

Journal of Inequalities in Pure and Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 2, Article 30, 2005

STOLARSKY MEANS OF SEVERAL VARIABLES

EDWARD NEUMAN

DEPARTMENT OF MATHEMATICS SOUTHERN ILLINOIS UNIVERSITY CARBONDALE, IL 62901-4408, USA

edneuman@math.siu.edu

URL: http://www.math.siu.edu/neuman/personal.html

Received 19 October, 2004; accepted 24 February, 2005 Communicated by Zs. Páles

ABSTRACT. A generalization of the Stolarsky means to the case of several variables is presented. The new means are derived from the logarithmic mean of several variables studied in [9]. Basic properties and inequalities involving means under discussion are included. Limit theorems for these means with the underlying measure being the Dirichlet measure are established.

Key words and phrases: Stolarsky means, Dresher means, Dirichlet averages, Totally positive functions, Inequalities.

2000 Mathematics Subject Classification. 33C70, 26D20.

1. Introduction and Notation

In 1975 K.B. Stolarsky [16] introduced a two-parameter family of bivariate means named in mathematical literature as the Stolarsky means. Some authors call these means the extended means (see, e.g., [6, 7]) or the difference means (see [10]). For $r, s \in \mathbb{R}$ and two positive numbers x and y ($x \neq y$) they are defined as follows [16]

numbers
$$x$$
 and y ($x \neq y$) they are defined as follows [16]
$$E_{r,s}(x,y) = \begin{cases} \left[\frac{s}{r} \frac{x^r - y^r}{x^s - y^s}\right]^{\frac{1}{r-s}}, & rs(r-s) \neq 0; \\ \exp\left(-\frac{1}{r} + \frac{x^r \ln x - y^r \ln y}{x^r - y^r}\right), & r = s \neq 0; \\ \left[\frac{x^r - y^r}{r(\ln x - \ln y)}\right]^{\frac{1}{r}}, & r \neq 0, \ s = 0; \\ \sqrt{xy}, & r = s = 0. \end{cases}$$
The mean $F_{r-s}(x,y)$ is symmetric in its parameters x and s and its variables x .

The mean $E_{r,s}(x,y)$ is symmetric in its parameters r and s and its variables x and y as well. Other properties of $E_{r,s}(x,y)$ include homogeneity of degree one in the variables x and y and

ISSN (electronic): 1443-5756

The author is indebted to a referee for several constructive comments on the first draft of this paper.

^{© 2005} Victoria University. All rights reserved.

monotonicity in r and s. It is known that $E_{r,s}$ increases with an increase in either r or s (see [6]). It is worth mentioning that the Stolarsky mean admits the following integral representation ([16])

(1.2)
$$\ln E_{r,s}(x,y) = \frac{1}{s-r} \int_{r}^{s} \ln I_{t} dt$$

 $(r \neq s)$, where $I_t \equiv I_t(x,y) = E_{t,t}(x,y)$ is the identric mean of order t. J. Pečarić and V. Šimić [15] have pointed out that

(1.3)
$$E_{r,s}(x,y) = \left[\int_0^1 \left(tx^s + (1-t)y^s \right)^{\frac{r-s}{s}} dt \right]^{\frac{1}{r-s}}$$

 $(s(r-s) \neq 0)$. This representation shows that the Stolarsky means belong to a two-parameter family of means studied earlier by M.D. Tobey [18]. A comparison theorem for the Stolarsky means have been obtained by E.B. Leach and M.C. Sholander in [7] and independently by Zs. Páles in [13]. Other results for the means (1.1) include inequalities, limit theorems and more (see, e.g., [17, 4, 6, 10, 12]).

In the past several years researchers made an attempt to generalize Stolarsky means to several variables (see [6, 18, 15, 8]). Further generalizations include so-called functional Stolarsky means. For more details about the latter class of means the interested reader is referred to [14] and [11].

