl. 131(1988), 271-281.

J. Inequal. Pure and Appl. Math6(4) Art. 101, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Basic Concepts and Main Results
	3. Lemmas and Proofs of the Main Results
	4. Some Applications
	References

