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FACULTY OF ELECTRICAL ENGINEERING AND COMPUTING

UNIVERSITY OF ZAGREB

UNSKA 3, ZAGREB, CROATIA
mario.krnic@fer.hr

FACULTY OF TEXTILE TECHNOLOGY

UNIVERSITY OF ZAGREB

PIEROTTIJEVA 6
10000 ZAGREB, CROATIA

pecaric@hazu.hr

iperic@pbf.hr

TEACHER TRAINING COLLEGE ČAKOVEC

ANTE STARČEVIĆA 55
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ABSTRACT. The main objective of this paper is some new special Hilbert-type and Hardy-
Hilbert-type inequalities in(Rn)k with k ≥ 2 non-conjugate parameters which are obtained
by using the well known Selberg’s integral formula for fractional integrals in an appropriate
form. In such a way we obtain extensions over the whole set of real numbers, of some earlier
results, previously known from the literature, where the integrals were taken only over the set of
positive real numbers. Also, we obtain the best possible constants in the conjugate case.
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1. I NTRODUCTION

In order to obtain our general results, we need to present the definitions of non-conjugate
parameters. Letpi, i = 1, 2, . . . , k, be the real parameters which satisfy

(1.1)
k∑

i=1

1

pi

≥ 1 and pi > 1, i = 1, 2, . . . , k.
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Further, the parameterspi
′, i = 1, 2, . . . , k are defined by the equations

(1.2)
1

pi

+
1

p′i
= 1, i = 1, 2, . . . , k.

Sincepi > 1, i = 1, 2, . . . , k, it is obvious thatp′i > 1, i = 1, 2, . . . , k. We define

(1.3) λ :=
1

k − 1

k∑
i=1

1

p′i
.

It is easy to deduce that0 < λ ≤ 1. Also, we introduce parametersqi, i = 1, 2, . . . , k, defined
by the relations

(1.4)
1

qi

= λ− 1

p′i
, i = 1, 2, . . . , k.

In order to obtain our results we require

(1.5) qi > 0 i = 1, 2, . . . , k.

It is easy to see that the above conditions do not automatically imply (1.5). The above conditions
were also given by Bonsall (see [2]). It is easy to see that

λ =
k∑

i=1

1

qi

and
1

qi

+ 1− λ =
1

pi

, i = 1, 2, . . . , k.

Of course, ifλ = 1, then
∑k

i=1
1
pi

= 1, so the conditions (1.1) – (1.4) reduce to the case of
conjugate parameters.

Considering the two-dimensional case of non-conjugate parameters (k = 2), Hardy, Lit-
tlewood and Pólya, (see [7]), proved that there exists a constantK, dependent only on the
parametersp1 andp2 such that the following Hilbert-type inequality holds for all non-negative
measurable functionsf ∈ Lp1 (〈0,∞〉) andg ∈ Lp2 (〈0,∞〉) :

(1.6)
∫ ∞

0

∫ ∞

0

f(x)g(y)

(x + y)s
dxdy ≤ K

(∫ ∞

0

fp1(x)dx

) 1
p1

(∫ ∞

0

gp2(y)dy

) 1
p2

.

Hardy, Littlewood and Pólya did not give a specific value for the constantK in the previous

inequality. An alternative proof by Levin (see [9]) established thatK = Bs
(

1
sp1

′ ,
1

sp2
′

)
, where

B is the beta function, but the paper did not determine whether this was the best possible
constant. This question still remains open. The inequality (1.6) was also generalized by F.F.
Bonsall (see [2]).

Hilbert and Hardy-Hilbert type inequalities (see [2]) are very significant weight inequalities
which play an important role in many fields of mathematics. Similar inequalities, in operator
form, appear in harmonic analysis where one investigates the boundedness properties of such
operators. This is the reason why Hilbert’s inequality is so popular and is of great interest to
numerous mathematicians.

In the last century Hilbert-type inequalities have been generalized in many different directions
and numerous mathematicians have reproved them using various techniques. Some possibilities
of generalizing such inequalities are, for example, various choices of non-negative measures,
kernels, sets of integration, extension to the multi-dimensional case, etc. Several generaliza-
tions involve very important notions such as Hilbert’s transform, Laplace transform, singular
integrals, Weyl operators.

In this paper we refer to a recent paper of Brnetić et al, [4], where a general Hilbert-type
and Hardy-Hilbert-type inequalities were obtained for non-conjugate parameters, wherek ≥ 2,
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HARDY-HILBERT TYPE INEQUALITIES 3

with positiveσ−finite measures onΩ. However, we shall keep our attention on a result with
Lebesgue measures and a special homogeneous function of degree−s. This is contained in:

Theorem 1.1. Let k ≥ 2 be an integer,pi, p
′
i, qi, i = 1, 2, . . . , k, be real numbers satisfying

(1.1) – (1.5) and
∑k

i=1 Aij = 0, j = 1, 2, . . . , k. Then the following inequalities hold and are
equivalent:

(1.7)
∫ ∞

0

· · ·
∫ ∞

0

∏k
i=1 fi(xi)(∑k
j=1 xj

)λs
dx1 . . . dxk < K

k∏
i=1

[∫ ∞

0

xi

pi
qi

(k−1−s)+piαifpi

i (xi)dxi

] 1
pi

and

(1.8)

∫ ∞

0

x
(1−λp′k)(k−1−s)−p′kαk

k

∫ ∞

0

· · ·
∫ ∞

0

∏k−1
i=1 fi(xi)(∑k
j=1 xj

)λs
dx1 . . . dxk−1


p′k

dxk


1

p′
k

< K

k−1∏
i=1

[∫ ∞

0

xi

pi
qi

(k−1−s)+piαifpi

i (xi)dxi

] 1
pi

,

where

K =
1

Γ(s)λ

k∏
i=1

Γ(s− k + 1− qiαi + qiAii)
1
qi

k∏
i,j=1,i6=j

Γ(qiAij + 1)
1
qi ,

αi =
∑k

j=1 Aij, Aij > − 1
qi

, i 6= j andAii − αi > k−s−1
qi

.