To facilitate presentation let us introduce more notation. In what follows, the symbol E_{n-1} will stand for the Euclidean simplex, which is defined by

$$E_{n-1} = \{(u_1, \dots, u_{n-1}) : u_i \ge 0, \ 1 \le i \le n-1, \ u_1 + \dots + u_{n-1} \le 1\}.$$

Further, let $X=(x_1,\ldots,x_n)$ be an n-tuple of positive numbers and let $X_{\min}=\min(X)$, $X_{\max}=\max(X)$. The following

(1.4)
$$L(X) = (n-1)! \int_{E_{n-1}} \prod_{i=1}^{n} x_i^{u_i} du = (n-1)! \int_{E_{n-1}} \exp(u \cdot Z) du$$

is the special case of the logarithmic mean of X which has been introduced in [9]. Here $u=(u_1,\ldots,u_{n-1},1-u_1-\cdots-u_{n-1})$ where $(u_1,\ldots,u_{n-1})\in E_{n-1}$, $du=du_1\ldots du_{n-1}$, $Z=\ln(X)=(\ln x_1,\ldots,\ln x_n)$, and $x\cdot y=x_1y_1+\cdots+x_ny_n$ is the dot product of two vectors x and y. Recently J. Merikowski [8] has proposed the following generalization of the Stolarsky mean $E_{r,s}$ to several variables

(1.5)
$$E_{r,s}(X) = \left[\frac{L(X^r)}{L(X^s)}\right]^{\frac{1}{r-s}}$$

 $(r \neq s)$, where $X^r = (x_1^r, \dots, x_n^r)$. In the paper cited above, the author did not prove that $E_{r,s}(X)$ is the mean of X, i.e., that

$$(1.6) X_{\min} \le E_{r,s}(X) \le X_{\max}$$

holds true. If n=2 and $rs(r-s) \neq 0$ or if $r \neq 0$ and s=0, then (1.5) simplifies to (1.1) in the stated cases.

This paper deals with a two-parameter family of multivariate means whose prototype is given in (1.5). In order to define these means let us introduce more notation. By μ we will denote a probability measure on E_{n-1} . The logarithmic mean $\mathcal{L}(\mu; X)$ with the underlying measure μ is

defined in [9] as follows

(1.7)
$$\mathcal{L}(\mu; X) = \int_{E_{n-1}} \prod_{i=1}^{n} x_i^{u_i} \mu(u) \, du = \int_{E_{n-1}} \exp(u \cdot Z) \mu(u) \, du.$$

We define

(1.8)
$$\mathcal{E}_{r,s}(\mu;X) = \begin{cases} \left[\frac{\mathcal{L}(\mu;X^r)}{\mathcal{L}(\mu;X^s)}\right]^{\frac{1}{r-s}}, & r \neq s \\ \exp\left[\frac{d}{dr}\ln\mathcal{L}(\mu;X^r)\right], & r = s. \end{cases}$$

Let us note that for $\mu(u) = (n-1)!$, the Lebesgue measure on E_{n-1} , the first part of (1.8) simplifies to (1.5).

In Section 2 we shall prove that $\mathcal{E}_{r,s}(\mu;X)$ is the mean value of X, i.e., it satisfies inequalities (1.6). Some elementary properties of this mean are also derived. Section 3 deals with the limit theorems for the new mean, with the probability measure being the Dirichlet measure. The latter is denoted by μ_b , where $b=(b_1,\ldots,b_n)\in\mathbb{R}^n_+$, and is defined as [2]

(1.9)
$$\mu_b(u) = \frac{1}{B(b)} \prod_{i=1}^n u_i^{b_i - 1},$$

where $B(\cdot)$ is the multivariate beta function, $(u_1, \ldots, u_{n-1}) \in E_{n-1}$, and $u_n = 1 - u_1 - \cdots - u_{n-1}$. In the Appendix we shall prove that under certain conditions imposed on the parameters r and s, the function $E_{r,s}^{r-s}(x,y)$ is strictly totally positive as a function of x and y.

2. Elementary Properties of $\mathcal{E}_{r,s}(\mu;X)$

In order to prove that $\mathcal{E}_{r,s}(\mu;X)$ is a mean value we need the following version of the Mean-Value Theorem for integrals.

Proposition 2.1. Let $\alpha := X_{\min} < X_{\max} =: \beta$ and let $f, g \in C([\alpha, \beta])$ with $g(t) \neq 0$ for all $t \in [\alpha, \beta]$. Then there exists $\xi \in (\alpha, \beta)$ such that

(2.1)
$$\frac{\int_{E_{n-1}} f(u \cdot X) \mu(u) \, du}{\int_{E_{n-1}} g(u \cdot X) \mu(u) \, du} = \frac{f(\xi)}{g(\xi)}.$$

Proof. Let the numbers γ and δ and the function ϕ be defined in the following way

$$\gamma = \int_{E_{n-1}} g(u \cdot X) \mu(u) \, du, \qquad \delta = \int_{E_{n-1}} f(u \cdot X) \mu(u) \, du,$$

$$\phi(t) = \gamma f(t) - \delta q(t)$$
.

