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ABSTRACT. Supposef(x, y) is a positive homogeneous function defined onU(j R+ × R+),

call Hf (a, b; p, q) =
[

f(ap,bp)
f(aq,bq)

] 1
p−q

homogeneous function with two parameters. Iff(x, y) is

2nd differentiable, then the monotonicity in parametersp andq of Hf (a, b; p, q) depend on the
signs ofI1 = (ln f)xy, for variablea andb depend on the sign ofI2a = [(ln f)x ln(y/x)]y and
I2b = [(ln f)y ln(x/y)]x respectively. As applications of these results, a serial of inequalities
for arithmetic mean, geometric mean, exponential mean, logarithmic mean, power-Exponential
mean and exponential-geometric mean are deduced.

Key words and phrases:Homogeneous function with two parameters,f -mean with two-parameter, Monotonicity, Estimate
for lower and upper bounds.
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1. I NTRODUCTION

The so-called two-parameter mean or extended mean values between two unequal positive
numbersa andb were defined first by K.B. Stolarsky in [10] as

(1.1) E(a, b; p, q) =



(
q(ap−bp)
p(aq−bq)

) 1
p−q

p 6= q, pq 6= 0(
ap−bp

p(ln a−ln b)

) 1
p

p 6= 0, q = 0(
aq−bq

q(ln a−ln b)

) 1
q

p = 0, q 6= 0

exp
(

ap ln a−bp ln b
ap−bp − 1

p

)
p = q 6= 0

√
ab p = q = 0

.
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2 ZHEN-HANG YANG

The monotonicity ofE(a, b; p, q) has been researched by E. B. Leach and M. C. Sholander in
[4], and others also in [9, 8, 7, 6, 5, 11, 14, 15, 17] using different ideas and simpler methods.

As the generalized power-mean, C. Gini obtained a similar two-parameter type mean in [1].
That is:

(1.2) G(a, b; p, q) =


(

ap+bp

aq+bq

) 1
p−q p 6= q

exp(ap ln a+bp ln b
ap+bp ) p = q 6= 0

√
ab p = q = 0

.

Recently, the sufficient and necessary conditions comparing the two-parameter mean with
the Gini mean were put forward by using the so-called concept of “strong inequalities” ([3]).

From the above two-parameter type means, we find that their forms are both
(

f(ap,bp)
f(aq ,bq)

) 1
p−q

,

wheref(x, y) is a homogeneous function ofx andy.
The main aim of this paper is to establish the concept of “two-parameter homogeneous func-

tions”, and study the monotonicity of functions in the form of
(

f(ap,bp)
f(aq ,bq)

) 1
p−q

. As applications

of the main results, we will deduce three inequality chains which contain the arithmetic, geo-
metric, exponential, logarithmic, power-exponential and exponential-geometric means, prove
an upper bound for the Stolarsky mean in [12], and present two estimated expressions for the
exponential mean.

2. BASIC CONCEPTS AND M AIN RESULTS

Definition 2.1. Assume thatf : U(j R+ × R+) → R+ is a homogeneous function of variable
x andy, and is continuous and exists first order partial derivative,(a, b) ∈ R+×R+ with a 6= b,
(p, q) ∈ R× R. If (1, 1) /∈ U, then we define

Hf (a, b; p, q) =

[
f(ap, bp)

f(aq, bq)

] 1
p−q

(p 6= q, pq 6= 0),(2.1)

Hf (a, b; p, p) = lim
q→p
Hf (a, b; p, q) = Gf,p(a, b) (p = q 6= 0),(2.2)

where

(2.3) Gf,p(a, b) = G
1
p

f (ap, bp), Gf (x, y) = exp

[
xfx(x, y) ln x + yfy(x, y) ln y

f(x, y)

]
,

fx(x, y) andfy(x, y) denote partial derivative to 1st and 2nd variable off(x, y) respectively.
If (1, 1) ∈ U, then define further

Hf (a, b; p, 0) =

[
f(ap, bp)

f(1, 1)

] 1
p

(p 6= 0, q = 0),(2.4)

Hf (a, b; 0, q) =

[
f(aq, bq)

f(1, 1)