Our main objective is to obtain inequalities similar to the inequalities in Theorem 1.1, which
will include the integrals taken over the whole set of real numbers.

The techniques that will be used in the proofs are mainly based on classical real analysis,
especially on the well known Hölder inequality and on Fubini’s theorem.

Conventions. Throughout this paper we suppose that all the functions are non-negative and
measurable, so that all integrals converge. Further, the Euclidean norm of the vectorx ∈ Rn

will be denoted by|x|.

2. PRELIMINARIES

The main results in this paper will be based on the well-known Selberg formula for the
fractional integral

(2.1)
∫

(Rn)k

|xk|αk−n|xk − xk−1|αk−1−n|xk−1 − xk−2|αk−2−n · · · |x2 − x1|α1−n

· |x1 − y|α0−ndx1dx2 . . . dxk =

∏k
i=0 Γn(αi)

Γn

(∑k
i=0 αi

) |y|∑k
i=0 αi−n,

for arbitraryk, n ∈ N and0 < αi < n such that0 <
∑k

i=0 αi < n. The constantΓn(α)
introduces then−dimensional gamma function and is defined by the formula

(2.2) Γn(α) =
π

n
2 2αΓ

(
α
2

)
Γ
(

n
2
− α

2

) , 0 < α < n,
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whereΓ is the well known gamma function. Further, from the definition of then−dimensional
gamma function it easily follows that

(2.3) Γn(n− α) =
(2π)n

Γn(α)
, 0 < α < n.

In the book [13], Stein derived the formula (2.1) with two parameters using the Riesz potential.
Multiple integrals similar to the one in (2.1) are known as Selberg’s integrals and their exact

values are useful in representation theory and in mathematical physics. These integrals have
only been computed for special cases. For a treatment of Selberg’s integral, the reader can
consult Section 17.11 of [11].

Now, by using the integral equality (2.1), we can easily compute the integral∫
(Rn)k−1

∏k−1
i=1 |xi|−βi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1,

where0 < βi < n, 0 < s < n and

(k − 1)n−
k−1∑
i=1

βi < s < kn−
k−1∑
i=1

βi.

Such an integral will be more suitable for our computations. Namely, by using the substitution
x1 = t1 − xk andxi = ti − ti−1, i = 2, 3, . . . , k − 1 (see also [5]), one obtains the formula

(2.4)
∫

(Rn)k−1

∏k−1
i=1 |xi|−βi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1

=
Γn(n− s)

∏k−1
i=1 Γn(n− βi)

Γn

(
kn− s−

∑k−1
i=1 βi

) |xk|(k−1)n−s−
∑k−1

i=1 βi , xk 6= 0

where0 < βi < n, 0 < s < n and(k − 1)n −
∑k−1

i=1 βi < s < kn −
∑k−1

i=1 βi. Obviously, if
0 < βi < n and0 < s < n then the conditions < kn−

∑k−1
i=1 βi is trivially satisfied.

We shall use the relation (2.4) in the next section, to obtain generalizations of the multiple
Hilbert inequality, over the set of real numbers.

3. BASIC RESULT

As we have already mentioned, we shall obtain some extensions of the multiple Hilbert in-
equality on the whole set of real numbers. We also obtain the equivalent inequality, usually
called the Hardy-Hilbert inequality. For more details about equivalent inequalities the reader
can consult [7]. To obtain our results we introduce the real parametersAij, i, j = 1, 2, . . . , k
satisfying

(3.1)
k∑

i=1

Aij = 0, j = 1, 2, . . . , k.

We also define

(3.2) αi =
k∑

j=1

Aij, i = 1, 2, . . . , k.

The main result of this paper is as follows:
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Theorem 3.1.Letk ≥ 2 be an integer andpi, p
′
i, qi, i = 1, 2, . . . , k, be real numbers satisfying

(1.1) – (1.5). Further, letAij, i, j = 1, 2, . . . , k be real parameters defined by (3.1) and (3.2).
Then the following inequalities hold and are equivalent:

(3.3)
∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk ≤ K

k∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi
+piαifpi

i (xi)dxi

] 1
pi

and

(3.4)

{∫
Rn

|xk|
− pk

′

qk
[(k−1)n−s]−pk

′αk

·

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1


pk

′

dxk


1

pk
′

≤ K

k−1∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi
+piαifpi

i (xi)dxi

] 1
pi

,

for any0 < s < n, Aij ∈
(
− n

qi
, 0
)

, αi − Aii < s−(k−1)n
qi

, where the constantK is given by the

formula

K =
1

Γλ
n(s)

k∏
i,j=1,i6=j

Γn(n + qiAij)
1
qi

k∏
i=1

Γn(s− (k − 1)n− qiαi + qiAii)
1
qi .

Proof. We start with the inequality (3.3). The left-hand side of the inequality (3.3) can easily
be transformed in the following way∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk

=

∫
(Rn)k

k∏
i=1

 |xi|piAii
∏k

j=1,j 6=i |xj|qiAij∣∣∣∑k
j=1 xj

∣∣∣s Fi
pi−qi(xi)f

pi

i (xi)

 1
qi

·

[
k∏

i=1

|xi|piAii (Fifi)
pi (xi)

]1−λ

dx1dx2 . . . dxk,

where

Fi(xi) =

∫
(Rn)k−1

∏k
j=1,j 6=i |xj|qiAij∣∣∣∑k

j=1 xj

∣∣∣s dx1dx2 . . . dxi−1dxi+1 . . . dxn

 1
qi

.

