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We define new classes of the fami(®, ¥), in a unit diskU := {z €

C, |z| < 1}, as follows: for analytic functiond”(z), ®(z) and ¥(z) so that

R{ igz;fﬁ(z)} >0, z €U, F(z)*¥(z) # 0where the operator denotes the
convolutlon or Hadamard product. Moreover, we establish some subordination
results for these new classes.

The work presented here was supported by SAGA: STGL-012-2006, Academy
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1. Introduction and preliminaries.

Let B} be the class of all analytic functions(z) in the open diskV := {z €
C, |z|] < 1}, of the form

Fz)=1+ Zanz"+a_1, 0<a<l,
n=1

satisfying /'(0) = 1. And let B, be the class of all analytic functioris(z) in the
open diskl/ of the form

F(z)zl—Zanz"+°‘_1, 0<a<l a,>20; n=123,...,
n=1

satisfyingF'(0) = 1. With a view to recalling the principle of subordination between
analytic functions, let the functiong and g be analytic inU. Then we say that the
function f is subordinateto ¢ if there exists a Schwarz functian(z), analytic inU
such that

f(z) = g(w(2)),

We denote this subordination lfy< ¢ or f(2) < g(z), z € U. If the functiong is
univalent inU the above subordination is equivalent to

f(0) =¢(0) and f(U) C g(U).

Let¢ : C* x U — C and leth be univalent inl/. Assume thap, ¢ are analytic
and univalent iV andp satisfies the differential superordination

(1.1) h(z) < o(p(2)), 20 (2), 2°p" (2); 2),
thenp is called a solution of the differential superordination.

z eU.
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An analytic functiong is called asubordinantf ¢ < p for all p satisfying (..1).
A univalent functiong such thap < ¢ for all subordinantg of (1.1) is said to be the
best subordinant.

Let B be the class of analytic functions of the form

(0.0
flz) =1+ Zanz", a, > 0.
n=1 Differential Subordination Results
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Definition 1.1. Let F'(z) € B, we define the familg (®, V) so that
F(z) % ®(2)

1.2 —_—

(1.2) %{F@)*\D(z) >0, zel,

where

@(—Hiyﬂﬂlmdw-ﬂ+2%ww

n=1

are analytic inU under the conditions,, > 0, ¥, > 0,¢, > v, forn > 1 and

Definition 1.2. Letting F'(z) € B, we define the familg_ (®
(1.2) where

U) which satisfies

@(sz%wmamw 4—2%%M

n=1

are analytic inU under the conditions,, > 0, ¢,, > 0,¢,, > v, forn > 1 and

In the present paper, we establish some sufficient conditions for fundtioas
B} andF € B, to satisfy

F(z) % ®(2)

(1.3) F(2)*¥(z)

whereq(z) is a given univalent function iV such thatg(0) = 1. Moreover, we

give applications for these results in fractional calculus. We shall need the following

known results.
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Lemma 1.3 (R]). Letq(z) be convex in the unit disk with ¢(0) = 1 and®{q} >

%, z € U.If0 < u <1, pisan analytic function irV with p(0) = 1 and if

(1= wp?(2) + 2u = Dp(2) — p+ (1 = p)zp/(2)
< (1= p)a(2) + 2u = Dg(z) = p+ (1 = p)zq'(2),
thenp(z) < ¢(z) andq(z) is the best dominant.

Lemma 1.4 (B]). Letq(z) be univalentin the unit diskk and letd(z) be analytic in
a domainD containingq(U). If z¢'(2)0(q) is starlike inU, and

2p'(2)0(p(2)) < 2¢'(2)0(q(2))

thenp(z) < ¢(z) andq(z) is the best dominant.
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2. Main Results

In this section, we verify some sufficient conditions of subordination for analytic
functions in the classds! andB; .

Theorem 2.1. Let the functiony(z) be convex in the unit disk such thatg(0) = 1
and R{q} > 3. If F € Bf and {555 an analytic function inl/ satisfies the
subordination

)
B F(2)x@(2) | [2(F(2) * @(2))  2(F(2)*¥(2))
+(1=p) [F(z) " \IJ(Z)} { F(2) = 0(2) F(2) = U(2)
< (1= m)g*(2) + 2u—1)q(2) — p+ (1 — p)zq'(2),
then F(2) % ®(2)
F(z) % ¥(z <az)

andq(z) is the best dominant.
Proof. Let the functiorp(z) be defined by

B F(z) % ®(z2)

p(z) == Fo) = 0(2)’ z eU.