] 1
q

(p = 0, q 6= 0),(2.5)

Hf (a, b; 0, 0) = lim
p→0
Hf (a, b; p, 0) = a

fx(1,1)
f(1,1) b

fy(1,1)

f(1,1) (p = q = 0).(2.6)

From Lemma 3.1,Hf (a, b; p, q) is still a homogeneous function of positive numbersa andb.
We call it a homogeneous function for positive numbersa andb with two parametersp andq,
and call it a two-parameter homogeneous function for short. To avoid confusion, we also denote
it by Hf (p, q) orHf (a, b) orHf .
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HOMOGENEOUSFUNCTIONS WITH TWO PARAMETERS 3

If f(x, y) is a positive1-order homogeneous mean function defined onR+ × R+, then call
Hf (a, b; p, q) the two-parameterf -mean of positive numbersa andb.

Remark 2.1. If f(x, y) is a positive1-order homogeneous function defined onR+ × R+, and
is continuous and exists 1st order partial derivative, and satisfiesf(x, y) = f(y, x), then

Gf,0(a, b) = Hf (a, b; 0, 0) =
√

ab.

In fact, by (2.3), we have

Gf,0(a, b) = exp

[
fx(1, 1) ln a + fy(1, 1) ln b

f(1, 1)

]
= Hf (a, b; 0, 0).

Sincef(x, y) is a positive1-order homogeneous function, from (3.1) of Lemma 3.2, we obtain

(2.7)
1 · fx(1, 1)

f(1, 1)
+

1 · fy(1, 1)

f(1, 1)
= 1.

If f(x, y) = f(y, x), thenfx(x, y) = fy(y, x), so we have

(2.8) fx(1, 1) = fy(1, 1).

By (2.7) and (2.8), we get
fx(1, 1)

f(1, 1)
=

fy(1, 1)

f(1, 1)
=

1

2
,

therebyGf,0 =
√

ab.
Thus it can be seen that despite the form off(x, y) we always haveHf (a, b; 0, 0) = Gf,0(a, b) =√
ab, so long asf(x, y) is a positive1-order homogeneous symmetric function defined on

R+ × R+.

Example 2.1. In Definition 2.1, letf(x, y) = L(x, y) = x−y
ln x−ln y

(x, y > 0, x 6= y), we get
(1.1), i.e.

(2.9) HL(a, b; p, q) =



(
q(ap−bp)
p(aq−bq)

) 1
p−q

p 6= q, pq 6= 0

L
1
p (ap, bp) p 6= 0, q = 0

L
1
q (aq, bq) p = 0, q 6= 0

GL,p(a, b) p = q 6= 0

G(a, b) p = q = 0

,

where

GL,p(a, b) = Ep(a, b) = E
1
p (ap, bp) = Ep,

E(a, b) = e−1

(
aa

bb

) 1
a−b

, G(a, b) =
√

ab.

Remark 2.2. That

E(a, b) = e−1

(
aa

bb

) 1
a−b

(a, b > 0 with a 6= b)

is called the exponential mean of unequal positive numbersa and b, and is also called the
identical mean and denoted byI(a, b). To avoid confusion, we adopt our terms and notations in
what follows.
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Example 2.2. In Definition 2.1, letf(x, y) = A(x, y) = x+y
2

(x, y > 0, x 6= y), we get (1.2),
i.e.

(2.10) HA(a, b; p, q) =


(

ap+bp

aq+bq

) 1
p−q p 6= q

GA,p(a, b) p = q 6= 0

G(a, b) p = q = 0

,

whereGA,p(a, b) = Zp(a, b) = Z
1
p (ap, bp) = Zp. Z(a, b) = a

a
a+b b

b
a+b is called the power-

exponential mean between positive numbersa andb.

Example 2.3. In Definition 2.1, letf(x, y) = E(x, y) = e−1
(

xx

yy

) 1
x−y

(x, y > 0, x 6= y), then

(2.11) HE(a, b; p, q) =


(

E(ap,bp)
E(aq ,bq)

) 1
p−q

p 6= q

GE,p(a, b) p = q 6= 0

G(a, b) p = q = 0

,

whereGE,p(a, b) = Yp(a, b) = Y
1
p (ap, bp) = Yp. Y (a, b) = Ee1−G2

L2 is called the exponential-
geometric mean between positive numbersa andb, whereE = E(a, b), L = L(a, b), G =
G(a, b).