Now by using Selberg’s integral formula (2.4) it follows easily that

(3.5) Fi(xi) =

[∏k
j=1,j 6=i Γn(n + qiAij)Γn(n− s)

Γn(kn + qiαi − qiAii − s)

] 1
qi

|xi|
(k−1)n−s

qi
+αi−Aii .
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Further, since
∑k

i=1
1
qi

+ 1 − λ = 1, qi > 0 and0 < λ ≤ 1, we can apply Hölder’s inequality
with conjugate parametersq1, q2, . . . , qk and 1

1−λ
, on the above transformation. In such a way,

we obtain the inequality∫
(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk

≤
k∏

i=1

[∫
Rn

|xi|piAii(Fifi)
pi(xi)dxi

] 1
qi

k∏
i=1

[∫
Rn

|xi|piAii(Fifi)
pi(xi)dxi

]1−λ

=
k∏

i=1

[∫
Rn

|xi|piAii(Fifi)
pi(xi)dxi

] 1
pi

,

since 1
qi

+ 1− λ = 1
pi

. Finally, by using definition (3.5) of the functionsFi, i = 1, 2, . . . , k, one
obtains the inequality (3.3).

Let us show that the inequalities (3.3) and (3.4) are equivalent. Suppose that the inequality
(3.3) is valid. If we put the functionfn : Rn 7→ R, defined by

fk(xk) = |xk|
− pk

′

qk
[(k−1)n−s]−pk

′αk

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1


pk

′

pk

in the inequality (3.3), we obtain

I(xk)
p′k ≤ K

k−1∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi
+piαifpi

i (xi)dxi

] 1
pi

I(xk)
p′k
pk ,

whereI(xk) denotes the left-hand side of the inequality (3.4). This gives the inequality (3.4).
It remains to prove that the inequality (3.3) is a consequence of the inequality (3.4). For this

purpose, let us suppose that the inequality (3.4) is valid. Then the left-hand side of the inequality
(3.3) can be transformed in the following way:∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk =

∫
Rn

|xk|
(k−1)n−s

qk
+αkfk(xk)

·

|xk|
− (k−1)n−s

qk
−αk

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1

 dxk.

Applying Hölder’s inequality with conjugate parameterspk andp′k to the above transformation,
we have∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk ≤

[∫
Rn

|xk|
pk(k−1)n−pks

qk
+pkαkfpk

k (xk)dxk

] 1
pk

· I(xk),

and the result follows from (3.4). Hence, we have shown that the inequalities (3.3) and (3.4) are
equivalent. Since the first inequality is valid, the second one is also valid. This completes the
proof. �
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Clearly, by puttingn = 1 in Theorem 3.1, we obtain inequalities which are similar to the
inequalities in Theorem 1.1. The integrals are taken over the whole set of real numbers, the
weight functions are the same and the constant is of the same form as in Theorem 1.1, where
the ordinary gamma function is replaced withΓ1(α).

Remark 1. Observe that equality in the inequality (3.3) holds if and only if it holds in Hölder’s
inequality. By using the notation from Theorem 3.1, it means that the functions

|xi|piAii

k∏
j=1,j 6=i

|xj|qiAij

∣∣∣∣∣
k∑

j=1

xj

∣∣∣∣∣
−s

Fi
pi−qi(xi)f

pi

i (xi), i = 1, 2, . . . , k

and
k∏

i=1

|xi|piAii (Fifi)
pi (xi)

are effectively proportional. So, if we suppose that the functionsfi, i = 1, 2, . . . , k are not equal
to zero, straightforward computation (see also [4, Remark 1]) leads to the condition∣∣∣∣∣

k∑
i=1

xi

∣∣∣∣∣
−s

= C
k∏

i=1

|xi|(k−1)n−s+qi(αi−Aii),

whereC is an appropriate constant, and that is a contradiction. So equality in Theorem 3.1
holds if and only if at least one of the functionsfi is identically equal to zero. Otherwise, for
non-negative and non-zero functions, the inequalities (3.3) and (3.4) are strict.

Remark 2. If the parameterspi, i = 1, 2, . . . , k are chosen in such a way that

(3.6) qj > 0, for somej ∈ {1, 2, . . . n}, qi < 0, i 6= j and λ < 1

or

(3.7) qi < 0, i = 1, 2, . . . , n

then the exponents from the proof of Theorem 3.1 fulfill the conditions for the reverse Hölder
inequality (for details see e.g. [12, Chapter V]), which gives the reverse of the inequalities (3.3)
and (3.4).

4. THE BEST POSSIBLE CONSTANTS IN THE CONJUGATE CASE

In this section we shall focus on the case of the conjugate exponent, to obtain the best possible
constants in Theorem 3.1, for some general cases. It seems to be a difficult problem to obtain
the best possible constant in the case of non-conjugate parameters.

It follows easily that the constantK from the previous theorem, in the conjugate case (λ = 1,
pi = qi), takes the form

K =
1

Γn(s)

k∏
i,j=1,i6=j

Γn(n + piAij)
1
pi

k∏
i=1

Γn(s− (k − 1)n− piαi + piAii)
1
pi .

However, we shall deal with an appropriate form of the inequalities obtained in the previous
section in the conjugate case. The main idea is to simplify the above constantK, i.e. to obtain
the constant without exponents. For this sake, it is natural to consider real parametersAij

satisfying the following constraint

(4.1) s− (k − 1)n + piAii − piαi = n + pjAji, j 6= i, i, j ∈ {1, 2, . . . , k}.
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In this case, the above constantK takes the form

(4.2) K∗ =
1

Γn(s)

k∏
i=1

Γn(n + Ãi),

where

(4.3) Ãi = pjAji, j 6= i and − n < Ãi < 0.

It is easy to see that the parametersÃi satisfy the relation

(4.4)
k∑

i=1

Ãi = s− kn.

Further, the inequalities (3.3) and (3.4) with the parametersAij, satisfying (4.1), become

(4.5)
∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk ≤ K∗
k∏

i=1

[∫
Rn

|xi|−n−piÃifpi

i (xi)dxi

] 1
pi

and

(4.6)


∫

Rn

|xk|(1−p′k)(−n−pkÃk) ·

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1

pk
′

dxk


1

pk
′

≤ K∗
k−1∏
i=1

[∫
Rn

|xi|−n−piÃifpi

i (xi)dxi

] 1
pi

.

