Journal of Inequalities in Pure and Applied Mathematics

INEQUALITIES INVOLVING BESSEL FUNCTIONS OF THE FIRST KIND

EDWARD NEUMAN

Department of Mathematics
Southern Illinois University
CARbONDALE, IL 62901-4408, USA.
edneuman@math.siu.edu
URL: http://www.math.siu.edu/neuman/personal.html
Received 25 September, 2004; accepted 13 October, 2004
Communicated by A. Lupaş

AbSTRACT. An inequality involving a function $f_{\alpha}(x)=\Gamma(\alpha+1)(2 / x)^{\alpha} J_{\alpha}(x)\left(\alpha>-\frac{1}{2}\right)$ is obtained. The lower and upper bounds for this function are also derived.

Key words and phrases: Bessel functions of the first kind, Inequalities, Gegenbauer polynomials.

2000 Mathematics Subject Classification. 33C10, 26D20.

1. Introduction and Definitions

In this note we deal with the function

$$
\begin{equation*}
f_{\alpha}(x)=\Gamma(\alpha+1)\left(\frac{2}{x}\right)^{\alpha} J_{\alpha}(x) \tag{1.1}
\end{equation*}
$$

$x \in \mathbb{R}, \alpha>-\frac{1}{2}$ and J_{α} stands for the Bessel function of the first kind of order α. It is known (see, e.g., [1, (9.1.69)]) that

$$
f_{\alpha}(x)={ }_{0} F_{1}\left(-; \alpha+1 ;-\frac{x^{2}}{4}\right)=\sum_{n=0}^{\infty} \frac{1}{n!(\alpha+1)_{n}}\left(-\frac{x^{2}}{4}\right)^{n},
$$

where $(a)_{k}=\Gamma(a+k) / \Gamma(a)(k=0,1, \ldots)$. It is obvious from the above representation that $f_{\alpha}(-x)=f_{\alpha}(x)$ and also that $f_{\alpha}(0)=1$. The function under discussion admits the integral representation

$$
\begin{equation*}
f_{\alpha}(x)=\int_{-1}^{1} \cos (x t) d \mu(t) \tag{1.2}
\end{equation*}
$$

(see, e.g., [1, (9.1.20)]) where $d \mu(t)=\mu(t) d t$ with

$$
\begin{equation*}
\mu(t)=\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} /\left(2^{2 \alpha} B\left(\alpha+\frac{1}{2}, \alpha+\frac{1}{2}\right)\right) \tag{1.3}
\end{equation*}
$$

[^0]being the Dirichlet measure on the interval $[-1,1]$ and $B(\cdot, \cdot)$ stands for the beta function. Clearly
\[

$$
\begin{equation*}
\int_{-1}^{1} d \mu(t)=1 \tag{1.4}
\end{equation*}
$$

\]

Thus $\mu(t)$ is the probability measure on the interval $[-1,1]$.
In [2], R. Askey has shown that the following inequality

$$
\begin{equation*}
f_{\alpha}(x)+f_{\alpha}(y) \leq 1+f_{\alpha}(z) \tag{1.5}
\end{equation*}
$$

holds true for all $\alpha \geq 0$ and $z^{2}=x^{2}+y^{2}$. This provides a generalization of Grünbaum's inequality ([4]) who has established (1.5) for $\alpha=0$.

In this note we give a different upper bound for the sum $f_{\alpha}(x)+f_{\alpha}(y)$ (see (2.1)). Also, lower and upper bounds for the function in question are derived.