Example 2.4. In Definition 2.1, letf(x, y) = D(x, y) = |x− y| (x, y > 0, x 6= y), then

(2.12) HD(a, b; p, q) =


∣∣ap−bp

aq−bq

∣∣ 1
p−q p 6= q, pq 6= 0

GD,p(a, b) p = q 6= 0
,

whereGD,p(a, b) = GD,p = e
1
p E

1
p (ap, bp) = e

1
p Ep.

In order to avoid confusion, we renameHL(a, b; p, q) (or E(a, b; p, q)) andHA(a, b; p, q) (or
G(a, b; p, q)) as the two-parameter logarithmic mean and two-parameter arithmetic mean re-
spectively. In the same way, we callHE(a, b; p, q) in Example 2.3 the two-parameter exponen-
tial mean.

In Example 2.4, sinceD(x, y) = |x−y| is not a certain mean between positive numbersx and
y, but one absolute value function of difference of two positive numbers, we callHD(a, b; p, q)
a two-parameter homogeneous function of difference.

It is obvious that the conception of two-parameter homogeneous functions has greatly devel-
oped the extension of the concept of two-parameter means.

For monotonicity of two-parameter homogeneous functionsHf (a, b; p, q), we have the fol-
lowing main results.

Theorem 2.3. Let f(x, y) be a positiven−order homogenous function defined onU(j R+ ×
R+), and be second order differentiable. IfI1 = (ln f)xy > (<)0, thenHf (p, q) is strictly
increasing (decreasing) in bothp andq on (−∞, 0) ∪ (0, +∞).

Corollary 2.4.
(1) HL(p, q),HA(p, q),HE(p, q) are strictly increasing bothp andq on (−∞, +∞),
(2) HD(p, q) is strictly decreasing bothp andq on (−∞, 0) ∪ (0, +∞).

Theorem 2.5. Let f(x, y) be a positive1-order homogeneous function defined onU(j R+ ×
R+), and be second order differentiable.
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HOMOGENEOUSFUNCTIONS WITH TWO PARAMETERS 5

(1) If I2a = [(ln f)x ln(y/x)]y > (<)0, thenHf (a, b) is strictly increasing (decreasing) in
a.

(2) If I2b = [(ln f)y ln(x/y)]x > (<)0, thenHf (a, b) is strictly increasing (decreasing) in
b.

Corollary 2.6. HL(a, b),HD(a, b) is strictly increasing in botha andb.

3. L EMMAS AND PROOFS OF THE M AIN RESULTS

For proving the main results in this article, we need some properties of homogeneous func-
tions in [16]. For convenience, we quote them as follows.

Lemma 3.1. Letf(x, y), g(x, y) ben,m-order homogenous functions overΩ respectively, then
f · g, f/g (g 6= 0) aren + m,n−m-order homogenous functions overΩ respectively.

If for a certain p with (xp, yp) ∈ Ω, and fp(x, y) exists, thenf(xp, yp), fp(x, y) are both
np-order homogeneous functions overΩ.

Lemma 3.2. Letf(x, y) be an-order homogeneous function overΩ, andfx, fy both exist, then
fx, fy are both(n− 1)-order homogeneous functions overΩ, furthermore we have

(3.1) xfx + yfy = nf.

In particular, whenn = 1 andf(x, y) is second order differentiable overΩ, then

xfx + yfy = f,(3.2)

xfxx + yfxy = 0,(3.3)

xfxy + yfyy = 0.(3.4)

Lemma 3.3.Letf(x, y) be a positiven−order homogenous function defined onU(j R+×R+),
and be second order differentiable. Set

T (t) = ln f(at, bt), wherex = at, y = bt, a, b > 0,

then

T ′′(t) = −xyI1(ln b− ln a)2, whereI1 =
∂2 ln f(x, y)

∂x∂y
= (ln f)xy.