We shall see that the constantK∗ in (4.5) and (4.6) is the best possible in the sense that we
cannot replace the constantK∗ in inequalities (4.5) and (4.6) with the smaller constant, so that
inequalities are fulfilled for all non-negative measurable functions. Before we prove the facts
we have to establish the following two lemmas:

Lemma 4.1. Letk ≥ 2 be an integer,xk ∈ Rn, andxk 6= 0. We define

Iε
1(xk) =

∫
Kn(ε)

|x1|Ã1

∫
(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx2 . . . dxk−1

 dx1,

whereε > 0, Kn(ε) is the closedn−dimensional ball of radiusε and parameters̃Ai, i =
1, 2, . . . , k are defined by (4.3). Then there exists a positive constantCk such that

(4.7) Iε
1(xk) ≤ Ckε

n+Ã1|xk|−2n−Ã1−Ãk , when ε → 0.

Proof. We treat two cases. Ifk = 2 we have

Iε
1(x2) =

∫
Kn(ε)

|x1|Ã1

|x1 + x2|s
dx1.

By letting ε → 0, we easily conclude that there exists a positive constantc2 such that

Iε
1(x2) ≤ c2|x2|−s

∫
Kn(ε)

|x1|Ã1dx1.
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The previous integral can be calculated by usingn−dimensional spherical coordinates. More
precisely, we have∫

Kn(ε)

|x1|Ã1dx1(4.8)

=

∫ π

0

· · ·
∫ π

0

∫ 2π

0

∫ ε

0

rn+Ã1−1sinn−2θn−1sin
n−3θn−2 · · · sin θ2drdθ1 . . . dθn−1

=

∫ ε

0

rn+Ã1−1dr

∫
Sn

dS =
|Sn|εn+Ã1

n + Ã1

,

where|Sn| = 2π
n
2 Γ−1(n

2
) is the Lebesgue measure of the unit sphere inRn. Consequently,

Iε
1(x2) ≤

c2|Sn|εn+Ã1

n + Ã1

|x2|−s,

so the inequality holds whenε → 0, since−2n − Ã1 − Ã2 = −s holds fork = 2. Further, if
k > 2, then by lettingε → 0, since|x1| → 0, we easily conclude that there exists a positive
constantck such that

(4.9) Iε
1(xk) ≤ ck

[∫
Kn(ε)

|x1|Ã1dx1

]∫
(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=2 xi

∣∣∣s dx2 . . . dxk−1

 .

We have already calculated the first integral in the inequality (4.9), and the second one is the
Selberg integral. Namely, by using the formulas (2.3), (2.4) and (4.4) we have

(4.10)
∫

(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=2 xi

∣∣∣s dx2 . . . dxk−1

=
Γn(2n + Ã1 + Ãk)

∏k−1
i=2 Γn(n + Ãi)

Γn(s)
|xk|−2n−Ã1−Ãk .

Finally, by using (4.8), (4.9) and (4.10), we obtain the inequality (4.7) and the proof is com-
pleted. �

Similarly, we have

Lemma 4.2. Letk ≥ 2 be an integer andxk ∈ Rn. We define

Iε−1

1 (xk) =

∫
Rn\Kn(ε−1)

|x1|Ã1

∫
(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx2 . . . dxk−1

 dx1,

whereε > 0 and parameters̃Ai, i = 1, 2, . . . , k are defined by (4.3). Then there exists a positive
constantDk such that

(4.11) Iε−1

1 (xk) ≤ Dkε
n+Ãk , when ε → 0.

Proof. We treat again two cases. Ifk = 2 we have

Iε−1

1 (x2) =

∫
Rn\Kn(ε−1)

|x1|Ã1

|x1 + x2|s
dx1.
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If ε → 0, then|x1| → ∞, so we easily conclude that there exists a positive constantd2 such
that

Iε−1

1 (x2) ≤ d2

∫
Rn\Kn(ε−1)

|x1|Ã1−sdx1,

and by using spherical coordinates for calculating the integral on the right-hand side of the
previous inequality, we obtain

Iε−1

1 (x2) ≤
d2|Sn|
n + Ã2

εn+Ã2 .

Further, ifk > 2, then by using (2.3), (2.4) and (4.4), we have

(4.12)
∫

(Rn)k−2

∏k−1
i=2 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx2 . . . dxk−1

=
Γn(2n + Ã1 + Ãk)

∏k−1
i=2 Γn(n + Ãi)

Γn(s)
|x1 + xk|−2n−Ã1−Ãk .

So, we get

(4.13) Iε−1

1 (xk) =
Γn(2n + Ã1 + Ãk)

∏k−1
i=2 Γn(n + Ãi)

Γn(s)

·
∫

Rn\Kn(ε−1)

|x1|Ã1|x1 + xk|−2n−Ã1−Ãkdx1.

By letting ε → 0, then|x1| → ∞, so there exists a positive constantdk such that

Iε−1

1 (xk) ≤ dk

∫
Rn\Kn(ε−1)

|x1|−2n−Ãkdx1.

Since, ∫
Rn\Kn(ε−1)

|x1|−2n−Ãkdx1 =
|Sn|εn+Ãk

n + Ãk

,

the inequality (4.11) holds. �

Now, we are able to obtain the main result, i.e. the best possible constants in the inequalities
(4.5) and (4.6). Clearly, inequalities (4.5) and (4.6) do not contain parametersAij, i, j =

1, 2, . . . , k, so we can regard these inequalities withÃi, i = 1, 2, . . . , k, as primitive parameters.
More precisely, we have

Theorem 4.3. SupposẽAi, i = 1, 2, . . . , k, are real parameters fulfilling constraint (4.4) and
−n < Ãi < 0, i = 1, 2, . . . , k. Then, the constantK∗ is the best possible in both inequalities
(4.5) and (4.6).

Proof. Let us denote byKn(ε) the closedn−dimensional ball of radiusε with the center in0.
Let 0 < ε < 1. We define the functions̃fi : Rn 7→ R, i = 1, 2, . . . , k in the following way

f̃i(xi) =

{
|xi|Ãi , xi ∈ Kn(ε−1) \Kn(ε),
0, otherwise.

