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1. Introduction

In [4], some integral inequalities were obtained and the following open problem was
posed.

Open Problem 1. Let f be a continuous function on[0, 1] satisfying the following
condition

(1.1)
∫ 1

x

f(t) dt ≥
∫ 1

x

t dt

for x ∈ [0, 1]. Under what conditions does the inequality

(1.2)
∫ 1

0

fα+β(t) dt ≥
∫ 1

0

tβfα(t) dt

hold forα andβ?

In [1], some affirmative answers to Open Problem1 and the reversed inequality
of (1.2) were given.

In [3], an abstract version of Open Problem1 was posed, respective answers to
these two open problems were presented, and the results in [1] were extended.

Now we would like to further pose the following discrete version of the open
problems in [1, 3] as follows.

Open Problem 2. For n ∈ N, let {x1, x2, . . . , xn} and{y1, y2, . . . , yn} be two posi-
tive sequences satisfyingx1 ≥ x2 ≥ · · · ≥ xn, y1 ≥ y2 ≥ · · · ≥ yn and

(1.3)
m∑

i=1

xi ≤
m∑

i=1

yi

http://jipam.vu.edu.au
mailto:
http://jipam.vu.edu.au


Open Problem

Yu Miao and Feng Qi

vol. 10, iss. 2, art. 49, 2009

Title Page

Contents

JJ II

J I

Page 4 of 11

Go Back

Full Screen

Close

for 1 ≤ m ≤ n. Under what conditions does the inequality

(1.4)
n∑

i=1

xα
i yβ

i ≤
n∑

i=1

yα+β
i

hold forα andβ?

In the next sections, we shall establish several answers to Open Problem2.
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2. Lemmas

In order to establish several answers to Open Problem2, the following lemmas are
necessary.

Lemma 2.1. For n ∈ N, let {x1, x2, . . . , xn, xn+1} and{y1, y2, . . . , yn} be two real
sequences. Then

(2.1)
n∑

i=1

xiyi = xn+1

n∑
i=1

yi +
n∑

i=1

i∑
j=1

yj(xi − xi+1).

Proof. Identity (2.1) follows from standard straightforward arguments.

Lemma 2.2 ([2, p. 17]). Leta andb be positive numbers witha + b = 1. Then

(2.2) ax + by ≥ xayb

is valid for positive numbersx andy.

Lemma 2.3. For n ∈ N, let {x1, x2, . . . , xn} and {y1, y2, . . . , yn} be two positive
sequences satisfyingx1 ≥ x2 ≥ · · · ≥ xn, y1 ≥ y2 ≥ · · · ≥ yn and inequality(1.3).
Then

(2.3)
m∑

i=1

xα
i ≤

m∑
i=1

yα
i

holds forα ≥ 1 and1 ≤ m ≤ n.

Proof. Let xn+1 be a positive number such thatxn+1 ≤ xn. From Lemma2.1 and
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using inequality (1.3), it is easy to see that, forα = 2 and1 ≤ m ≤ n,

m∑
i=1

xiyi = xm+1

m∑
i=1

yi +
m∑

i=1

i∑
j=1

yj(xi − xi+1)

≥ xm+1

m∑
i=1

xi +
m∑

i=1

i∑
j=1

xj(xi − xi+1)

=
m∑

i=1

x2
i

which implies that

(2.4)
m∑

i=1

y2
i ≥ 2

m∑
i=1

xiyi −
m∑

i=1

x2
i ≥

m∑
i=1

x2
i .

Suppose that inequality (2.3) holds for some integerα > 2. Since{x1, x2, . . . , xn}
and{y1, y2, . . . , yn} are two positive sequences, then

(yα
i − xα

i )(yi − xi) ≥ 0

which leads to

(2.5)
m∑

i=1

yα+1
i ≥

m∑
i=1

yα
i xi +

m∑
i=1

yix
α
i −

m∑
i=1

xα+1
i

for 1 ≤ m ≤ n. Further, by virtue of Lemma2.1, it follows that

m∑
i=1

yα
i xi = xm+1

m∑
i=1

yα
i +

m∑
i=1

i∑
j=1

yα
j (xi − xi+1)(2.6)
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≥ xm+1

m∑
i=1

xα
i +

m∑
i=1

i∑
j=1

xα
j (xi − xi+1) =

m∑
i=1

xα+1
i .

A similar argument also yields

(2.7)
m∑

i=1

yix
α
i ≥

m∑
i=1

xα+1
i .

Substituting (2.6) and (2.7) into (2.5) gives inequality (2.3) for α + 1.
By induction, this means that inequality (2.3) holds for allα ∈ N.
Let [α] denote the integral part of a real numberα ≥ 1. By inequality (2.2) in

Lemma2.2, we have

(2.8)
[α]

α
yα

i +
α− [α]

α
xα

i ≥ y
[α]
i x

α−[α]
i .