It is clear thatp(0) = 1. Then straightforward computation gives us

(1= w)p*(2) + 2u— )p(2) — p+ (1 — p)zp/(2)
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then

F(z) * ®(2) 1+ Az
<
F()«W(z) \1+ B-
and (142) is the best dominant.

Proof. Let the functiony(z) be defined by

1+ Az
q(z) == (I—I—Bz)’ z eU.

It is clear thaty(0) = 1 andR{q} > %for arbitrary A, B, z € U, then in view of

), —-1<B<A<I1

Theorem2.1we obtain the result. [
Corollary 2.3. If F' € B and £20 is an analytic function irl/ satisfying the
subordination
F(z)®(2)]° F(z) * 2(z)
(1=p) {F(z) * W (2) =1 F(2)* ¥(z) —H
- ) F(z) % ®(2) | [2(F(z) * ‘P(Z)) _2(F(z) x¥(2))
PIFG e | FE)=0k)  F()U()
1+2)\° 142
<= (52) wew-n(352) -
1+2 2z
+(1_:u) (1_2) <1_22)7
then
F(z) x ®(z) - 1+=2
F(2) % ¥(z2) 1—2)°
and (1£) is the best dominant.
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Define the functionp, (a, ¢; z) by
vala,cz) =1+ Z %z"m_l, (z €U;a eR, ¢c e R\{0,—-1,-2,...}),
n=1 n

where(a),, is the Pochhammer symbol defined by

I'(a+n) 1, (n=0);

(@) = —~— =
I'(a) a(a+1)(a+2)---(a+n—1), (neN).

Corresponding to the functiop, (a, ¢; z), define a linear operatdy, (a, c) by
Lo(a,0)F(2) := pqla,c;2) x F(z), F(z) € BY
or equivalently by

Lo(a,c)F(z) =1+ Z ((Z;: a, 2" et

For details seed]. Hence we have the following result:

Corollary 2.4. Let the functiony(z) be convex in the unit disk such thaty(0) = 1

and®{q} > % If % is an analytic function iV satisfying the subordination

(1- ) {éa(a, C)CID((Z;

oz(afy C)\Ij z a,cC \I’(Z)
B Lo(a,0)®(2) ] [2(La(a,c)®(2))  z(La(a,c)¥(2))
+{d=) {Law,c)\lf(z)} { L(@)®(s)  La(@0)¥(2)
< (L=p)¢*(2) + 2 —1)q(2) — p+ (1 — p)zq'(2),
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then
Lo(a,c)®(z)

La(a,c)¥(2)
andq(z) is the best dominant.

< q(2)

Theorem 2.5. Let the functiony(z) be univalent in the unit disk such thaty/(z) #

0 and% is starlike inU. If I € B, satisfies the subordination

o, |ZEE) * 2(2))"  2(F(2) * U(2))" - L21(3)

then
F(z) % ®(2)

andq(z) is the best dominant.

<q(z), ze€U,

Proof. Let the functiorp(z) be defined by

p(2) im {F(z) ¥ (ID(Z)] |

F2) () zel

By setting
a
O(w) == — @ # 0,
it can easily observed thé{w) is analytic inC — {0}. Then we obtain
ACN [Z(F(Z) ¥ 0(2))  2(F(2) + ¥(2))
p(z)
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By the assumption of the theorem we have that the assertion of the theorem follows

by an application of Lemma.4. ]
Corollary 2.6. If I € B, satisfies the subordination
2(F(z) * ©(2)  2(F(2) *\I/(z))'} (A— B)z

(

“NWTFR *0(2) F(2) * 9(2) 1+ A2)(1 + B2)
then F(2) % 0(2) _
z)* Oz + Az
—1< <
F(z)«¥(z) (1+Bz)’ lsB<Ast
and (142) is the best dominant.