If we put defined functions in the inequality (4.5), then the right-hand side of the inequality
(4.5) becomes

K∗
k∏

i=1

(∫
Kn(ε−1)\Kn(ε)

|xi|−ndxi

) 1
pi

= K∗
∫

Kn(ε−1)\Kn(ε)

|xi|−ndxi.
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By usingn−dimensional spherical coordinates we obtain for the above integral∫
Kn(ε−1)\Kn(ε)

|xi|−ndxi =

∫ ε−1

ε

r−1dr

∫
Sn

dS = |Sn| ln
1

ε2
,

where|Sn| = 2π
n
2 Γ−1(n

2
) is the Lebesgue measure of the unit sphere inRn. So for the above

choice of functionsfi the right-hand side of the inequality (4.5) becomes

(4.14) K∗|Sn| ln
1

ε2
.

Now let J denote the left-hand side of the inequality (4.5). By using Fubini’s theorem, for the
above choice of functionsfi, we have

J =

∫
(Kn(ε−1)\Kn(ε))k

∏k
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk

=

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

·

∫
(Kn(ε−1)\Kn(ε))k−1

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1

 dxk.

Note that the integralJ can be transformed in the following way:J = J1 − J2 − J3, where

J1 =

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

∫
(Rn)k−1

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1

 dxk,

J2 =

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

k−1∑
j=1

Iε
j (xk)dxk,

J3 =

∫
Kn(ε−1)\Kn(ε)

|xk|Ãk

k−1∑
j=1

Iε−1

j (xk)dxk.

Here, forj = 1, 2, . . . , k − 1, the integralsIε
j (xk) andIε−1

j (xk) are defined by

Iε
j (xk) =

∫
Pj

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1,

satisfyingPj = {(U1, U2, . . . , Uk−1) ; Uj = Kn(ε), Ul = Rn, l 6= j}, and

Iε−1

j (xk) =

∫
Qj

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1,

satisfyingQj = {(U1, U2, . . . , Uk−1) ; Uj = Rn \Kn(ε−1), Ul = Rn, l 6= j}.
Now, the main idea is to find the lower bound forJ . The first partJ1 can easily be com-

puted. Namely by using Selberg’s integral formula (2.4) and since the relation (4.4) holds for
parameters̃Ai, it easily follows that∫

(Rn)k−1

∏k−1
i=1 |xi|Ãi∣∣∣∑k

i=1 xi

∣∣∣s dx1dx2 . . . dxk−1 = K∗|xk|−Ãk−n,
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and consequently, by usingn−dimensional spherical coordinates, as we did for computing the
right-hand side of the inequality (4.5), we obtain that

(4.15) J1 = K∗|Sn| ln
1

ε2
.

Now we shall show that the partsJ2 andJ3 converge whenε → 0. For that sake, without loss
of generality, it is enough to estimate the integrals∫

Kn(ε−1)\Kn(ε)

|xk|ÃkIε
1(xk)dxk and

∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε−1

1 (xk)dxk.

By using Lemma 4.1 andn−dimensional spherical coordinates we obtain∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε
1(xk)dxk ≤ Ckε

n+Ã1

∫
Kn(ε−1)\Kn(ε)

|xk|−2n−Ã1dxk

= Ck|Sn|εn+Ã1

∫ ε−1

ε

r−n−Ã1−1dr

=
Ck|Sn|
n + Ã1

(
1− ε2(n+Ã1)

)
.

Further, we use Lemma 4.2 to estimate the second integral∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε−1

1 (xk)dxk.

Similarly to before, by using spherical coordinates we obtain the inequality∫
Kn(ε−1)\Kn(ε)

|xk|ÃkIε−1

1 (xk)dxk ≤ Dkε
n+Ãk

∫
Kn(ε−1)\Kn(ε)

|xk|Ãkdxk

=
Dk|Sn|
n + Ãk

(
1− ε2(n+Ãk)

)
.

Now, sincen + Ãi > 0, i = 1, 2, . . . , k, the above computation shows thatJ2 + J3 ≤ O(1)
whenε → 0. Hence, for the right-hand side of the inequality (4.5), by using (4.15), we obtain

(4.16) J ≥ K∗|Sn| ln
1

ε2
−O(1), when ε → 0.

Now, let us suppose that the constantK∗ is not the best possible. That means that there exists
a smaller positive constantL∗, 0 < L∗ < K∗, such that the inequality (4.5) holds, if we
replaceK∗ with L∗. In that case, for the above choice of functionsf̃i, the right hand-side of the
inequality (4.5) becomesL∗|Sn| ln 1

ε2 . SinceL∗|Sn| ln 1
ε2 ≥ J , by using (4.16), we obtain the

inequality

(4.17) (K∗ − L∗) |Sn| ln
1

ε2
≤ O(1), when ε → 0.

Now, by lettingε → 0, we obtain from (4.17) a contradiction, since the left hand side of the
inequality goes to infinity. This contradiction shows that the constantK∗ is the best possible in
the inequality (4.5).

Finally, the equivalence of the inequalities (4.5) and (4.6) means that the constantK∗ is also
the best possible in the inequality (4.6). That completes the proof. �

Remark 3. In the papers [3] and [8] we have also obtained the best possible constants, but only
for n = 1 and for the inequalities which involve the integrals taken over the set of non-negative
real numbers.
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5. SOME APPLICATIONS

In this section we shall consider some special choices of real parametersAij, i, j = 1, 2, . . . , k,
in Theorem 3.1. In such a way, we shall obtain some extensions (on the set of real numbers) of
the numerous versions of multiple Hilbert’s and Hardy-Hilbert’s inequality, previously known
from the literature. Further, in the conjugate case we shall obtain the best possible constants in
some cases.