Proof. Sincef(x, y) is a positiven-order homogeneous function, from (3.1), we can obtain
x(ln f)x + y(ln f)y = n or x(ln f)x = n− y(ln f)y, y(ln f)y = n− x(ln f)x, so

T ′(t) =
atfx(a

t, bt) ln a + btfy(a
t, bt) ln b

f(at, bt)
(3.5)

=
xfx(x, y) ln a + yfy(x, y) ln b

f(x, y)
(3.6)

= x(ln f)x ln a + y(ln f)y ln b.(3.7)

Hence

T ′′(t) =
∂T ′(t)

∂x

dx

dt
+

∂T ′(t)

∂y

dy

dt

= [y(ln f)y(ln b− ln a) + n ln a]x at ln a

+ [x(ln f)x(ln a− ln b) + n ln b]y bt ln b

= y(ln f)yx(ln b− ln a)x ln a + x(ln f)xy(ln a− ln b)y ln b

= −xy(ln f)xy(ln b− ln a)2

= −xyI1(ln b− ln a)2.
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�

Lemma 3.4.Letf(x, y) be a positive1-order homogeneous function defined onU(j R+×R+),
and be second order differentiable. Set

S(t) =
txfx(x, y)

f(x, y)
, wherex = at, y = bt a, b > 0,

then
S ′(t) = xyI2a, whereI2a = [(ln f)x ln(y/x)]y .

Proof.

S ′(t) =
xfx(x, y)

f(x, y)
+ t

d

dt

[
xfx(x, y)

f(x, y)

]
= x(ln f)x + t

[
∂(x(ln f)x)

∂x

dx

dt
+

∂(x(ln f)x)

∂y

dy

dt

]
= x(ln f)x + t

[
∂(x(ln f)x)

∂x
at ln a +

∂(x(ln f)x)

∂y
bt ln b

]
= x(ln f)x + t [x(x(ln f)x)x ln a + y(x(ln f)x)y ln b] .

By Lemma 3.1, thatx(ln f)x = xfx(x,y)
f(x,y)

is a 0-order homogeneous function, from (3.1) of
Lemma 3.2, we obtainx [x(ln f)x]x + y [x(ln f)x]y = 0 or x [x(ln f)x]x = −y [x(ln f)x]y,
hence

S ′(t) = x(ln f)x + ty [x(ln f)x]y (ln b− ln a)

= x(ln f)x + txy(ln f)xy(ln b− ln a)

= x(ln f)x + xy(ln f)xy(ln bt − ln at)

= x(ln f)x + xy(ln f)xy(ln y − ln x)

= xy
[
y−1(ln f)x + (ln f)xy ln(y/x)

]
= xy [(ln f)x ln(y/x)]y = xyI2a.

�

Based on the above lemmas, then next we will go on proving the main results in this paper.

Proof of Theorem 2.3.SinceHf (p, q) is symmetric with respect top andq, we only need to
prove the monotonicity forp of lnHf .
1) Whenp 6= q,

lnHf =
1

p− q
ln

f(ap, bp)

f(aq, bq)
=

T (p)− T (q)

p− q
,

∂ lnHf

∂p
=

(p− q)T ′(p)− T (p) + T (q)

(p− q)2
.

Setg(p) = (p − q)T ′(p) − T (p) + T (q), theng(q) = 0, g′(p) = (p − q)T ′′(p), and then exist
ξ = q + θ(p− q) with θ ∈ (0, 1) by Mean-value Theorem, such that

∂ lnHf

∂p
=

g(p)− g(q)

(p− q)2
=

g′(ξ)

p− q
=

(ξ − q)T ′′(ξ)

p− q
= (1− θ)T ′′(ξ).

By Lemma 3.3,T ′′(ξ) = −xyI1(ln b− ln a)2, x = aξ, y = bξ. Obviously, whenI1 < (>)0, we
get ∂ lnHf

∂p
> (<)0.
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2) Whenp = q, from (2.2) and (3.6),

lnHf = ln G
1
p

f (ap, bp) =
xfx(x, y) ln x + yfy(x, y) ln y

f(x, y)
= T ′(p),

∂ lnHf

∂p
= T ′′(p) = −xyI1(ln b− ln a)2.

whenI1 < (>)0, we get∂ lnHf

∂p
> (<)0.

