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1. Introduction

The following inequality was proved by A. Chuprunov and I. Fazekas [3].
Consider the probability measureP and the conditional probability measurePA

with respect to the fixed eventA. LetEA denote the expectation with respect toPA.
Then

(1.1) EA|S − EAS|p ≤ 22p−1 E|S − ES|p

P(A)
.

There are several inequalities involving centered moments known in the litera-
ture. Most of them are between different moments of the same random variable, like
Lyapunov’s classical result(

E|S|q
)r−p ≤

(
E|S|p

)r−q(E|S|r
)q−p

for 0 < p < q < r. A new inequality of the same taste for centered-like moments
is presented in [6], and generalized in [1]. There exist moment inequalities in par-
ticular cases, where additional conditions, such as unimodality or boundedness, are
imposed on the distributions, see e.g. [2] and [4], also the monograph [5].

In the Chuprunov–Fazekas inequality the order of the moment is the same on
both sides. What differs is the underlying probability measure. In that case centering
cannot be considered as a special case of the general (uncentered) problem; it needs
further attention.

In this note we extend, generalize and sharpen inequality (1.1). We start from the
observation thatPA � P, andd PA

d P = IA

P(A)
, whereIA stands for the indicator of event

A. First we extend inequality (1.1), with a rather simple proof.

Theorem 1.1. Let P1 andP2 be probability measures defined on the same measur-
able space. LetE1 and E2, resp., denote the corresponding expectations. Assume
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P1 � P2, andsup dP1

dP2
= C < ∞. Letp ≥ 1 and suppose thatE1|S|p < ∞, then

(1.2) E1|S − E1S|p ≤ C 2p E2|S − E2S|p.

Proof. Let S ′ = S − E2S, then

E1|S − E1S|p = E1|S ′ − E1S
′|p

≤ 2p−1 (E1|S ′|p + |E1S
′|p)

≤ 2p E1|S ′|p ≤ C 2p E2|S ′|p = C 2p E2|S − E2S|p.

In particular, whenP2 = P andP1 = PA, we obtain the Chuprunov–Fazekas
inequality with2p in place of22p−1 on the right-hand side.

In Section2 we derive sharp inequalities between centeredp th moments of the
same random variable with respect to different probability measures. In Section3
we return to the original problem of Chuprunov and Fazekas, comparing conditional
and unconditional moments.
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2. Comparison of Centered Moments with Respect to Different
Probability Measures

In this section we investigate to what extent the constant2p can be decreased in
inequality (1.2). From the proof of Theorem1.1 it is clear that we are looking for
the minimal positive numberCp with which the inequalityE|S − ES|p ≤ Cp E|S|p
holds for every random variableS having finitep th moment. That is,

(2.1) Cp = max
S

E|S − ES|p

E|S|p
.

First we determineCp, then we set bounds for it, and analyze its asymptotic
behaviour asp →∞.

Theorem 2.1.C1 = 2, and forp > 1

(2.2) Cp = max
0<α<1

(
αp−1 + (1− α)p−1

)(
α

1
p−1 + (1− α)

1
p−1

)p−1

.

Proof. For the sake of convenience introduceq = p− 1.
Suppose first thatp > 1, that is,q > 0.
Let the distribution ofS be the following:P(S = −x) = 1−α, P(S = 1− x) =

α, where

(2.3) x =
α1/q

α1/q + (1− α)1/q
.

It follows that

(2.4) ES =
α(1− α)1/q − (1− α)α1/q

α1/q + (1− α)1/q
, E|S|p =

α(1− α)(
α1/q + (1− α)1/q

)q .

http://jipam.vu.edu.au
mailto:moritamas@ludens.elte.hu
http://jipam.vu.edu.au


Inequalities Between Centered
Moments

Tamás F. Móri

vol. 10, iss. 4, art. 99, 2009

Title Page

Contents

JJ II

J I

Page 6 of 19

Go Back

Full Screen

Close

In addition,P(S − ES = −α) = 1− α andP(S − ES = 1− α) = α, hence

(2.5) E|S − ES|p = α(1− α)
(
αq + (1− α)q

)
.