To begin with, let us define real parametersAij, i, j = 1, 2, . . . , k, by Aii = (nk − s)λqi−1
q2
i

andAij = (s− nk) 1
qiqj

, i 6= j, i, j = 1, 2, . . . , k. Then we have

k∑
i=1

Aij =
∑
i6=j

s− nk

qiqj

+ (nk − s)

(
λqj − 1

qj
2

)
=

s− nk

qj

(
k∑

i=1

1

qi

− λ

)
= 0,

for j = 1, 2, . . . , k. Clearly, the parametersAij are symmetric and it directly follows that
αi =

∑n
j=1 Aij = 0, for j = 1, 2, . . . , k. In such a way we obtain the following result:

Corollary 5.1. Letk ≥ 2 be an integer andpi, p
′
i, qi, i = 1, 2, . . . , k, be real numbers satisfying

(1.1) – (1.5). Then the following inequalities hold and are equivalent:

(5.1)
∫

(Rn)k

∏k
i=1 fi(xi)∣∣∣∑k
i=1 xi

∣∣∣λs
dx1dx2 . . . dxk ≤ L

k∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi fpi

i (xi)dxi

] 1
pi

and
∫

Rn

|xk|
− pk

′

qk
[(k−1)n−s]

∫
(Rn)k−1

∏k−1
i=1 fi(xi)∣∣∣∑k

i=1 xi

∣∣∣λs
dx1dx2 . . . dxk−1


pk

′

dxk


1

pk
′

≤ L
k−1∏
i=1

[∫
Rn

|xi|
pi(k−1)n−pis

qi fpi

i (xi)dxi

] 1
pi

,

where0 < nk − s < n min{pi, qj, i, j = 1, 2, . . . , k} and the constantL is defined by the
formula

L =
1

Γλ
n(s)

k∏
i=1

Γn

(
n− nk − s

qi

) 1
p′
i

k∏
i=1

Γn

(
n− nk − s

pi

) 1
qi

.

The equality in both inequalities holds if and only if at least one of the functionsfi, i =
1, 2, . . . , k, is equal to zero.

Remark 4. Straightforward computation shows that parametersAij from Corollary 5.1, in the
conjugate case, satisfy equation (4.1). Hence, the constantL from the previous corollary be-
comes

L =
1

Γn(s)

k∏
i=1

Γn

(
n− nk − s

pi

)
,

and that is the best possible constant in the conjugate case.
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Remark 5. Similar to the previous corollary, if we define the parametersAij by Aii = n(λqi−1)

λq2
i

andAij = − n
λqiqj

, i 6= j, i, j ∈ {1, 2, . . . , k}, then we have

k∑
i=1

Aij =
∑
i6=j

− n

λqiqj

+
n(λqj − 1)

λqj
2

= − n

λqj

(
k∑

i=1

1

qi

− λ

)
= 0,

for j = 1, 2, . . . , k. Since the parametersAij are symmetric one obtainsαi =
∑n

j=1 Aij = 0, for
j = 1, 2, . . . , k. So, by putting these parameters in Theorem 3.1 we obtain the same inequalities
as those in Corollary 5.1, with the constantL replaced by

L′ =
1

Γλ
n(s)

k∏
i=1

Γn

(
n

λp′i

)λ− 1
qi

k∏
i=1

Γn

(
s +

n

λp′i
− (k − 1)n

) 1
qi

,

where(k − 1)n− s < n
λp′i

< n, i = 1, 2, . . . , k.

It is important to mention that the results in this section, as well as Theorem 3.1, are exten-
sions of our papers [3] and [4], obtained by using Selberg’s integral formula.

6. TRILINEAR VERSION OF A STANDARD BETA I NTEGRAL

As we know, Selberg’s integral formula is thek−fold generalization of a standard beta in-
tegral onRn. A few years ago, by using a Fourier transform (see [6]), the following trilinear
version of a standard beta integral was obtained:

(6.1)
∫

Rn

|t|α+β−2n

|x− t|α|y − t|β
dt = B(α, β, n)

|x− y|n−α−β

|x|n−β|y|n−α
,

wherex,y ∈ Rn, x 6= y 6= 0, 0 < α, β < n, α + β > n and

B(α, β, n) = π
n
2
Γ
(

n−α
2

)
Γ
(

n−β
2

)
Γ
(

α+β−n
2

)
Γ
(

α
2

)
Γ
(

β
2

)
Γ
(
n− α+β

2

) .

By using the definition (2.2) of then−dimensional gamma function we easily obtain that

(6.2) B(α, β, n) =
Γn(n− α)Γn(n− β)

Γn(2n− α− β)
.

We also define

(6.3) B∗(α, β, n) =
Γn(α)Γn(β)

Γn(α + β)
.

It is still unclear whether or not there is a correspondingk−fold analogue of (6.1). In spite
of that, we shall use the trilinear formula (6.1) to obtain a2−fold inequality of Hilbert type for
the kernelK(x,y) = |x− y|α−n|x + y|β−n, where0 < α, β < n, α + β < n.

In the2−dimensional case we denote non-conjugate exponents in the following way:p1 = p,
p2 = q, p′1 = p′ andp′2 = q′. So, with the above notation, we have the following result:

Theorem 6.1. Let α andβ be real parameters satisfying0 < α, β < n andα + β < n. Then,
the following inequalities hold and are equivalent

(6.4)
∫

(Rn)2

f(x)g(y)

|x− y|λ(n−α)|x + y|λ(n−β)
dxdy

≤ N

[∫
Rn

|x|(p−1)(α+β+n)−pnλfp(x)dx

] 1
p
[∫

Rn

|y|(q−1)(α+β+n)−qnλgq(y)dy

] 1
q
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and

(6.5)

{∫
Rn

|y|n(λq′−1)−α−β

[∫
(Rn)

f(x)dx

|x− y|λ(n−α)|x + y|λ(n−β)

]q′

dy

} 1
q′

≤ N

[∫
Rn

|x|(p−1)(α+β+n)−pnλfp(x)dx

] 1
p

,

where the constantN is defined byN = 2λ(α+β−n)B∗(α, β, n)λ.