Letting $t = u \cdot X$ and, next, integrating both sides against the measure μ , we obtain

$$\int_{E_{n-1}} \phi(u \cdot X) \mu(u) \, du = 0.$$

On the other hand, application of the Mean-Value Theorem to the last integral gives

$$\phi(c \cdot X) \int_{E_{n-1}} \mu(u) \, du = 0,$$

where $c = (c_1, \dots, c_{n-1}, c_n)$ with $(c_1, \dots, c_{n-1}) \in E_{n-1}$ and $c_n = 1 - c_1 - \dots - c_{n-1}$. Letting $\xi = c \cdot X$ and taking into account that

$$\int_{E_{n-1}} \mu(u) \, du = 1$$

we obtain $\phi(\xi) = 0$. This in conjunction with the definition of ϕ gives the desired result (2.1). The proof is complete.

The author is indebted to Professor Zsolt Páles for a useful suggestion regarding the proof of Proposition 2.1.

For later use let us introduce the symbol $\mathcal{E}_{r,s}^{(p)}(\mu;X)$ $(p \neq 0)$, where

(2.2)
$$\mathcal{E}_{r,s}^{(p)}(\mu;X) = \left[\mathcal{E}_{r,s}(\mu;X^p)\right]^{\frac{1}{p}}.$$

We are in a position to prove the following.

Theorem 2.2. Let $X \in \mathbb{R}^n_+$ and let $r, s \in \mathbb{R}$. Then

- (i) $X_{\min} \leq \mathcal{E}_{r,s}(\mu; X) \leq X_{\max}$,
- (ii) $\mathcal{E}_{r,s}(\mu;\lambda X) = \lambda \mathcal{E}_{r,s}(\mu;X), \lambda > 0, (\lambda X := (\lambda x_1, \dots, \lambda x_n)),$

(iii)
$$\mathcal{E}_{r,s}(\mu;X)$$
 increases with an increase in either r and s , (iv) $\ln \mathcal{E}_{r,s}(\mu;X) = \frac{1}{r-s} \int_s^r \ln \mathcal{E}_{t,t}(\mu;X) dt$, $r \neq s$,

- (v) $\mathcal{E}_{r,s}^{(p)}(\mu; X) = \mathcal{E}_{pr,ps}(\mu; X)$, (vi) $\mathcal{E}_{r,s}(\mu; X) \mathcal{E}_{-r,-s}(\mu; X^{-1}) = 1$, $(X^{-1} := (1/x_1, \dots, 1/x_n))$, (vii) $\mathcal{E}_{r,s}^{s-r}(\mu; X) = \mathcal{E}_{r,p}^{p-r}(\mu; X) \mathcal{E}_{p,s}^{s-p}(\mu; X)$.

Proof of (i). Assume first that $r \neq s$. Making use of (1.8) and (1.7) we obtain

$$\mathcal{E}_{r,s}(\mu;X) = \left[\frac{\int_{E_{n-1}} \exp\left[r(u\cdot Z)\right]\mu(u) du}{\int_{E_{n-1}} \exp\left[s(u\cdot Z)\right]\mu(u) du} \right]^{\frac{1}{r-s}}.$$

Application of (2.1) with $f(t) = \exp(rt)$ and $g(t) = \exp(st)$ gives

$$\mathcal{E}_{r,s}(\mu;X) = \left[\frac{\exp\left[r(c\cdot Z)\right]}{\exp\left[s(c\cdot Z)\right]}\right]^{\frac{1}{r-s}} = \exp(c\cdot Z),$$

where $c = (c_1, \ldots, c_{n-1}, c_n)$ with $(c_1, \ldots, c_{n-1}) \in E_{n-1}$ and $c_n = 1 - c_1 - \cdots - c_{n-1}$. Since $c \cdot Z = c_1 \ln x_1 + \cdots + c_n \ln x_n$, $\ln X_{\min} \leq c \cdot Z \leq \ln X_{\max}$. This in turn implies that $X_{\min} \leq \exp(c \cdot Z) \leq X_{\max}$. This completes the proof of (i) when $r \neq s$. Assume now that r = s. It follows from (1.8) and (1.7) that

$$\ln \mathcal{E}_{r,r}(\mu;X) = \left[\frac{\int_{E_{n-1}} (u \cdot Z) \exp\left[r(u \cdot Z)\right] \mu(u) du}{\int_{E_{n-1}} \exp\left[r(u \cdot Z)\right] \mu(u) du} \right].$$