Summing on both sides of (2.8) and utilizing Lemma2.1, the conclusion obtained
above forα ∈ N yields

[α]

α

m∑
i=1

yα
i ≥

m∑
i=1

y
[α]
i x

α−[α]
i − α− [α]

α

m∑
i=1

xα
i

= x
α−[α]
m+1

m∑
i=1

y
[α]
i +

m∑
i=1

i∑
j=1

y
[α]
j

(
x

α−[α]
i − x

α−[α]
i+1

)
− α− [α]

α

m∑
i=1

xα
i

≥
m∑

i=1

xα
i −

α− [α]

α

m∑
i=1

xα
i =

[α]

α

m∑
i=1

xα
i .

Since [α]
α
6= 0, the required result is proved.
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3. Several Answers to Open Problem2

Now we establish several answers to Open Problem2.

Theorem 3.1. For n ∈ N, let {x1, x2, . . . , xn} and{y1, y2, . . . , yn} be two positive
sequences such thatx1 ≥ x2 ≥ · · · ≥ xn, y1 ≥ y2 ≥ · · · ≥ yn and inequality(1.3)
is satisfied. Then

(3.1)
n∑

i=1

xα
i yβ

i ≤
n∑

i=1

yα+β
i

holds forα ≥ 1 andβ > 0.

Proof. By Hölder’s inequality and Lemma2.3,

n∑
i=1

xα
i yβ

i ≤

[
n∑

i=1

(xα
i )

α+β
α

] α
α+β
[

n∑
i=1

(
yβ

i

)α+β
β

] β
α+β

≤

(∑n
i=1 xα+β

i∑n
i=1 yα+β

i

) α
α+β n∑

i=1

yα+β
i ≤

n∑
i=1

yα+β
i .

This completes the proof of Theorem3.1.

Theorem 3.2.Let{x1,l, x2,l, . . . , xn,l} and{y1,l, y2,l, . . . , yn,l} for n ∈ N, k > 0 and
1 ≤ l ≤ k be positive sequences such thatx1,l ≥ x2,l ≥ · · · ≥ xn,l, y1,l ≥ y2,l ≥
· · · ≥ yn,l and

(3.2)
m∑

i=1

xi,l ≤
m∑

i=1

yi,l, 1 ≤ m ≤ n, 1 ≤ l ≤ k.
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Then

(3.3)
n∑

i=1

k∏
l=1

xαl
i,ly

βl

i,l ≤
n∑

i=1

k∏
l=1

yαl+βl

i,l

for αl ≥ 1 andβl > 0, 1 ≤ l ≤ k.

Proof. As in the proof of Lemma2.3, letxn+1,l be positive numbers such thatxn+1,l ≤
xn,l for 1 ≤ l ≤ k. By Lemma2.1and Theorem3.1, it is shown that

n∑
i=1

k∏
l=1

xαl
i,ly

βl

i,l =
k−1∏
l=1

xαl
n+1,ly

βl

n+1,l

n∑
i=1

xαk
i,ky

βk

i,k

+
n∑

i=1

i∑
j=1

xαk
j,ky

βk

j,k

(
k−1∏
l=1

xαl
i,ly

βl

i,l −
k−1∏
l=1

xαl
i+1,ly

βl

i+1,l

)

≤
k−1∏
l=1

xαl
n+1,ly

βl

n+1,l

n∑
i=1

yαk+βk

i,k

+
n∑

i=1

i∑
j=1

yαk+βk

j,k

(
k−1∏
l=1

xαl
i,ly

βl

i,l −
k−1∏
l=1

xαl
i+1,ly

βl

i+1,l

)

=
n∑

i=1

yαk+βk

j,k

k−1∏
l=1

xαl
i,ly

βl

i,l ≤ · · · ≤
n∑

i=1

k∏
l=1

yαl+βl

i,l .

The proof of Theorem3.2 is completed.

Theorem 3.3. For n ∈ N, let {x1, x2, . . . , xn} and{y1, y2, . . . , yn} be two positive
sequences with the properties thatx1 ≥ x2 ≥ · · · ≥ xn, y1 ≥ y2 ≥ · · · ≥ yn and
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inequality(1.3) is satisfied. Then

(3.4)
n∑

i=1

yα1
i xβ1

i ≤
n∑

i=1

yα
i xβ

i

if α ≥ α1 ≥ 1, β > 0 andβ + α = β1 + α1.

Proof. Let xn+1 be a positive number such thatxn+1 ≤ xn. By Lemma2.1 and
Theorem3.1, we have

n∑
i=1

yα
i xβ

i = xβ
n+1

n∑
i=1

yα
i +

n∑
i=1

i∑
j=1

yα
j

(
xβ

i − xβ
i+1

)
≥ xβ

n+1

n∑
i=1

yα1
i xα−α1

i +
n∑

i=1

i∑
j=1

yα1
j xα−α1

j

(
xβ

i − xβ
i+1

)
=

n∑
i=1

yα1
i xα−α1+β

i =
n∑

i=1

yα1
i xβ1

i

which completes the proof of Theorem3.3.
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