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ABSTRACT. In this paper we start from a class of linear and positive operators defined by infinite
sum. We consider the associated GBS operators and we give an approximation ofB-continuous
andB-differentiable functions with these operators. Through particular cases, we obtain state-
ments verified by the GBS operators of Mirakjan-Favard-Szász, Baskakov and Meyer-König and
Zeller.
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1. I NTRODUCTION

In this section, we recall some notions and results which we will use in this article. LetN be
the set of positive integers andN0 = N ∪ {0}.

In the following, letX andY be real intervals.
A function f : X × Y → R is called aB-continuous function in(x0, y0) ∈ X × Y if and

only if
lim

(x,y)→(x0,y0)
∆f [(x, y), (x0, y0)] = 0,

where
∆f [(x, y), (x0, y0)] = f(x, y)− f(x0, y)− f(x, y0) + f(x0, y0)

denotes a so-called mixed difference off .
A function f : X × Y → R is called aB-continuous function onX × Y if and only if it is

B-continuous in any point ofX × Y .
A function f : X × Y → R is called aB-differentiable function in(x0, y0) ∈ X × Y if and

only if it exists and if the limit is finite

lim
(x,y)→(x0,y0)

∆f [(x, y), (x, y0)]

(x− x0)(y − y0)
.
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This limit is called theB-differential off in the point(x0, y0) and is noted byDBf(x0, y0).
A function f : X × Y → R is called aB-differentiable function onX × Y if and only if it

is B-differentiable in any point ofX × Y .
The definition ofB-continuity andB-differentiability was introduced by K. Bögel in the

papers [8] and [9].
The functionf : X × Y → R is B-bounded onX × Y if and only if there existsk > 0 so

that|∆f [(x, y), (s, t)]| ≤ k for any(x, y), (s, t) ∈ X × Y .
We shall use the function setsB(X × Y ) = {f |f : X × Y → R, f bounded onX × Y }

with the usual sup-norm‖·‖∞, Bb(X ×Y ) = {f |f : X ×Y → R, f is B-bounded onX ×Y },
Cb(X × Y ) = {f |f : X × Y → R, f is B-continuous onX × Y } andDb(X × Y ) = {f |f :
X × Y → R, f is B-differentiable onX × Y }.

Let f ∈ Bb(X × Y ). The functionωmixed(f ; · , ·) : [0,∞)× [0,∞) → R defined by

ωmixed(f ; δ1, δ2) = sup{∆f [(x, y), (s, t)]| : |x− s| ≤ δ1, |y − t| ≤ δ2}

for any(δ1, δ2) ∈ [0,∞)× [0,∞) is called the mixed modulus of smoothness.

Theorem 1.1.LetX andY be compact real intervals andf ∈ Bb(X × Y ).
Then lim

δ1,δ2→0
ωmixed(f ; δ1, δ2) = 0 if and only iff ∈ Cb(X × Y ).

For anyx ∈ X consider the functionϕx : X → R, defined byϕx(t) = |t−x|, for anyt ∈ X.
For additional information, see the following papers: [1], [3], [15] and [19].

Let m ∈ N and the operatorSm : C2([0,∞)) → C([0,∞)) defined for any functionf ∈
C2([0,∞)) by

(1.1) (Smf)(x) = e−mx

∞∑
k=0

(mx)k

k!
f

(
k

m

)
,

for anyx ∈ [0,∞), whereC2([0,∞)) =
{
f ∈ C([0,∞)) : lim

x→∞
f(x)
1+x2 exists and is finite

}
. The

operators(Sm)m≥1 are called the Mirakjan-Favard-Szász operators, introduced in 1941 by G.
M. Mirakjan in the paper [13].

These operators were intensively studied by J. Favard in 1944 in the paper [11] and O. Szász
in the paper [20].

From [18], the following three lemmas result.

Lemma 1.2. For anym ∈ N, we have that

(1.2)
(
Smϕ2

x

)
(x) =

x

m
,

(1.3)
(
Smϕ4

x

)
(x) =

3mx2 + x

m3

for anyx ∈ [0,∞) and

(1.4)
(
Smϕ2

x

)
(x) ≤ a

m
,

(1.5)
(
Smϕ4

x

)
(x) ≤ a(3a + 1)

m2

for anyx ∈ [0, a], wherea > 0.
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Let m ∈ N and the operatorVm : C2([0,∞)) → C([0,∞)), defined for any functionf ∈
C2([0,∞)) by

(1.6) (Vmf)(x) = (1 + x)−m

∞∑
k=0

(
m + k − 1

k

) (
x

1 + x

)k

f

(
k

m

)
for anyx ∈ [0,∞).