Application of (2.1) to the right side with $f(t) = t \exp(rt)$ and $g(t) = \exp(rt)$ gives

$$\ln \mathcal{E}_{r,r}(\mu; X) = \left\lceil \frac{(c \cdot Z) \exp \left[r(c \cdot Z) \right]}{\exp \left[r(c \cdot Z) \right]} \right\rceil = c \cdot Z.$$

Since $\ln X_{\min} \le c \cdot Z \le \ln X_{\max}$, the assertion follows. This completes the proof of (i).

Proof of (ii). The following result

(2.3)
$$\mathcal{L}(\mu; (\lambda x)^r) = \lambda^r \mathcal{L}(\mu; X^r)$$

 $(\lambda > 0)$ is established in [9, (2.6)]. Assume that $r \neq s$. Using (1.8) and (2.3) we obtain

$$\mathcal{E}_{r,s}(\mu; \lambda x) = \left[\frac{\lambda^r \mathcal{L}(\mu; X^r)}{\lambda^s \mathcal{L}(\mu; X^s)} \right]^{\frac{1}{r-s}} = \lambda \mathcal{E}_{r,s}(\mu; X).$$

Consider now the case when $r = s \neq 0$. Making use of (1.8) and (2.3) we obtain

$$\mathcal{E}_{r,r}(\mu; \lambda X) = \exp\left[\frac{d}{dr} \ln \mathcal{L}(\mu; (\lambda X)^r)\right]$$

$$= \exp\left[\frac{d}{dr} \ln \left(\lambda^r \mathcal{L}(\mu; X^r)\right)\right]$$

$$= \exp\left[\frac{d}{dr} \left(r \ln \lambda + \ln \mathcal{L}(\mu; X^r)\right)\right] = \lambda \mathcal{E}_{r,r}(\mu; X).$$

When r = s = 0, an easy computation shows that

(2.4)
$$\mathcal{E}_{0,0}(\mu; X) = \prod_{i=1}^{n} x_i^{w_i} \equiv G(w; X),$$

where

(2.5)
$$w_i = \int_{E_{n-1}} u_i \mu(u) \, du$$

 $(1 \le i \le n)$ are called the natural weights or partial moments of the measure μ and $w = (w_1, \ldots, w_n)$. Since $w_1 + \cdots + w_n = 1$, $\mathcal{E}_{0,0}(\mu; \lambda X) = \lambda \mathcal{E}_{0,0}(\mu; X)$. The proof of (ii) is complete.

Proof of (iii). In order to establish the asserted property, let us note that the function $r \to \exp(rt)$ is logarithmically convex (log-convex) in r. This in conjunction with Theorem B.6 in [2], implies that a function $r \to \mathcal{L}(\mu; X^r)$ is also log-convex in r. It follows from (1.8) that

$$\ln \mathcal{E}_{r,s}(\mu;X) = \frac{\ln \mathcal{L}(\mu;X^r) - \ln \mathcal{L}(\mu;X^s)}{r-s}.$$

The right side is the divided difference of order one at r and s. Convexity of $\ln \mathcal{L}(\mu; X^r)$ in r implies that the divided difference increases with an increase in either r and s. This in turn implies that $\ln \mathcal{E}_{r,s}(\mu;X)$ has the same property. Hence the monotonicity property of the mean $\mathcal{E}_{r,s}$ in its parameters follows. Now let r=s. Then (1.8) yields

$$\ln \mathcal{E}_{r,r}(\mu; X) = \frac{d}{dr} \left[\ln \mathcal{L}(\mu; X^r) \right].$$

Since $\ln \mathcal{L}(\mu; X^r)$ is convex in r, its derivative with respect to r increases with an increase in r. This completes the proof of (iii).