Proof. The main idea is the same as in Theorem 3.1, i.e. to reduce the case of non-conjugate
exponents to the case of conjugate exponents. Note that the right-hand side of the first inequality
(6.4) can be transformed in the following way:∫

(Rn)2

f(x)g(y)

|x− y|λ(n−α)|x + y|λ(n−β)
dxdy =

∫
(Rn)2

P1

1
q′ P2

1
p′ P3

1−λdxdy,

where

P1 =
|x|(p−1)(α+β)|y|−α−β

|x− y|n−α|x + y|n−β
fp(x),

P2 =
|y|(q−1)(α+β)|x|−α−β

|x− y|n−α|x + y|n−β
gq(y),

P3 = |x|(p−1)(α+β)|y|(q−1)(α+β)fp(x)gq(y).

Therefore, respectively, by applying Hölder’s inequality with conjugate exponentsq′, p′, 1
1−λ

and Fubini’s theorem, we obtain the inequality (6.4).
Let us show that the inequalities (6.4) and (6.5) are equivalent. To this aim, suppose that the

inequality (6.4) is valid. If we put the function

g(y) = |y|n(λq′−1)−α−β

[∫
Rn

f(x)

|x− y|λ(n−α)|x + y|λ(n−β)
dx

] q′
q

in the inequality (6.4), then the left-hand side of (6.4) becomesJ , whereJ is the left-hand side
of the inequality (6.5). Also, the second factor on the right-hand side inequality (6.4) becomes
J

1
q , so (6.5) follows easily.
It remains to prove that (6.4) is a consequence of (6.5). For this purpose, let’s suppose that

the inequality (6.5) is valid. Then the left-hand side of the inequality (6.4) can be transformed
in the following way:∫

(Rn)2

f(x)g(y)

|x− y|λ(n−α)|x + y|λ(n−β)
dxdy

=

∫
Rn

|y|
α+β+n

q′ −nλ
g(y)

[
|y|−

α+β+n
q′ +nλ

∫
Rn

f(x)

|x− y|λ(n−α)|x + y|λ(n−β)
dx

]
dy.

Finally, by applying Holder’s inequality with conjugate exponentsq andq′ on the previous trans-
formation, and by using the inequality (6.5) one easily obtains (6.4). Hence, the inequalities are
equivalent and the proof is completed. �

Real parametersα andβ in (6.4) and (6.5) satisfy the conditionα+β < n. In what follows we
shall obtain similar inequalities which are, in some way, complementary to the inequalities (6.4)
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and (6.5). The first step is to consider the case when the functiong ∈ Lq(Rn) is symmetric-
decreasing, that is,g(x) ≥ g(y) whenever|x| ≤ |y|. Sinceq > 1, for such a function and
y ∈ Rn, y 6= 0, we have

gq(y) ≤ 1

|B(|y|)|

∫
B(|y|)

gq(x) dx(6.6)

≤ 1

|B(|y|)|

∫
Rn

gq(x) dx =
n

|Sn|
|y|−n‖g‖q

q,

whereB(|y|) denotes the ball of radius|y| in Rn, centered at the origin, and|B(|y|)| = |y|n |Sn|
n

is its volume.

Theorem 6.2. Let α andβ be real parameters satisfying0 < α < n, 0 < β < n, α + β =

n
(

1
p

+ 1
q

)
> n. If f andg are nonnegative functions such thatf ∈ Lp(Rn), g ∈ Lq(Rn), then

the following inequalities hold and are equivalent

(6.7)
∫

(Rn)2

f(x)g(y)

|x− y|n−α|x + y|n−β
dxdy ≤

(
n

|Sn|

)1−λ

C(p, q; α, β; n)‖f‖p‖g‖q,

and

(6.8)

{∫
Rn

[∫
Rn

f(x)dx

|x− y|n−α|x + y|n−β

]q′

dy

} 1
q′

≤
(

n

|Sn|

)1−λ

C(p, q; α, β; n)‖f‖p,

with the constant

(6.9) C(p, q; α, β; n) =

∫
Rn

|x|−
n
q dx

|e1 − x|n−α|e1 + x|n−β
,

wheree1 = (1, 0, . . . , 0) ∈ Rn and|Sn| is the Lebesgue measure of the unit sphere inRn.

Proof. Since we shall use a general rearrangement inequality (see e.g. [10]) it is enough to prove
the inequality for symmetric-decreasing functionsf andg. First, using Hölder’s inequality with
parametersq′, p′ and 1

1−λ
, we have

(6.10)
∫

R2n

f(x)g(y)

|x− y|n−α|x + y|n−β
dxdy ≤ I

1
q′
1 I

1
p′
2 I1−λ

3 ,

where

I1 =

∫
R2n

|x|
n
p′ |y|−

n
q

|x− y|n−α|x + y|n−β
fp(x)dxdy,

I2 =

∫
R2n

|x|−
n
p |y|

n
q′

|x− y|n−α|x + y|n−β
gq(y)dxdy,

I3 =

∫
R2n

|x|
n
p′ |y|

n
q′

|x− y|n−α|x + y|n−β
fp(x)gq(y)dxdy.
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Further, using the substitutiony = |x|u (so dy = |x|ndu) and rotational invariance of the
Lebesgue integral inRn we easily get:

I1 =

∫
Rn

|x|
n
p′ fp(x)

∫
Rn

|y|−
n
q

|x− y|n−α|x + y|n−β
dydx

=

∫
Rn

|x|
n
p′−

n
q
+α+β−n

fp(x)

∫
Rn

|u|−
n
q∣∣∣ x

|x| − u
∣∣∣n−α ∣∣∣ x

|x| + u
∣∣∣n−β

dudx

=

∫
Rn

|u|−
n
q du

|e1 − u|n−α |e1 + u|n−β
‖f‖p

p.