By (2.4) and (2.5) it follows thatCp is not less than the maximum on the right-hand
side of (2.2).

On the other hand, ifES = c andY = S − c, then

(2.6) Cp = max

{
E|Y |p

E|Y + c|p
: c ∈ R, EY = 0, P(Y + c = 0) < 1

}
.

Every zero mean probability distribution is a mixture of distributions concen-
trated on two points and having zero mean. Thus the maximum does not change if
we only consider random variables with not more than two possible values. We can
also assume that these two values are−α and1− α, where0 < α < 1; in that case
P(Y = −α) = 1− α andP(Y = 1− α) = α.

We now fixα and find ac that maximizes the fraction in (2.6). To do this one has
to minimize the expression

E|Y + c|p = (1− α) | − α + c|p + α |1− α + c|p

in c. This is increasing forc ≥ α, and decreasing forc ≤ α − 1. We can, therefore,
suppose thatα− 1 ≤ c ≤ α, so

(2.7) E|Y + c|p = (1− α) (α− c)p + α (c + 1− α)p.

Differentiating this with respect toc we getp
(
−(1−α) (α− c)q+α (c + 1− α)q),

from which

c = α− α1/q

α1/q + (1− α)1/q
= α− x,
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with x defined in (2.3). ThusP(Y + c = −x) = 1−α, P(Y + c = 1−x) = α, and,
following the calculations that led to (2.4), we arrive at

E|Y |p

E|Y + c|p
=

(
αq + (1− α)q

)(
α1/q + (1− α)1/q

)q

.

This proves (2.2).
If we next letp = 1 then, on the one hand,E|S − ES| ≤ E|S| + |ES| ≤ 2E|S|,

thusC1 ≤ 2. On the other hand, ifP(S = 1) = α, P(S = 0) = 1 − α, then
E|S| = α, E|S − ES| = 2α(1 − α), implying thatC1 ≥ 2(1 − α) for arbitrary
0 < α < 1.

Theorem 2.2.

C3/2 =

√
17 + 7

√
7

27
=1,1469 . . . , C2 =1, C3 =

17 + 7
√

7

27
= 1,3155 . . . ,(2.8)

1 ≤ Cp ≤ 2|p−2|,(2.9)

and if 1
p

+ 1
r

= 1, then

(2.10) Cr = C r−1
p .

Proof. The value ofC2 follows obviously from Theorem2.1, while gettingC3 re-
quires more extensive but straightforward calculations. From this the value ofC3/2

follows by (2.10), since3 and3/2 are conjugate numbers. Equation (2.10) itself is
an obvious corollary to (2.2), because(p− 1)(r − 1) = 1.

For an arbitrary positive exponents one can writeαs + (1 − α)s ≤ 2(1−s)+ ,
therefore we have

Cp ≤ 2(2−p)+ 2(p−2)+ = 2|p−2|.

The lower bound in (2.9) is obvious.
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Since2 ≤ p < ∞⇔ 1 < r ≤ 2, by (2.10) it suffices to focus on the casep ≥ 2.

Theorem 2.3. If p ≥ 2 thenCp ≥ 2p−1
√

2ep
, andCp ∼ 2p−1

√
2ep

, asp →∞.

Proof. Introduce the notationf(α) =
(
αq +(1−α)q

)(
α1/q +(1−α)1/q

)q
. First we

show that

(2.11) Cp ≥ f

(
1

2p

)
≥ 2p−1

√
2ep

.

Indeed, since (
α

1− α

) 1
2q

+

(
1− α

α

) 1
2q

≥ 2,

thereforeα1/q + (1− α)1/q ≥ 2
(
α(1− α)

)1/2q
, from which

f(α) ≥ 2q(1− α)q+
1
2
√

α.