Proof of (iv). Let $r \neq s$. It follows from (1.8) that

$$\frac{1}{r-s} \int_{s}^{r} \ln \mathcal{E}_{t,t}(\mu; X) dt = \frac{1}{r-s} \int_{s}^{r} \frac{d}{dt} \left[\ln \mathcal{L}(\mu; X^{t}) \right] dt$$
$$= \frac{1}{r-s} \left[\ln \mathcal{L}(\mu; X^{r}) - \ln \mathcal{L}(\mu; X^{s}) \right]$$
$$= \ln \mathcal{E}_{r,s}(\mu; X).$$

Proof of (v). Let $r \neq s$. Using (2.2) and (1.8) we obtain

$$\mathcal{E}_{r,s}^{(p)}(\mu;X) = \left[\mathcal{E}_{r,s}(\mu;X^p)\right]^{\frac{1}{p}} = \left[\frac{\mathcal{L}(X^{pr})}{\mathcal{L}(X^{ps})}\right]^{\frac{1}{p(r-s)}} = \mathcal{E}_{pr,ps}(\mu;X).$$

Assume now that $r = s \neq 0$. Making use of (2.2), (1.8) and (1.7) we have

$$\mathcal{E}_{r,r}^{(p)}(\mu; X) = \exp\left[\frac{1}{p} \frac{d}{dr} \ln \mathcal{L}(\mu; X^{pr})\right]$$

$$= \exp\left[\frac{1}{\mathcal{L}(\mu; X^{pr})} \int_{E_{n-1}} (u \cdot Z) \exp\left[pr(u \cdot Z)\right] \mu(u) du\right]$$

$$= \mathcal{E}_{pr,pr}(\mu; X).$$

The case when r = s = 0 is trivial because $\mathcal{E}_{0,0}(\mu; X)$ is the weighted geometric mean of X.

Proof of (vi). Here we use (v) with p=-1 to obtain $\mathcal{E}_{r,s}(\mu;X^{-1})^{-1}=\mathcal{E}_{-r,-s}(\mu;X)$. Letting $X:=X^{-1}$ we obtain the desired result.

Proof of (vii). There is nothing to prove when either p = r or p = s or r = s. In other cases we use (1.8) to obtain the asserted result. This completes the proof.

In the next theorem we give some inequalities involving the means under discussion.

Theorem 2.3. Let $r, s \in \mathbb{R}$. Then the following inequalities

$$\mathcal{E}_{r,r}(\mu;X) \le \mathcal{E}_{r,s}(\mu;X) \le \mathcal{E}_{s,s}(\mu;X)$$

are valid provided $r \leq s$. If s > 0, then

$$\mathcal{E}_{r-s,0}(\mu;X) \le \mathcal{E}_{r,s}(\mu;X).$$

Inequality (2.7) is reversed if s < 0 and it becomes an equality if s = 0. Assume that r, s > 0 and let $p \le q$. Then

$$\mathcal{E}_{r,s}^{(p)}(\mu;X) \le \mathcal{E}_{r,s}^{(q)}(\mu;X)$$

with the inequality reversed if r, s < 0.

Proof. Inequalities (2.6) and (2.7) follow immediately from Part (iii) of Theorem 2.2. For the proof of (2.8), let r, s > 0 and let $p \le q$. Then $pr \le qr$ and $ps \le qs$. Applying Parts (v) and (iii) of Theorem 2.2, we obtain

$$\mathcal{E}_{r,s}^{(p)}(\mu;X) = \mathcal{E}_{pr,ps}(\mu;X) \leq \mathcal{E}_{qr,qs}(\mu;X) = \mathcal{E}_{r,s}^{(q)}(\mu;X).$$

When r, s < 0, the proof of (2.8) goes along the lines introduced above, hence it is omitted. The proof is complete.

3. THE MEAN $\mathcal{E}_{r,s}(b;X)$

An important probability measure on E_{n-1} is the Dirichlet measure $\mu_b(u)$, $b \in \mathbb{R}^n_+$ (see (1.9)). Its role in the theory of special functions is well documented in Carlson's monograph [2]. When $\mu = \mu_b$, the mean under discussion will be denoted by $\mathcal{E}_{r,s}(b;X)$. The natural weights w_i (see (2.5)) of μ_b are given explicitly by

$$(3.1) w_i = b_i/c$$

 $(1 \le i \le n)$, where $c = b_1 + \cdots + b_n$ (see [2, (5.6-2)]). For later use we define $w = (w_1, \dots, w_n)$. Recall that the weighted Dresher mean $D_{r,s}(p;X)$ of order $(r,s) \in \mathbb{R}^2$ of $X \in \mathbb{R}^n_+$ with weights $p = (p_1, \dots, p_n) \in \mathbb{R}^n_+$ is defined as

(3.2)
$$D_{r,s}(p;X) = \begin{cases} \left[\frac{\sum_{i=1}^{n} p_{i} x_{i}^{r}}{\sum_{i=1}^{n} p_{i} x_{i}^{s}}\right]^{\frac{1}{r-s}}, & r \neq s \\ \exp\left[\frac{\sum_{i=1}^{n} p_{i} x_{i}^{r} \ln x_{i}}{\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right], & r = s \end{cases}$$

(see, e.g., [1, Sec. 24]).