Analogously,

I2 =

∫
Rn

|u|−
n
p du

|e1 − u|n−α |e1 + u|n−β
‖g‖q

q,

and, by (6.6),

I3 ≤
n

|Sn|

∫
Rn

|u|−
n
q du

|e1 − u|n−α |e1 + u|n−β
‖f‖p

p ‖g‖q
q.

It remains to prove that∫
Rn

|x|−
n
p dx

|e1 − x|n−α|e1 + x|n−β
=

∫
Rn

|x|−
n
q dx

|e1 − x|n−α|e1 + x|n−β
.

We transform the left integral in polar coordinates usingx = tθ, t ≥ 0, θ ∈ Sn and the
substitutiont = 1

u
to obtain:∫

Rn

|x|−
n
pdx

|e1 − x|n−α|e1 + x|n−β

=

∫
Sn

dθ

∫ ∞

0

t−
n
p tn−1dt

|e1 − tθ|n−α|e1 + tθ|n−β

=

∫
Sn

dθ

∫ ∞

0

t−
n
p tn−1dt

(1 + t2 − 2t〈e1, θ〉)
n−α

2 (1 + t2 + 2t〈e1, θ〉)
n−β

2

=

∫
Sn

dθ

∫ ∞

0

u
n
p
−α−βun−1du

(1 + u2 − 2u〈e1, θ〉)
n−α

2 (1 + u2 + 2u〈e1, θ〉)
n−β

2

=

∫
Rn

|x|−
n
q dx

|e1 − x|n−α|e1 + x|n−β
.

To complete the proof, we need to consider the general case, that is, for arbitrary nonneg-
ative functionsf andg. Sincex 7→ |x|n−α, x 7→ |x|n−β are symmetric-decreasing functions
vanishing at infinity, the general rearrangement inequality implies that

(6.11)
∫

R2n

f(x)g(y)

|x− y|n−α|x + y|n−β
dxdy ≤

∫
R2n

f ∗(x)g∗(y)

|x− y|n−α|x + y|n−β
dxdy.

Clearly, by (6.10), the right-hand side of (6.11) is not greater than

(6.12)

(
n

|Sn|

)1−λ

C(p, q; α, β; n)‖f ∗‖p‖g∗‖q =

(
n

|Sn|

)1−λ

C(p, q; α, β; n)‖f‖p‖g‖q,

whereC(p, q; α, β; n) is the constant from the right-hand side of (6.7). To achieve equality in
(6.12), we used the fact that the symmetric-decreasing rearrangement is norm preserving.
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On the other hand, by putting the function

g(y) =

[∫
Rn

f(x)

|x− y|n−α|x + y|n−β
dx

] q′
q

in the inequality (6.7) we obtain (6.8). The equivalence of the inequalities (6.7) and (6.8) can
be shown in the same way as in Theorem 6.1. �

The casen = 1 of the previous theorem is interesting as for that case the constantC(p, q; α, β; n)
can be expressed in terms of the hypergeometric function. More precisely, using the definition
of hypergeometric functions (for more details see [1]) it is easy to see that the following identity
holds for0 < d1, d2, d3 < 1, d1 + d2 + d3 > 1:∫

R

|t|−d2|1− t|−d3|1 + t|−d1dt

= B(1− d2, 1− d3)F (d1, 1− d2; 2− d2 − d3;−1)

+ B(1− d2, 1− d1)F (d3, 1− d2; 2− d2 − d1;−1)

+ B(d1 + d2 + d3 − 1, 1− d3)F (d1, d1 + d2 + d3 − 1; d1 + d2;−1)

+ B(d1 + d2 + d3 − 1, 1− d1)F (d3, d1 + d2 + d3 − 1; d3 + d2;−1).

Hence, forn = 1 we have

Corollary 6.3. Let α andβ be real parameters satisfying0 < α < 1, 0 < β < 1, α + β =
1
p

+ 1
q

> 1. If f andg are nonnegative functions such thatf ∈ Lp(R), g ∈ Lq(R), then the
following inequalities hold and are equivalent

(6.13)
∫

R2

f(x)g(y)

|x− y|1−α|x + y|1−β
dxdy ≤ 2λ−1C(p, q; α, β)‖f‖p‖g‖q,

and

(6.14)

{∫
R

[∫
R

f(x)dx

|x− y|1−α|x + y|1−β

]q′

dy

} 1
q′

≤ 2λ−1C(p, q; α, β)‖f‖p,

where

(6.15) C(p, q; α, β) = B

(
1

q′
, α

)
F

(
1− β,

1

q′
;
1

q′
+ α;−1

)
+ B

(
1

q′
, β

)
F

(
1− α,

1

q′
;
1

q′
+ β;−1

)
+ B

(
1

p′
, α

)
F

(
1− β,

1

p′
;

1

p′
+ α;−1

)
+ B

(
1

p′
, β

)
F

(
1− α,

1

p′
;

1

p′
+ β;−1

)
,

B(·, ·) is the usual (one-dimensional) beta function andF (d1, d2; d3; z) is the hypergeometric
function.

The following corollary should be compared with Theorem 6.1.

Corollary 6.4. If f andg are nonnegative functions such thatf ∈ Lp(R) andg ∈ Lq(R), then
the following inequalities hold and are equivalent

(6.16)
∫

R2

f(x)g(y)dxdy

|x2 − y2|
λ
2

≤ 2λ−1

[
B

(
1− λ

2
,

1

2p′

)
+ B

(
1− λ

2
,

1

2q′

)]
‖f‖p‖g‖q.
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and

(6.17)


∫

R

[∫
R

f(x)dx

|x2 − y2|
λ
2

]q′

dy


1
q′

≤ 2λ−1

[
B

(
1− λ

2
,

1

2p′

)
+ B

(
1− λ

2
,

1

2q′

)]
‖f‖p,

Proof. Setα = β = 1− λ
2

in the previous corollary. �

Note that inequalities (6.16) and (6.17) could not be obtained from Theorem 6.1. In other
words there are no suchα andβ for which the kernel in inequalities (6.4) and (6.5) reduces to
|x2 − y2|−λ

2 .
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