By substitutingα = 1
2p

, and using the fact that

(
1− 1

2p

)q+
1
2

=
(2p− 1

2p

)2p−1
2 ≥ e−1/2,

we immediately obtain (2.11), as needed.
We now turn our attention to the upper estimation. By symmetry we may sup-

pose that0 < α ≤ 1/2. We will show thatα ∼ 1
2q

holds for the argument of the
maximum.
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First, letα ≤ (cq)−1, wherec is sufficiently large (specified later), we then have

f(α) ≤
(
1 + α1/q

)q

= 2q
(
1− 1

2

(
1− α1/q

))q

< 2q exp
(
−q

2

(
1− α1/q

))
≤ 2q exp

(
−q

2

(
1−

( 1

cq

)1/q))
.

Here the Taylor expansion gives

(2.12) α1/q = exp
(1

q
log α

)
= 1 +

1

q
log α +

θ

2

(
log α

q

)2

,

where0 ≤ θ ≤ 1. Thus, ifq ≥ c,

f(α) ≤ 2q exp

(
−1

2
log(cq) +

log2(cq)

4q

)
≤ 2q

√
cq

exp

(
log2 c

c

)
;

this is still less than the lower estimation we derived for the maximum in (2.11); for
instance, whenc = 16.

Secondly, letα > 1
q
log q, then, applying the trivial estimation2q to the second

term off(α) we get

f(α) ≤ 2q
(
2−q +

(
1− 1

q
log q

)q)
≤ 1 +

2q

q
;

which is still less than the lower bound ifp ≥ 8.
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Finally, let 1
cq

< α < 1
q
log q, then, by (2.12),

α1/q = 1 +
log α

q
+ O

(
(log q)2

q2

)
,

uniformly in α. Moreover,

1− (1− α)1/q ≤ α

q(1− α)
= O

(
log q

q2

)
,

hence

α1/q + (1− α)1/q

2
= 1 +

log α

2q
+ O

(
(log q)2

q2

)
= exp

(
log α

2q
+ O

(
(log q)2

q2

))
.

Consequently,

(2.13)
(
α1/q + (1− α)1/q

)q
= 2q

√
α

(
1 + O

(
(log q)2

q

))
,

uniformly in α.
The first term off(α) can be estimated in the following way. The functioneα(1−

α) is decreasing, hence in the considered domain we have1 ≥ eα(1 − α) = 1 +
O(q−2). Thus1− α = e−α

(
1 + O(q−2)

)
, therefore(1− α)q = e−qα

(
1 + O(q−1)

)
.

In the end we obtain that

(2.14) αq + (1− α)q = e−qα
(
1 + O(q−1)

)
.

Considering both (2.13) and (2.14) we conclude that, uniformly in the domain under
consideration,

f(α) = 2q
√

α e−qα
(
1 + O(q−1)

)
.
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Let arg max f(α) = xq

q
. For everyq large enough we have1/c ≤ xq ≤ log q, hence

max f(α) =
2q

√
q
· x1/2

q e−xq
(
1 + O(q−1)

)
.

By virtue of all these it is clear thatxq → arg max x1/2e−x = 1/2, andmax f(α) ∼
2q

√
2eq

, as stated.

By applying (2.10) to Theorem2.3 we can derive similar results for the case
1 < p ≤ 2.

Corollary 2.4. Let0 < ε ≤ 1. ThenC1+ε ≥ 2
(

ε
2e(1+ε)

)ε/2

, and

C1+ε = 2− ε log(1/ε)− ε(1 + log 2) + o(ε),

asε → 0.
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3. Comparison of Conditional and Unconditional Moments

Returning to the special case of Chuprunov and Fazekas, we fixP(A) > 0, and look
for the minimal positive constantK = K(p, P(A)), for which the inequality

(3.1) EA|S − EAS|p ≤ K

P(A)
E|S − ES|p

holds for every random variableS having finitep th moment. Then it follows that

(3.2) 1 ≤ K ≤ Cp.

The upper bound is obvious, while the lower bound can be seen from the example
whereS = 0 on the complement ofA, andES = 0.

How much can this be improved, however?