The operators(Vm)m≥1 are called Baskakov operators, introduced in 1957 by V. A. Baskakov
in the paper [5].

Lemma 1.3. For anym ∈ N, we have that

(1.7)
(
Vmϕ2

x

)
(x) =

x(1 + x)

m
,

(1.8)
(
Vmϕ4

x

)
(x) =

3(m + 2)x4 + 6(m + 2)x3 + (3m + 7)x2 + x

m3

for anyx ∈ [0,∞) and

(1.9)
(
Vmϕ2

x

)
(x) ≤ a(1 + a)

m
,

(1.10)
(
Vmϕ4

x

)
(x) ≤ a(9a3 + 18a2 + 10a + 1)

m2

for anyx ∈ [0, a], wherea > 0.

W. Meyer-König and K. Zeller have introduced a sequence of linear positive operators in
paper [12]. After a slight adjustment, given by E. W. Cheney and A. Sharma in [10], these
operators take the formZm : B([0, 1)) → C([0, 1)), defined for any functionf ∈ B([0, 1)) by

(1.11) (Zmf)(x) =
∞∑

k=0

(
m + k

k

)
(1− x)m+1xkf

(
k

m + k

)
,

for anym ∈ N and for anyx ∈ [0, 1).
These operators are called the Meyer-König and Zeller operators.
In the following we considerZm : C([0, 1]) → C([0, 1]), for anym ∈ N.

Lemma 1.4. For anym ∈ N and anyx ∈ [0, 1], we have that

(1.12)
(
Zmϕ2

x

)
(x) ≤ x(1− x)2

m + 1

(
1 +

2x

m + 1

)
and

(1.13)
(
Zmϕ2

x

)
(x) ≤ 2

m
.

The inequality of Corollary 5 from [4], in the condition (1.14) becomes inequality (1.15).
Inequality (1.16) is demonstrated in [16].

Theorem 1.5. Let L : Cb(X × Y ) → B(X × Y ) be a linear positive operator andUL :
Cb(X × Y ) → B(X × Y ) the associated GBS operator. Supposing that the operatorL has the
property

(1.14)
(
L(· − x)2i(∗ − y)2j

)
(x, y) =

(
L(· − x)2i

)
(x, y)

(
L(∗ − y)2j

)
(x, y)

for any(x, y) ∈ X × Y and anyi, j ∈ {1, 2}, where "·" and "∗" stand for the first and second
variable. Then:
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(i) For any functionf ∈ Cb(X × Y ), any(x, y) ∈ X × Y and anyδ1, δ2 > 0, we have that

(1.15) |f(x, y)− (ULf)(x, y)| ≤ |f(x, y)||1− (Le00)(x, y)|

+
[
(Le00)(x, y)+δ−1

1

√
(L(·−x)2)(x, y)+δ−1

2

√
(L(∗−y)2)(x, y)

+ δ−1
1 δ−1

2

√
(L(· − x)2)(x, y)(L(∗ − y)2)(x, y)

]
ωmixed(f ; δ1, δ2).

(ii) For anyf ∈ Db(X×Y ) withDBf ∈ B(X×Y ), any(x, y) ∈ X×Y and anyδ1, δ2 > 0,
we have that

|f(x, y)− (ULf)(x, y)|(1.16)

≤ |f(x, y)||1− (Le00)(x, y)|+ 3‖DBf‖∞
√

(L(· − x)2)(x, y)(L(∗ − y)2)(x, y)

+
[√

(L(· − x)2)(x, y)(L(∗ − y)2)(x, y)

+ δ−1
1

√
(L(· − x)4)(x, y)(L(∗ − y)2)(x, y)

+ δ−1
2

√
(L(· − x)2)(x, y)(L(∗ − y)4)(x, y)

+ δ−1
1 δ−1

2 (L(· − x)2)(x, y)(L(∗ − y)2)(x, y)
]
ωmixed(DBf ; δ1, δ2).

2. PRELIMINARIES

Let I, J, K ⊂ R be intervals,J ⊂ K andI ∩ J 6= ∅. We consider the sequence of nodes
((xm,k)k∈N0)m≥1 so thatxm,k ∈ I ∩ J , k ∈ N0, m ∈ N and the functionsϕm,k : K → R with
the property thatϕm,k(x) ≥ 0, for anyk ∈ N0, m ∈ N andx ∈ J .

