
volume 5, issue 4, article 94,
2004.

Received 25 September, 2004;
accepted 13 October, 2004.

Communicated by: A. Lupaş
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Abstract

An inequality involving a function fα(x) = Γ(α + 1)(2/x)αJα(x) (α > −1
2) is

obtained. The lower and upper bounds for this function are also derived.
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1. Introduction and Definitions
In this note we deal with the function

(1.1) fα(x) = Γ(α + 1)

(
2

x

)α

Jα(x),

x ∈ R, α > −1
2

andJα stands for the Bessel function of the first kind of order
α. It is known (see, e.g., [1, (9.1.69)]) that

fα(x) = 0F1

(
−; α + 1; −x2

4

)
=

∞∑
n=0

1

n!(α + 1)n

(
−x2

4

)n

,

where(a)k = Γ(a + k)/Γ(a) (k = 0, 1, . . .). It is obvious from the above
representation thatfα(−x) = fα(x) and also thatfα(0) = 1. The function
under discussion admits the integral representation

(1.2) fα(x) =

∫ 1

−1

cos(xt)dµ(t)

(see, e.g., [1, (9.1.20)]) wheredµ(t) = µ(t)dt with

(1.3) µ(t) = (1− t2)α− 1
2

/(
22αB

(
α +

1

2
, α +

1

2

))
being the Dirichlet measure on the interval[−1, 1] andB(·, ·) stands for the beta
function. Clearly

(1.4)
∫ 1

−1

dµ(t) = 1.
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Thusµ(t) is the probability measure on the interval[−1, 1].
In [2], R. Askey has shown that the following inequality

(1.5) fα(x) + fα(y) ≤ 1 + fα(z)

holds true for allα ≥ 0 andz2 = x2 + y2. This provides a generalization of
Grünbaum’s inequality ([4]) who has established (1.5) for α = 0.

In this note we give a different upper bound for the sumfα(x) + fα(y) (see
(2.1)). Also, lower and upper bounds for the function in question are derived.
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2. Main Results
Our first result reads as follows.

Theorem 2.1.Letx, y ∈ R. If α > −1
2

, then

(2.1) [fα(x) + fα(y)]2 ≤ [1 + fα(x + y)][1 + fα(x− y)].

Proof. Using (1.2), some elementary trigonometric identities, Cauchy-Schwarz
inequality for integrals, and (1.4) we obtain

|fα(x) + fα(y)| ≤
∫ 1

−1

| cos(xt) + cos(yt)|dµ(t)

= 2

∫ 1

−1

∣∣∣∣cos
(x + y)t

2
cos

(x− y)t

2

∣∣∣∣ dµ(t)

≤ 2

[∫ 1

−1

cos2 (x + y)t

2
dµ(t)

] 1
2
[∫ 1

−1

cos2 (x− y)t

2
dµ(t)

] 1
2

= 2

[
1

2

∫ 1

−1

(1 + cos(x + y)t)dµ(t)

] 1
2

×
[
1

2

∫ 1

−1

(1 + cos(x− y)t)dµ(t)

] 1
2

= [1 + fα(x + y)]
1
2 [1 + fα(x− y)]

1
2 .

Hence, the assertion follows.
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Whenx = y, inequality (2.1) simplifies to2f 2
α(x) ≤ 1+fα(2x) which bears

resemblance of the double-angle formula for the cosine function2 cos2 x =
1 + cos 2x.

Our next goal is to establish computable lower and upper bounds for the
functionfα. We recall some well-known facts about Gegenbauer polynomials
Cα

k (α > −1
2
, k ∈ N) and the Gauss-Gegenbauer quadrature formulas. They are

orthogonal on the interval[−1, 1] with the weight functionw(t) = (1− t2)α− 1
2 .

The explicit formula forCα
k is

Cα
k (t) =

[k/2]∑
m=0

(−1)m Γ(α + k −m)

Γ(α)m!(k − 2m)!
(2t)k−2m

(see, e.g., [1, (22.3.4)]). In particular,

(2.2) Cα
2 (t) = 2α(α + 1)t2 − α, Cα

3 (t) =
2

3
α(α + 1)[2(α + 2)t3 − 3t].

The classical Gauss-Gegenbauer quadrature formula with the remainder is [3]

(2.3)
∫ 1

−1

(1− t2)α− 1
2 g(t)dt =

k∑
i=1

wig(ti) + γkg
(2k)(η),

whereg ∈ C2k([−1, 1]), γk is a positive number and does not depend ong,
andη is an intermediate point in the interval(−1, 1). Recall that the nodesti
(1 ≤ i ≤ n) are the roots ofCα

k and the weightswi are given explicitly by [5,
(15.3.2)]

(2.4) wi = π 22−2α Γ(2α + k)

k![Γ(α)]2
· 1

(1− t2i )[(C
α
k )′(ti)]2
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(1 ≤ i ≤ k).
We are in a position to prove the following.

Theorem 2.2.Letα > −1
2

. If |x| ≤ π
2

, then

cos

(
x√

2(α + 1)

)
(2.5)

≤ fα(x)

≤ 1

3(α + 1)

[
2α + 1 + (α + 2) cos

(√
3

2(α + 2)
x

)]
.

Equalities hold in(2.5) if x = 0.

Proof. In order to establish the lower bound in (2.5) we use the Gauss-Gegenbauer
quadrature formula (2.3) with g(t) = cos(xt) and k = 2. Sinceg(4)(t) =
x4 cos(xt) ≥ 0 for t ∈ [−1, 1] and|x| ≤ π

2
,

(2.6) w1g(t1) + w2g(t2) ≤
∫ 1

−1

(1− t2)α− 1
2 cos(xt)dt.

Making use of (2.2) and (2.4) we obtain

−t1 = t2 =
1√

2(α + 1)

andw1 = w2 = 1
2
22αB(α + 1

2
, α + 1

2
). This in conjunction with (2.6) gives

22αB

(
α +

1

2
, α +

1

2

)
cos

(
x√

2(α + 1)

)
≤
∫ 1

−1

(1− t2)α− 1
2 cos(xt)dt.
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Application of (1.3) together with the use of (1.2) gives the asserted result. In
order to derive the upper bound in (2.5) we use again (2.3). Letting g(t) =
cos(xt) andk = 3 one hasg(6)(t) = −x6 cos(xt) ≤ 0 for |t| ≤ 1 and|x| ≤ π

2
.

Hence

(2.7)
∫ 1

−1

(1− t2)α− 1
2 cos(xt)dt ≤ w1g(t1) + w2g(t2) + w3g(t3).

It follows from (2.2) and (2.4) that

−t1 = t3 =

√
3

2(α + 2)
, t2 = 0

and

w1 = w3 = 22αB

(
α +

1

2
, α +

1

2

)
α + 2

6(α + 1)
,

w2 = 22αB

(
α +

1

2
, α +

1

2

)
2α + 1

3(α + 1)
.

This in conjunction with (2.7), (1.3), and (1.2) gives the desired result. The
proof is complete.

Sharper lower and upper bounds forfα can be obtained using higher order
quadrature formulas (2.3) with even and odd numbers of knots, respectively.
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