Theorem 3.1.RepresentingP(A)/(1− P(A)) byR,

(3.3) K = sup
x,y>0

yxp + xyp

y(x + 1)p + x|y − 1|p + R p−1(x + y)
.

If p = 1 or p = 2, thenK = 1.
Suppose thatp < 2, then

(3.4) K ≤ 2

1 + P(A)p−1 .

Suppose thatp > 2, then

(3.5) K ≤



(
1− P(A)

)p−1
Cp(

1− P(A)
)p−1

+ P(A)p−1(C1/p
p − 1

)p , if P(A) ≤ C−1/p
p ,

1

P(A)p−1 ≤ C
1− 1

p
p , if P(A) > C−1/p

p .
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Remark1. For arbitraryP(A) we have

(3.6)
Cp

P(A)
·

(
1− P(A)

)p−1(
1− P(A)

)p−1
+ P(A)p−1(C1/p

p − 1
)p ≤

1

P(A)p ,

and equality holds if and only ifP(A) = C
−1/p
p .

In order to show this, let
(
C

1/p
p − 1

)
be denoted byx, then the left-hand side of

(3.6) can be rewritten in the form

(x + 1)p

1 + R p−1xp
.

By differentiating, one can easily verify that

max
x≥0

(x + 1)p

1 + R p−1xp
=

(
R + 1

R

)p−1

=
1

P(A)p−1 ,

and the maximum is attained atx = 1/R.

Remark2. WhenCp is not explicitly known, we can substituteCp by its upper esti-
mate2p−2 everywhere in (3.5), including the conditions of the cases. This is justified,
because

(x + 1)p

1 + R p−1xp

is an increasing function ofx for x ≤ 1/R, that is, wheneverP(A) ≤ C
−1/p
p .

Proof of Theorem3.1. From (3.1) it follows that

(3.7) K = sup
S

P(A) EA
∣∣S − EAS

∣∣p
E |S − ES|p

.
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We may assume thatEAS = 0. Let B denote the complement of eventA. In the
denominator of (3.7) ES = P(B) EBS, and

E |S − ES|p = P(A) EA
∣∣S − P(B) EBS

∣∣p + P(B) EB
∣∣S − P(B) EBS

∣∣p
≥ P(A) EA

∣∣S − P(B) EBS
∣∣p + P(B)

∣∣EBS − P(B) EBS
∣∣p

= P(A) EA
∣∣S − P(B) EBS

∣∣p + P(A)R p−1
∣∣P(B) EBS

∣∣p .

Equality holds, for example, ifS is constant on the eventB. At this point we remark
that the conditional distributions ofS givenA, or B, resp., can be prescribed arbi-
trarily, provided thatEAS = 0, andEA|S|p < ∞, EB|S|p < ∞. In a sufficiently rich
probability space one can construct a random variableS and an eventA in such a
way thatP(A) and the conditional distributions ofS givenA and its complementB
meet the specifications. IfX andY are arbitrary random variables and the eventA
is independent of them, then the conditional distribution ofS = IA X + IB Y given
A, resp.B, is equal to the distribution ofX, resp.Y . Hence we can suppose thatS
is constant onB and focus on the conditional distribution givenA.

If EBS = 0, thenE |S − ES|p = P(A)EA|S|p. In what follows we assume
EBS 6= 0. The right-hand side of (3.7) is homogeneous inS, thus we may also
suppose thatP(B) EBS = 1. Consequently, we have to find

(3.8) K = sup

{
EA|S|p

EA|S − 1|p + R p−1 : EAS = 0

}
.

From (2.1) it follows that

(3.9) sup

{
EA|S|p

EA|S − 1|p
: EAS = 0

}
= Cp.