In this section we present two limit theorems for the mean $\mathcal{E}_{r,s}$ with the underlying measure being the Dirichlet measure. In order to facilitate presentation we need a concept of the Dirichlet average of a function. Following [2, Def. 5.2-1] let Ω be a convex set in \mathbb{C} and let $Y = (y_1, \ldots, y_n) \in \Omega^n$, $n \geq 2$. Further, let f be a measurable function on Ω . Define

(3.3)
$$F(b;Y) = \int_{E_{n-1}} f(u \cdot Y) \mu_b(u) \, du.$$

Then F is called the Dirichlet average of f with variables $Y=(y_1,\ldots,y_n)$ and parameters $b=(b_1,\ldots,b_n)$. We need the following result [2, Ex. 6.3-4]. Let Ω be an open circular disk in $\mathbb C$, and let f be holomorphic on Ω . Let $Y\in\Omega^n$, $c\in\mathbb C$, $c\neq 0,-1,\ldots$, and $w_1+\cdots+w_n=1$. Then

(3.4)
$$\lim_{c \to 0} F(cw; Y) = \sum_{i=1}^{n} w_i f(y_i),$$

where $cw = (cw_1, \ldots, cw_n)$.

We are in a position to prove the following.

Theorem 3.1. Let $w_1 > 0$, ..., $w_n > 0$ with $w_1 + \cdots + w_n = 1$. If $r, s \in \mathbb{R}$ and $X \in \mathbb{R}^n_+$, then $\lim_{c \to 0^+} \mathcal{E}_{r,s}(cw; X) = D_{r,s}(w; X).$

Proof. We use (1.7) and (3.3) to obtain $\mathcal{L}(cw; X) = F(cw; Z)$, where $Z = \ln X = (\ln x_1, \dots, \ln x_n)$. Making use of (3.4) with $f(t) = \exp(t)$ and $Y = \ln X$ we obtain

$$\lim_{c \to 0^+} \mathcal{L}(cw; X) = \sum_{i=1}^n w_i x_i.$$

Hence

(3.5)
$$\lim_{c \to 0^+} \mathcal{L}(cw; X^r) = \sum_{i=1}^n w_i x_i^r.$$

Assume that $r \neq s$. Application of (3.5) to (1.8) gives

$$\lim_{c \to 0^+} \mathcal{E}_{r,s}(cw; X) = \lim_{c \to 0^+} \left[\frac{\mathcal{L}(cw; X^r)}{\mathcal{L}(cw; X^s)} \right]^{\frac{1}{r-s}} = \left[\frac{\sum_{i=1}^n w_i x_i^r}{\sum_{i=1}^n w_i x_i^s} \right]^{\frac{1}{r-s}} = D_{r,s}(w; X).$$

Let r = s. Application of (3.4) with $f(t) = t \exp(rt)$ gives

$$\lim_{c \to 0^+} F(cw; Z) = \sum_{i=1}^n w_i z_i \exp(rz_i) = \sum_{i=1}^n w_i (\ln x_i) x_i^r.$$

This in conjunction with (3.5) and (1.8) gives

$$\lim_{c \to 0^+} \mathcal{E}_{r,r}(cw; X) = \lim_{c \to 0^+} \exp\left[\frac{F(cw; Z)}{\mathcal{L}(cw; X^r)}\right] = \exp\left[\frac{\sum_{i=1}^n w_i x_i^r \ln x_i}{\sum_{i=1}^n w_i x_i^r}\right] = D_{r,r}(w; X).$$

This completes the proof.