Definition 2.1. If m ∈ N, we define the operatorL∗m : E(I) → F (K) by

(2.1) (L∗mf) (x) =
∞∑

k=0

ϕm,k(x)f(xm,k)

for any functionf ∈ E(I) and anyx ∈ K, whereE(I) andF (K) are subsets of the set of real
functions defined onI, respectively onK.

Proposition 2.1. The operators(L∗m)m≥1 are linear and positive onE(I ∩ J).

Proof. The proof follows immediately. �

Definition 2.2. If m,n ∈ N, the operatorL∗m,n : E(I × I) → F (K × K) defined for any
functionf ∈ E(I × I) and any(x, y) ∈ K ×K by

(2.2)
(
L∗m,nf

)
(x, y) =

∞∑
k=0

∞∑
j=0

ϕm,k(x)ϕn,j(y)f(xm,k, xn,j)

is called the bivariate operator ofL∗ - type.

Proposition 2.2. The operators
(
L∗m,n

)
m,n≥1

are linear and positive onE[(I × I) ∩ (J × J)].

Proof. The proof follows immediately. �

Definition 2.3. If m, n ∈ N, the operatorUL∗m,n : E(I × I) → F (K × K) defined for any
functionf ∈ E(I × I) and any(x, y) ∈ K ×K by

(2.3)
(
UL∗m,nf

)
(x, y) =

∞∑
k=0

∞∑
j=0

ϕm,k(x)ϕn,j(y)
[
f(xm,k, y) + f(x, xn,j) − f(xm,k, xn,j)

]
is called a GBS operator ofL∗ - type.
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3. M AIN RESULTS

Lemma 3.1. For anym, n ∈ N, i, j ∈ N0 and(x, y) ∈ K ×K, the identity

(3.1)
(
L∗m,n(· − x)2i(∗ − y)2j

)
(x, y) =

(
L∗m(· − x)2i

)
(x)

(
L∗n(∗ − y)2j

)
(y)

holds.

Proof. We have that

(
L∗m,n(· − x)2i(∗ − y)2j

)
(x, y) =

∞∑
k=0

∞∑
j=0

ϕm,k(x)ϕn,j(y)(xm,k − x)2i(xn,j − y)2j

=
∞∑

k=0

ϕm,k(x)(xm,k − x)2i

∞∑
j=0

ϕn,j(y)(xn,j − y)2j

=
(
L∗m(· − x)2i

)
(x)

(
L∗n(∗ − y)2j

)
(y),

so (3.1) holds. �

For the operators constructed in this section, we note thatδm(x) =
√

(L∗mϕ2
x) (x), δm,x =√

(L∗mϕ4
x) (x), wherex ∈ I ∩ J , m ∈ N, m 6= 0.

Then, by taking Lemma 3.1 into account, Theorem 1.5 becomes:

Theorem 3.2.

(i) For any functionf ∈ Cb(I × I), any(x, y) ∈ (I × I) ∩ (J × J), anym, n ∈ N, any
δ1, δ2 > 0, we have that

(3.2) |f(x, y)− (UL∗m,nf)(x, y)|
≤ |f(x, y)||1− (Le00)(x, y)|+

(
(Le00)(x, y) + δ−1

1 δm(x) + δ−1
2 δn(y)

+ δ−1
1 δ−1

2 δm(x)δn(y)
)
ωmixed(f ; δ1, δ2).

(ii) For any functionf ∈ Db(I × I) with DBf ∈ B(I × I), any(x, y) ∈ (I × I)∩ (J × J),
anym, n ∈ N, anyδ1, δ2 > 0, we have that

(3.3) |f(x, y)− (UL∗f)(x, y)| ≤ |f(x, y)||1− (Le00)(x, y)|
+ 3‖DBf‖∞δm(x)δn(y) +

[
δm(x)δn(y) + δ−1

1 δm,xδn(y)

+ δ−1
2 δm(x)δn,y + δ−1

1 δ−1
2 δ2

m(x)δ2
n(y)

]
ωmixed(DBf ; δ1, δ2).

In the following, we give examples of operators and of the associated GBS operators.

Application 1. If I = J = K = [0,∞), E(I) = C2([0,∞)), F (K) = C([0,∞)), ϕm,k(x) =

e−mx (mx)k

k!
, xm,k = k

m
, x ∈ [0,∞), m, k ∈ N0, m 6= 0, then we obtain the Mirakjan-Favard-

Szász operators.