As in the proof of Theorem2.1, it suffices to deal with random variables with just
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two possible values. Let these be−x andy, with positivex andy, then

PA(S = −x) =
y

x + y
, PA(S = y) =

x

x + y
,

because of the vanishing conditional expectation. Thus we have

(3.10)
EA|S|p

EA|S − 1|p + R p−1 =
yxp + xyp

y(x + 1)p + x|y − 1|p + R p−1(x + y)
,

which, together with (3.8), imply (3.3).
SupposeK > 1. If either x or y tends to infinity, the right-hand side of (3.10)

converges to 1, thus the supremum is attained at somex andy.
First we show that1 ≤ y. Suppose, to the contrary, that0 < y < 1. Letz = 2−y,

thenz > y, |z − 1| = |y − 1|, and

zxp + xzp

z(x + 1)p + x|z − 1|p + R p−1(x + z)
=

xp + xzp−1

(x + 1)p + x|y − 1|p/z + R p−1(1 + x/z)

>
xp + xyp−1

(x + 1)p + x|y − 1|p/y + R p−1(1 + x/y)

=
yxp + xyp

y(x + 1)p + x|y − 1|p + R p−1(x + y)
.

At this point, the case ofp = 1 follows immediately, since the right-hand side of
(3.10) is always less than1,

K = sup
x>0, y≥1

yx + xy

y(x + 1) + x(y − 1) + (x + y)
= sup

x>0

x

x + 1
= 1.

The case ofp = 2 is implied by (3.2), sinceC2 = 2.
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Next we show thatx ≤ y or x ≥ y, according to whetherp > 2 or p < 2.
Indeed, sinceyxp + xyp > y(x + 1)p + x(y − 1)p must hold, we have

0 < yxp + xyp − y(x + 1)p + x(y − 1)p

< −ypxp−1 + xpyp−1 = pxy
(
yp−2 − xp−2

)
.

Let p < 2. Then

1 < K =
xyp + yxp

y(x + 1)p + x(y − 1)p + R p−1(x + y)
(3.11)

≤ xyp + yxp

yxp + x(y − 1)p + R p−1x

=
yp + yxp−1

yxp−1 + (y − 1)p + R p−1 .

If x is increased, the same positive quantity is added to the numerator and the de-
nominator of the fraction on the right-hand side. As a result, the value of the fraction
decreases. Thus we can obtain an upper estimate by changingx to y, namely,

K ≤ 2yp

yp + (y − 1)p + R p−1 .

One can easily verify that the maximum of the right-hand side is attained aty =
R + 1. Thus

K ≤ 2(R + 1)p

(R + 1)p + R p + R p−1 =
2

1 + P(A)p−1 .

Finally, let us turn to the casep > 2. Applying the trivial inequality

a + b

c + d
≤ max

{a

c
,

b

d

}
, a, b, c, d ≥ 0,
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to the right-hand side of (3.10) we get

K ≤ max

{
xp

(x + 1)p + R p−1 ,
yp

(y − 1)p + R p−1

}
(3.12)

=
yp

(y − 1)p + R p−1 ,

which has to be greater than 1.
Another estimate can be obtained by applying the inequality

yxp + xyp ≤ Cp

(
y(x + 1)p + x|y − 1|p

)
,

which comes from (3.9), to the denominator on the right-hand side of (3.10). It
follows that

K ≤ Cp

1 + Cp R p−1 x+y
xyp+yxp

.

The right-hand side is an increasing function of bothx andy. Hence we can increase
x to its upper boundy, obtaining

(3.13) K ≤ Cp yp

yp + Cp R p−1 .

From (3.12) and (3.13) it follows that

(3.14) K ≤ max
y≥1

min

{
yp

(y − 1)p + R p−1 ,
Cp yp

yp + Cp R p−1

}
.

The second function on the right-hand side is increasing; the first one is increasing
at the beginning, then decreasing. Its maximum is aty = R + 1. At y = 1 the
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first function is greater than the second one, while the converse is true for every
sufficiently largey. The two functions are equal at

y0 =
C

1/p
p

C
1/p
p − 1

,

thus fory < y0 the first one, and fory > y0 the second one is greater. Therefore, in
(3.14) the maximum is equal to the maximum of the first function ifR+1 ≤ y0, while
in the complementary case it is the common value aty0. Elementary calculations
lead to (3.5).
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