Corollary 2.7. If I € B, satisfies the subordination

Ve s < (s),

then

rorae < (17):

and(12) is the best dominant.
Define the function, (a, c; z) by

[e.e]

bola,c;z) =1— Z%an—l? (2 €U;a €R, c e R\{0,-1,-2,...}),

where(a),, is the Pochhammer symbol. Corresponding to the functigia, c; z),
define a linear operatdt,(a, c) by

Lo(a,c)F(z) = ¢ala,cz)x F(2), F(z2) € B,

n=1
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or equivalently by

Lo(a,0)F(z):=1— Z ((gzanzmra—l.

n=1
Hence we obtain the next result.

Corollary 2.8. Let the functiory(z) be univalent in the unit disk such thay/(z) #

0 and Zg(g) is starlike inU. If F' € B, satisfies the subordination

then
Lo(a,c)®(z)

La(a,c)¥(z)
andq(z) is the best dominant.
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3. Applications

In this section, we introduce some applications of Sectioantaining fractional in-
tegral operators. Assume théltz) = > 7 | ¢, 2" and let us begin with the following
definitions

Definition 3.1 ([5]). The fractional integral of order for the functionf(z) is de-

fined by
1°f (2 / £(¢

where the functionf(z) is analytlc in a simply-connected region of the complex
z—plane (C) containing the origin. The multiplicity ofz — ¢)*~! is removed by
requiring log(= — ¢) to be real whef: — ¢) > 0. Note that,[ f(z) = [m] (2),

for z > 0 and0 for z < 0 (see p]).

7l 0<a<l,

From Definition3.1, we have
Iaf(Z) _ |iza_1:| f( ) o Zn _ ia/ Zn+a71
’ F(Oé) n=1

wherea, := £ foralln = 1,2,3,... thusl + I2f(z) € B andl — I2f(z) €
B, (¢, > 0). Then we have the following results.

Theorem 3.2. Let the assumptions of Theoremi hold. Then

V1+§7@D*¢@)
(1+I2f(2)) * ¥(z)

andq(z) is the best dominant.

}<q(z), 2 #0, ze€U
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Proof. Let the functionF'(z) be defined by
F(z) =1+1f(2), zeU.

0
Theorem 3.3. Let the assumptions of Theoren® hold. Then
—I° *
RS R
andq(z) is the best dominant.
Proof. Let the functionF'(z) be defined by
F(z):=1-1If(2), =z e€U.
[

Let F'(a, b; c; z) be the Gauss hypergeometric function (s8¢ defined, forz €

U, by
 (@)a(b)n
F(a,b;c;z) = 2",
)= 2 0
We need the following definitions of fractional operators in Saigo type fractional
calculus (seeq, 9)).

Definition 3.4. For « > 0 and3,n € R, the fractional integral operator[{ijf”7 is
defined by

2o p

I(a)

/O (z=Q)'F (a + 6, =1 — g) f(Q)dc,

I f(2) =
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where the functiory(z) is analytic in a simply-connected region of the plane
containing the origin, with order

f(2) = O(|z[)(z = 0),  €>max{0,5 —n} -1

and the multiplicity of = — ¢)*~! is removed by requirintpg(z — ¢) to be real when
z—C¢>0.

From Definition3.4, with 3 < 0, we have

) =y [ = 0r Pl B —mast = (e

@ Dalmn 7 ()
2 (@)n(D)n  T(a) /0< < (1 Z) QLS

n=0
) Zﬁﬁil
n=0
E (0.)
_ n—pFG—1
=N Pn )
INEY! ;
where
(a + ﬁ)n(_mn o =
B, = and B := B,.
(@)n(L)n ;
Denotea,, B‘P“ forall n=1,2,3,...,and leta = —(3. Thus,

[aﬁnf( ) € B and 1—L§f’f’"f(z) € B, (¢n > 0),
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andn we have the following results
Theorem 3.5. Let the assumptions of Theoreii hold. Then
(14 1507 (2))  D(2)
(14 1577 f(2)) * W (2)

andq(z) is the best dominant.

<q(z), =ze€eU

Proof. Let the functionF'(z) be defined by

F(z)=1+130"f(2), =z €U.

Theorem 3.6. Let the assumptions of Theoren® hold. Then
(1= 577 f(2)) % D(2)
(1= 57 f(2)) % W(2)
andq(z) is the best dominant.

Proof. Let the functionF'(z) be defined by

<q(z), ze€U

F(z):=1 —Igf’f’"f(z), z eU.
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