Combining 1) with 2), the proof is completed. �

Proof of Corollary 2.4.It follows from Theorem 2.3 that the monotonicity ofHf (p, q) depends
on the sign ofI1 = (ln f)xy.
1) Forf(x, y) = L(x, y),

I1 = (ln f)xy =
1

(x− y)2
− 1

xy(ln x− ln y)2

=
1

xy(x− y)2

(
(
√

xy)2 − L2(x, y)
)
.

By the well-known inequalityL(x, y) >
√

xy ([13]), we haveI1 < 0.
2) Forf(x, y) = A(x, y),

I1 = (ln f)xy = − 1

(x + y)2
< 0.

3) Forf(x, y) = E(x, y),

I1 = (ln f)xy =
1

(x− y)3
[2(x− y)− (x + y)(ln x− ln y)]

=
2(ln x− ln y)

(x− y)3

[
L(x, y)− x + y

2

]
.

By the well-known inequalityL(x, y) < x+y
2

([13]), we haveI1 < 0.
4) Forf(x, y) = D(x, y),

I1 = (ln f)xy =
1

(x− y)2
> 0.

Applying mechanically Theorem 2.3, we immediately obtain Corollary 2.4. �

Proof of Theorem 2.5.
1) Since

∂ lnHf

∂a
=

1

p− q

[
pap−1fx(a

p, bp)

f(ap, bp)
− qaq−1fx(a

q, bq)

f(aq, bq)

]
=

S(p)− S(q)

a(p− q)
,

by the Mean-value Theorem, there existsξ = q + θ(p− q) with θ ∈ (0, 1), such that

∂ lnHf

∂a
=

S(p)− S(q)

a(p− q)
= a−1S ′(ξ).

From Lemma 3.4,S ′(ξ) = xyI2a, wherex = aξ, y = bξ. Obviously ,if I2a > 0, then
∂ lnHf

∂a
> 0, soHf (a, b) is strictly increasing ina; If I2a < 0, then ∂ lnHf

∂a
< 0, soHf (a, b) is

strictly decreasing ina.
2) It can be proved in the same way. �
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Proof of Corollary 2.6.
1) Forf(x, y) = L(x, y),

I2a = [(ln f)x ln(y/x)]y =
x/y − 1− ln(x/y)

(x− y)2
.

By the well-known inequalityln x < x− 1 (x > 0, x 6= 1), we haveI2a > 0.
2) Forf(x, y) = D(x, y),

I2a = [(ln f)x ln(y/x)]y =
x/y − 1− ln(x/y)

(x− y)2
> 0.

SinceHL(a, b),HD(a, b) are both symmetric with respect toa andb, applying mechanically
Theorem 2.5, we immediately obtain Corollary 2.6. �

4. SOME APPLICATIONS

As direct applications of theorems and lemmas in this paper, we will present several examples
as follows.

Example 4.1(a G-A inequality chain). By 1) of Corollary 2.4, forf(x, y) = A(x, y), L(x, y) and
E(x, y),Hf (p, q) are strictly increasing in bothp andq. So there are

Hf (a, b; 0, 0) < Hf (a, b; 1, 0) < Hf

(
a, b; 1,

1

2

)
(4.1)

< Hf (a, b; 1, 1) < Hf (a, b; 1, 2).

From it we can obtain the following inequalities respectively, that are

√
ab < L(a, b) <

(√
a +

√
b

2

)2

< E(a, b) <
a + b

2
;(4.2)

√
ab <

a + b

2
<

(
a + b

√
a +

√
b

)2

< Z(a, b) <
a2 + b2

a + b
;(4.3)

√
ab < E(a, b) <

 E(a, b)

E
(√

a,
√

b
)
2

< Y (a, b) <
E(a2, b2)

E(a, b)
.(4.4)

Notice E(a2,b2)
E(a,b)

= Z(a, b), then (4.4) can be written into that

(4.5)
√

ab < E(a, b) < Z2
(√

a,
√

b
)

< E exp

(
1− G2

L2

)
< Z(a, b).