2. Main Results

Our first result reads as follows.
Theorem 2.1. Let $x, y \in \mathbb{R}$. If $\alpha>-\frac{1}{2}$, then

$$
\begin{equation*}
\left[f_{\alpha}(x)+f_{\alpha}(y)\right]^{2} \leq\left[1+f_{\alpha}(x+y)\right]\left[1+f_{\alpha}(x-y)\right] \tag{2.1}
\end{equation*}
$$

Proof. Using (1.2), some elementary trigonometric identities, Cauchy-Schwarz inequality for integrals, and (1.4) we obtain

$$
\begin{aligned}
\left|f_{\alpha}(x)+f_{\alpha}(y)\right| \leq & \int_{-1}^{1}|\cos (x t)+\cos (y t)| d \mu(t) \\
= & 2 \int_{-1}^{1}\left|\cos \frac{(x+y) t}{2} \cos \frac{(x-y) t}{2}\right| d \mu(t) \\
\leq & 2\left[\int_{-1}^{1} \cos ^{2} \frac{(x+y) t}{2} d \mu(t)\right]^{\frac{1}{2}}\left[\int_{-1}^{1} \cos ^{2} \frac{(x-y) t}{2} d \mu(t)\right]^{\frac{1}{2}} \\
= & 2\left[\frac{1}{2} \int_{-1}^{1}(1+\cos (x+y) t) d \mu(t)\right]^{\frac{1}{2}} \\
& \quad \times\left[\frac{1}{2} \int_{-1}^{1}(1+\cos (x-y) t) d \mu(t)\right]^{\frac{1}{2}} \\
= & {\left[1+f_{\alpha}(x+y)\right]^{\frac{1}{2}}\left[1+f_{\alpha}(x-y)\right]^{\frac{1}{2}} }
\end{aligned}
$$

Hence, the assertion follows.
When $x=y$, inequality (2.1) simplifies to $2 f_{\alpha}^{2}(x) \leq 1+f_{\alpha}(2 x)$ which bears resemblance of the double-angle formula for the cosine function $2 \cos ^{2} x=1+\cos 2 x$.

Our next goal is to establish computable lower and upper bounds for the function f_{α}. We recall some well-known facts about Gegenbauer polynomials $C_{k}^{\alpha}\left(\alpha>-\frac{1}{2}, k \in \mathbb{N}\right)$ and the Gauss-Gegenbauer quadrature formulas. They are orthogonal on the interval $[-1,1]$ with the weight function $w(t)=\left(1-t^{2}\right)^{\alpha-\frac{1}{2}}$. The explicit formula for C_{k}^{α} is

$$
C_{k}^{\alpha}(t)=\sum_{m=0}^{[k / 2]}(-1)^{m} \frac{\Gamma(\alpha+k-m)}{\Gamma(\alpha) m!(k-2 m)!}(2 t)^{k-2 m}
$$

(see, e.g., [1, (22.3.4)]). In particular,

$$
\begin{equation*}
C_{2}^{\alpha}(t)=2 \alpha(\alpha+1) t^{2}-\alpha, \quad C_{3}^{\alpha}(t)=\frac{2}{3} \alpha(\alpha+1)\left[2(\alpha+2) t^{3}-3 t\right] . \tag{2.2}
\end{equation*}
$$

The classical Gauss-Gegenbauer quadrature formula with the remainder is [3]

$$
\begin{equation*}
\int_{-1}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} g(t) d t=\sum_{i=1}^{k} w_{i} g\left(t_{i}\right)+\gamma_{k} g^{(2 k)}(\eta) \tag{2.3}
\end{equation*}
$$

where $g \in C^{2 k}([-1,1]), \gamma_{k}$ is a positive number and does not depend on g, and η is an intermediate point in the interval $(-1,1)$. Recall that the nodes $t_{i}(1 \leq i \leq n)$ are the roots of C_{k}^{α} and the weights w_{i} are given explicitly by [5, (15.3.2)]

$$
\begin{equation*}
w_{i}=\pi 2^{2-2 \alpha} \frac{\Gamma(2 \alpha+k)}{k![\Gamma(\alpha)]^{2}} \cdot \frac{1}{\left(1-t_{i}^{2}\right)\left[\left(C_{k}^{\alpha}\right)^{\prime}\left(t_{i}\right)\right]^{2}} \tag{2.4}
\end{equation*}
$$