Theorem 3.2. Under the assumptions of Theorem 3.1 one has

(3.6)
$$\lim_{c \to \infty} \mathcal{E}_{r,s}(cw; X) = G(w; X).$$

Proof. The following limit (see [9, (4.10)])

(3.7)
$$\lim_{c \to \infty} \mathcal{L}(cw; X) = G(w; X)$$

will be used in the sequel. We shall establish first (3.6) when $r \neq s$. It follows from (1.8) and (3.7) that

$$\lim_{c \to \infty} \mathcal{E}_{r,s}(cw;X) = \lim_{c \to \infty} \left[\frac{\mathcal{L}(cw;X^r)}{\mathcal{L}(cw;X^s)} \right]^{\frac{1}{r-s}} = \left[G(w;X)^{r-s} \right]^{\frac{1}{r-s}} = G(w;X).$$

Assume that r = s. We shall prove first that

(3.8)
$$\lim_{c \to \infty} F(cw; Z) = \left[\ln G(w; X)\right] G(w; X)^r,$$

where F is the Dirichlet average of $f(t) = t \exp(rt)$. Averaging both sides of

$$f(t) = \sum_{m=0}^{\infty} \frac{r^m}{m!} t^{m+1}$$

we obtain

(3.9)
$$F(cw; Z) = \sum_{m=0}^{\infty} \frac{r^m}{m!} R_{m+1}(cw; Z),$$

where R_{m+1} stands for the Dirichlet average of the power function t^{m+1} . We will show that the series in (3.9) converges uniformly in $0 < c < \infty$. This in turn implies further that as $c \to \infty$, we can proceed to the limit term by term. Making use of [2, 6.2-24)] we obtain

$$|R_{m+1}(cw;Z)| \le |Z|^{m+1}, \quad m \in \mathbb{N},$$

where $|Z| = \max \{ |\ln x_i| : 1 \le i \le n \}$. By the Weierstrass M test the series in (3.9) converges uniformly in the stated domain. Taking limits on both sides of (3.9) we obtain with the aid of (3.4)

$$\lim_{c \to \infty} F(cw; Z) = \sum_{m=0}^{\infty} \frac{r^m}{m!} \lim_{c \to \infty} R_{m+1}(cw; Z)$$

$$= \sum_{m=0}^{\infty} \frac{r^m}{m!} \left(\sum_{i=1}^n w_i z_i\right)^{m+1}$$

$$= \left[\ln G(w; X)\right] \sum_{m=0}^{\infty} \frac{r^m}{m!} \left[\ln G(w; X)\right]^m$$

$$= \left[\ln G(w; X)\right] \sum_{m=0}^{\infty} \frac{1}{m!} \left[\ln G(w; X)^r\right]^m$$

$$= \left[\ln G(w; X)\right] G(w; X)^r.$$

This completes the proof of (3.8). To complete the proof of (3.6) we use (1.8), (3.7), and (3.8) to obtain

$$\lim_{c \to \infty} \ln \mathcal{E}_{r,r}(\mu; X) = \lim_{c \to \infty} \frac{F(cw; Z)}{\mathcal{L}(cw; X^r)} = \frac{\left[\ln G(w; X)\right] G(w; X)^r}{G(w; X)^r} = \ln G(w; X).$$

Hence the assertion follows.

Appendix A. Total Positivity of $E_{r,s}^{r-s}(x,y)$

A real-valued function h(x, y) of two real variables is said to be strictly totally positive on its domain if every $n \times n$ determinant with elements $h(x_i, y_j)$, where $x_1 < x_2 < \cdots < x_n$ and $y_1 < y_2 < \cdots < y_n$ is strictly positive for every $n = 1, 2, \ldots$ (see [5]).

The goal of this section is to prove that the function $E_{r,s}^{r-s}(x,y)$ is strictly totally positive as a function of x and y provided the parameters r and s satisfy a certain condition. For later use we recall the definition of the R-hypergeometric function $R_{-\alpha}(\beta,\beta';x,y)$ of two variables x,y>0 with parameters $\beta,\beta'>0$

(A1)
$$R_{-\alpha}(\beta, \beta'; x, y) = \frac{\Gamma(\beta + \beta')}{\Gamma(\beta)\Gamma(\beta')} \int_0^1 u^{\beta - 1} (1 - u)^{\beta' - 1} \left[ux + (1 - u)y \right]^{-\alpha} du$$

(see [2, (5.9-1)]).

Proposition A.1. Let x, y > 0 and let $r, s \in \mathbb{R}$. If |r| < |s|, then $E_{r,s}^{r-s}(x,y)$ is strictly totally positive on \mathbb{R}^2_+ .