Theorem 3.3.Leta, b ∈ R, a > 0 andb > 0. Then:

(i) For any functionf ∈ C([0,∞)× [0,∞)), any(x, y) ∈ [0, a]× [0, b] andm, n ∈ N, we
have that

(3.4) |f(x, y)−(USm,nf)(x, y)| ≤
(
1+

√
a
) (

1+
√

b
)

ωmixed

(
f ;

1√
m

,
1√
n

)
.
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(ii) For any functionf ∈ Db([0,∞)× [0,∞))∩C([0,∞)× [0,∞)) with DBf ∈ B([0, a]×
[0, b]), any(x, y) ∈ [0, a]× [0, b], anym, n ∈ N, we have that

(3.5) |f(x, y)− (USm,nf)(x, y)| ≤
√

ab

[
3‖DBf‖∞ +

(
1 +

√
3a + 1

+
√

3b + 1 +
√

ab
)
ωmixed

(
DBf ;

1√
m

,
1√
n

) ]
1√
mn

.

Proof. It results from Theorem 3.2, by choosingδ1 = 1√
m

, δ2 = 1√
n

and Lemma 1.2. �

Theorem 3.4. If f ∈ C([0,∞)× [0,∞)), then the convergence

(3.6) lim
m,n→∞

(USm,nf)(x, y) = f(x, y)

is uniform on any compact[0, a]× [0, b], wherea, b > 0.

Proof. It results from Theorem 1.1 and Theorem 3.3. �

Application 2. If I = J = K = [0,∞), E(I) = C2([0,∞)), F (K) = C([0,∞)), ϕm,k(x) =

(1 + x)−m
(

m+k−1
k

)(
x

1+x

)k
, xm,k = k

m
, x ∈ [0,∞), m, k ∈ N0, m 6= 0, then we obtain the

Baskakov operators.

Theorem 3.5.Leta, b ∈ R, a > 0 andb > 0. Then:
(i) For any functionf ∈ C([0,∞)× [0,∞)), any(x, y) ∈ [0, a]× [0, b] and anym,n ∈ N,

we have that

(3.7) |f(x, y)− (UVm,nf)(x, y)|

≤
(
1 +

√
a(1 + a)

) (
1 +

√
b(1 + b)

)
ωmixed

(
f ;

1√
m

,
1√
n

)
.

(ii) For any functionf ∈ Db([0,∞)× [0,∞))∩C([0,∞)× [0,∞)) with DBf ∈ B([0, a]×
[0, b]), any(x, y) ∈ [0, a]× [0, b], anym, n ∈ N, we have that

(3.8) |f(x, y)− (UVm,nf)(x, y)| ≤
√

ab(1 + a)(1 + b)

{
3‖DB‖∞

+
[
1 +

√
9a3 + 18a2 + 10a + 1 +

√
9b3 + 18b2 + 10b + 1

+
√

ab(1 + a)(1 + b)
]
ωmixed

(
DBf ;

1√
m

,
1√
n

) }
1√
mn

.

Proof. It results from Theorem 3.2, by choosingδ1 = 1√
m

, δ2 = 1√
n

and Lemma 1.3. �

Theorem 3.6. If f ∈ C([0,∞)× [0,∞)), then the convergence

(3.9) lim
m,n→∞

(UVm,nf)(x, y) = f(x, y)

is uniform on any compact[0, a]× [0, b], wherea, b > 0.

Proof. It results from Theorem 1.1 and Theorem 3.5. �

Application 3. If I = J = K = [0, 1], E(I) = F (K) = C([0, 1]), ϕm,k(x) =
(

m+k
k

)
(1 −

x)m+1xk, xm,k = k
m

, x ∈ [0, 1], m, k ∈ N0, m 6= 0, then we obtain the Meyer-König and Zeller
operators.

J. Inequal. Pure and Appl. Math., 10(1) (2009), Art. 7, 8 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


APPROXIMATION OFB-CONTINUOUS AND B-DIFFERENTIABLE FUNCTIONS 7

Theorem 3.7. For any functionf ∈ C([0, 1] × [0, 1]), any (x, y) ∈ [0, 1] × [0, 1] and any
m, n ∈ N, we have that

(3.10) |f(x, y)− (UZm,nf)(x, y)| ≤ (3 + 2
√

2)ωmixed

(
f ;

1√
m

,
1√
n

)
.

Proof. It results from Theorem 3.2, by choosingδ1 = 1√
m

, δ2 = 1√
n

and Lemma 1.4. �

Theorem 3.8. If f ∈ C([0, 1]× [0, 1]), then the convergence

(3.11) lim
m,n→∞

(UZm,nf)(x, y) = f(x, y)

is uniform on[0, 1]× [0, 1].

Proof. It results from Theorem 1.1 and Theorem 3.7. �
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