$(1 \leq i \leq k)$.
We are in a position to prove the following.
Theorem 2.2. Let $\alpha>-\frac{1}{2}$. If $|x| \leq \frac{\pi}{2}$, then

$$
\begin{align*}
\cos \left(\frac{x}{\sqrt{2(\alpha+1)}}\right) & \leq f_{\alpha}(x) \tag{2.5}\\
& \leq \frac{1}{3(\alpha+1)}\left[2 \alpha+1+(\alpha+2) \cos \left(\sqrt{\frac{3}{2(\alpha+2)}} x\right)\right]
\end{align*}
$$

Equalities hold in (2.5) if $x=0$.
Proof. In order to establish the lower bound in (2.5) we use the Gauss-Gegenbauer quadrature formula (2.3) with $g(t)=\cos (x t)$ and $k=2$. Since $g^{(4)}(t)=x^{4} \cos (x t) \geq 0$ for $t \in[-1,1]$ and $|x| \leq \frac{\pi}{2}$,

$$
\begin{equation*}
w_{1} g\left(t_{1}\right)+w_{2} g\left(t_{2}\right) \leq \int_{-1}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} \cos (x t) d t \tag{2.6}
\end{equation*}
$$

Making use of (2.2) and (2.4) we obtain

$$
-t_{1}=t_{2}=\frac{1}{\sqrt{2(\alpha+1)}}
$$

and $w_{1}=w_{2}=\frac{1}{2} 2^{2 \alpha} B\left(\alpha+\frac{1}{2}, \alpha+\frac{1}{2}\right)$. This in conjunction with (2.6) gives

$$
2^{2 \alpha} B\left(\alpha+\frac{1}{2}, \alpha+\frac{1}{2}\right) \cos \left(\frac{x}{\sqrt{2(\alpha+1)}}\right) \leq \int_{-1}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} \cos (x t) d t
$$

Application of (1.3) together with the use of (1.2) gives the asserted result. In order to derive the upper bound in (2.5) we use again (2.3). Letting $g(t)=\cos (x t)$ and $k=3$ one has $g^{(6)}(t)=-x^{6} \cos (x t) \leq 0$ for $|t| \leq 1$ and $|x| \leq \frac{\pi}{2}$. Hence

$$
\begin{equation*}
\int_{-1}^{1}\left(1-t^{2}\right)^{\alpha-\frac{1}{2}} \cos (x t) d t \leq w_{1} g\left(t_{1}\right)+w_{2} g\left(t_{2}\right)+w_{3} g\left(t_{3}\right) . \tag{2.7}
\end{equation*}
$$

It follows from (2.2) and (2.4) that

$$
-t_{1}=t_{3}=\sqrt{\frac{3}{2(\alpha+2)}}, \quad t_{2}=0
$$

and

$$
\begin{aligned}
& w_{1}=w_{3}=2^{2 \alpha} B\left(\alpha+\frac{1}{2}, \alpha+\frac{1}{2}\right) \frac{\alpha+2}{6(\alpha+1)}, \\
& w_{2}=2^{2 \alpha} B\left(\alpha+\frac{1}{2}, \alpha+\frac{1}{2}\right) \frac{2 \alpha+1}{3(\alpha+1)}
\end{aligned}
$$

This in conjunction with (2.7), (1.3), and (1.2) gives the desired result. The proof is complete.

Sharper lower and upper bounds for f_{α} can be obtained using higher order quadrature formulas (2.3) with even and odd numbers of knots, respectively.

References

[1] M. ABRAMOWITZ and I.A. STEGUN (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York, 1965.
[2] R. ASKEY, Grünbaum's inequality for Bessel functions, J. Math. Anal. Appl., 41 (1973), 122-124.
[3] K.E. ATKINSON, An Introduction to Numerical Analysis, 2nd ed., Wiley, New York, 1989.
[4] F. GRÜNBAUM, A property of Legendre polynomials, Proc. Nat. Acad. Sci., USA, 67 (1970), 959960.
[5] G. SZEGÖ, Orthogonal polynomials, in Colloquium Publications, Vol. 23, 4th ed., American Mathematical Society, Providence, RI, 1975.

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 171-04