Proof. Using (1.3) and (A1) we have

(A2)
$$E_{r,s}^{r-s}(x,y) = R_{\frac{r-s}{s}}(1,1;x^s,y^s)$$

 $(s(r-s) \neq 0)$. B. Carlson and J. Gustafson [3] have proven that $R_{-\alpha}(\beta, \beta'; x, y)$ is strictly totally positive in x and y provided $\beta, \beta' > 0$ and $0 < \alpha < \beta + \beta'$. Letting $\alpha = 1 - r/s$, $\beta = \beta' = 1$, $x := x^s$, $y := y^s$, and next, using (A2) we obtain the desired result.

Corollary A.2. Let $0 < x_1 < x_2$, $0 < y_1 < y_2$ and let the real numbers r and s satisfy the inequality |r| < |s|. If s > 0, then

(A3)
$$E_{r,s}(x_1, y_1)E_{r,s}(x_2, y_2) < E_{r,s}(x_1, y_2)E_{r,s}(x_2, y_1).$$

Inequality (A3) is reversed if s < 0.

Proof. Let $a_{ij} = E_{r,s}^{r-s}(x_i, y_j)$ (i, j = 1, 2). It follows from Proposition A.1 that $\det([a_{ij}]) > 0$ provided |r| < |s|. This in turn implies

$$\left[E_{r,s}(x_1,y_1)E_{r,s}(x_2,y_2)\right]^{r-s} > \left[E_{r,s}(x_1,y_2)E_{r,s}(x_2,y_1)\right]^{r-s}.$$

Assume that s > 0. Then the inequality |r| < s implies r - s < 0. Hence (A3) follows when s > 0. The case when s < 0 is treated in a similar way.

REFERENCES

- [1] E.F. BECKENBACH AND R. BELLMAN, *Inequalities*, Springer-Verlag, Berlin, 1961.
- [2] B.C. CARLSON, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
- [3] B.C. CARLSON AND J.L. GUSTAFSON, Total positivity of mean values and hypergeometric functions, *SIAM J. Math. Anal.*, **14**(2) (1983), 389–395.
- [4] P. CZINDER AND Zs. PÁLES An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means, *J. Ineq. Pure Appl. Math.*, **5**(2) (2004), Art. 42. [ONLINE: http://jipam.vu.edu.au/article.php?sid=399].

10 EDWARD NEUMAN

- [5] S. KARLIN, *Total Positivity*, Stanford Univ. Press, Stanford, CA, 1968.
- [6] E.B. LEACH AND M.C. SHOLANDER, Extended mean values, *Amer. Math. Monthly*, **85**(2) (1978), 84–90.
- [7] E.B. LEACH AND M.C. SHOLANDER, Multi-variable extended mean values, *J. Math. Anal. Appl.*, **104** (1984), 390–407.
- [8] J.K. MERIKOWSKI, Extending means of two variables to several variables, *J. Ineq. Pure Appl. Math.*, **5**(3) (2004), Art. 65. [ONLINE: http://jipam.vu.edu.au/article.php?sid=411].
- [9] E. NEUMAN, The weighted logarithmic mean, J. Math. Anal. Appl., 188 (1994), 885–900.
- [10] E. NEUMAN AND Zs. PÁLES, On comparison of Stolarsky and Gini means, *J. Math. Anal. Appl.*, **278** (2003), 274–284.
- [11] E. NEUMAN, C.E.M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ, The generalized Hadamard inequality, *g*-convexity and functional Stolarsky means, *Bull. Austral. Math. Soc.*, **68** (2003), 303–316.
- [12] E. NEUMAN AND J. SÁNDOR, Inequalities involving Stolarsky and Gini means, *Math. Pannonica*, **14**(1) (2003), 29–44.
- [13] Zs. PÁLES, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271–281.
- [14] C.E.M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ, Functional Stolarsky means, *Math. Inequal. Appl.*, **2** (1999), 479–489.
- [15] J. PEČARIĆ AND V. ŠIMIĆ, The Stolarsky-Tobey mean in *n* variables, *Math. Inequal. Appl.*, **2** (1999), 325–341.
- [16] K.B. STOLARSKY, Generalizations of the logarithmic mean, *Math. Mag.*, **48**(2) (1975), 87–92.
- [17] K.B. STOLARSKY, The power and generalized logarithmic means, *Amer. Math. Monthly*, **87**(7) (1980), 545–548.
- [18] M.D. TOBEY, A two-parameter homogeneous mean value, *Proc. Amer. Math. Soc.*, **18** (1967), 9–14.