The inequality (4.2) was proved by [13], which shows that can be insertedL, A+G
2

andE
betweenG andA, so we call (4.2) the G-A inequality chain. (4.3) and (4.4) are the same in
form completely, so we call (4.1) the G-A inequality chain for homogeneous functions.
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Remark 4.1. That E(a2,b2)
E(a,b)

= Z(a, b) is a new identical equation for mean. In fact,

E(a, b)Z(a, b) = e−1

(
bb

aa

) 1
b−a

b
b

b+a a
a

b+a

= e−1b
b

b+a
+ b

b−a a
a

b+a
− a

b−a

= e−1b
2b2

b2−a2 a
−2a2

b2−a2

= e−1

(
(b2)b2

(a2)a2

) 1
b2−a2

= E(a2, b2).

It shows thatZ(a, b) is not only one “geometric mean”, but also one ratio of one exponen-
tial mean to another. Thus inequalities involvingZ(a, b) may be translated into inequalities
involving exponential mean.

Example 4.2(An estimation for upper bound of Stolarsky mean). From 2) of Corollary 2.4,
we can prove expediently an estimation for the upper bound of the Stolarsky mean presented by
[12]:

Sp(a, b) < p
1

1−p (a + b) with p > 2, whereSp(a, b) =

(
bp − ap

p(b− a)

) 1
p−1

.

In fact, from 2) of Corollary 2.4, whenp, q ∈ (−∞, 0) ∪ (0, +∞), HD(p, q) is strictly
decreasing in bothp andq, so whenp > 2, we haveHD(a, b; 1, p) < HD(a, b; 1, 2).

Notice

(4.6) HD(a, b; p, 1) =

(
ap − bp

a− b

) 1
p−1

= p
1

p−1 Sp(a, b) (p > 0),

thus whenp > 2, we obtainp
1

p−1 Sp(a, b) < 2
1

2−1 S2(a, b) = a + b, i.e. Sp(a, b) < p
1

1−p (a + b).

Example 4.3(Reversed inequalities and estimations for exponential mean). By 1) of Corol-
lary 2.4,HL(p, q) is strictly increasing in bothp andq, so whenp1 ∈ (0, 1), p2 ∈ (1, +∞), we
have

HL(a, b; p1, 1) < HL(a, b; 1, 1) < HL(a, b; p2, 1),

i.e.

(4.7) Sp1(a, b) < E(a, b) < Sp2(a, b).

On the other hand, By 2) of Corollary 2.4, whenp, q ∈ (−∞, 0) ∪ (0, +∞), HD(p, q) is
strictly monotone decreasing in bothp andq. So whenp1 ∈ (0, 1), p2 ∈ (1, +∞), we have

(4.8) HD(a, b; p1, 1) > HD(a, b; 1, 1) > HD(a, b; p2, 1).

From (4.6), (4.8) can be written into

p
1

p2−1

2 Sp2(a, b) < eE(a, b) < p
1

p1−1

1 Sp1(a, b)

or

(4.9)
1

e
p

1
p2−1

2 Sp2(a, b) < E(a, b) <
1

e
p

1
p1−1

1 Sp1(a, b).
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Combining (4.7) with (4.9), we have

Sp1(a, b) < E(a, b) <
1

e
p

1
p1−1

1 Sp1(a, b), wherep1 ∈ (0, 1),(4.10)

1

e
p

1
p2−1

2 Sp2(a, b) < E(a, b) < Sp2(a, b), wherep2 ∈ (1, +∞).(4.11)

In particular, whenp1 =
1

2
, p2 = 2, by (4.10), (4.11), we get(√

a +
√

b

2

)2

< E(a, b) <
4

e

(√
a +

√
b

2

)2

,(4.12)

2

e

(
a + b

2

)
< E(a, b) <

a + b

2
.(4.13)

The inequalities (4.12) and (4.13) may be denoted simply by

A + G

2
< E <

4

e

A + G

2
,(4.14)

2

e
A < E < A.(4.15)

The inequalities (4.14) and (4.15) make certain a bound of error that exponential meanE are
estimated byA or A+G

2
.
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