Journal of Inequalities in Pure and

 Applied MathematicsVolume 6, Issue 2, Article 30, 2005

STOLARSKY MEANS OF SEVERAL VARIABLES

EDWARD NEUMAN

Department of Mathematics
Southern IlLinois University
Carbondale, IL 62901-4408, USA
edneuman@math.siu.edu
URL: http://www.math.siu.edu/neuman/personal.html
Received 19 October, 2004; accepted 24 February, 2005
Communicated by Zs. Páles

Abstract

A generalization of the Stolarsky means to the case of several variables is presented. The new means are derived from the logarithmic mean of several variables studied in [9]. Basic properties and inequalities involving means under discussion are included. Limit theorems for these means with the underlying measure being the Dirichlet measure are established.

Key words and phrases: Stolarsky means, Dresher means, Dirichlet averages, Totally positive functions, Inequalities.
2000 Mathematics Subject Classification. 33C70, 26D20.

1. Introduction and Notation

In 1975 K.B. Stolarsky [16] introduced a two-parameter family of bivariate means named in mathematical literature as the Stolarsky means. Some authors call these means the extended means (see, e.g., [6, 7]) or the difference means (see [10]). For $r, s \in \mathbb{R}$ and two positive numbers x and $y(x \neq y)$ they are defined as follows [16]

$$
E_{r, s}(x, y)= \begin{cases}{\left[\frac{s}{r} \frac{x^{r}-y^{r}}{x^{s}-y^{s}}\right]^{\frac{1}{r-s}},} & r s(r-s) \neq 0 \\ \exp \left(-\frac{1}{r}+\frac{x^{r} \ln x-y^{r} \ln y}{x^{r}-y^{r}}\right), & r=s \neq 0 \tag{1.1}\\ {\left[\frac{x^{r}-y^{r}}{r(\ln x-\ln y)}\right]^{\frac{1}{r}},} & r \neq 0, s=0 \\ \sqrt{x y}, & r=s=0\end{cases}
$$

The mean $E_{r, s}(x, y)$ is symmetric in its parameters r and s and its variables x and y as well. Other properties of $E_{r, s}(x, y)$ include homogeneity of degree one in the variables x and y and

[^0]monotonicity in r and s. It is known that $E_{r, s}$ increases with an increase in either r or s (see [6]). It is worth mentioning that the Stolarsky mean admits the following integral representation ([16])
\[

$$
\begin{equation*}
\ln E_{r, s}(x, y)=\frac{1}{s-r} \int_{r}^{s} \ln I_{t} d t \tag{1.2}
\end{equation*}
$$

\]

$(r \neq s)$, where $I_{t} \equiv I_{t}(x, y)=E_{t, t}(x, y)$ is the identric mean of order t. J. Pečarić and V. Šimić [15] have pointed out that

$$
\begin{equation*}
E_{r, s}(x, y)=\left[\int_{0}^{1}\left(t x^{s}+(1-t) y^{s}\right)^{\frac{r-s}{s}} d t\right]^{\frac{1}{r-s}} \tag{1.3}
\end{equation*}
$$

$(s(r-s) \neq 0)$. This representation shows that the Stolarsky means belong to a two-parameter family of means studied earlier by M.D. Tobey [18]. A comparison theorem for the Stolarsky means have been obtained by E.B. Leach and M.C. Sholander in [7] and independently by Zs. Páles in [13]. Other results for the means (1.1) include inequalities, limit theorems and more (see, e.g., [17, 4, 6, 10, 12]).
In the past several years researchers made an attempt to generalize Stolarsky means to several variables (see [6, 18, 15, 8]). Further generalizations include so-called functional Stolarsky means. For more details about the latter class of means the interested reader is referred to [14] and [11].
To facilitate presentation let us introduce more notation. In what follows, the symbol E_{n-1} will stand for the Euclidean simplex, which is defined by

$$
E_{n-1}=\left\{\left(u_{1}, \ldots, u_{n-1}\right): u_{i} \geq 0,1 \leq i \leq n-1, u_{1}+\cdots+u_{n-1} \leq 1\right\}
$$

Further, let $X=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple of positive numbers and let $X_{\min }=\min (X)$, $X_{\max }=\max (X)$. The following

$$
\begin{equation*}
L(X)=(n-1)!\int_{E_{n-1}} \prod_{i=1}^{n} x_{i}^{u_{i}} d u=(n-1)!\int_{E_{n-1}} \exp (u \cdot Z) d u \tag{1.4}
\end{equation*}
$$

is the special case of the logarithmic mean of X which has been introduced in [9]. Here $u=$ $\left(u_{1}, \ldots, u_{n-1}, 1-u_{1}-\cdots-u_{n-1}\right)$ where $\left(u_{1}, \ldots, u_{n-1}\right) \in E_{n-1}, d u=d u_{1} \ldots d u_{n-1}, Z=$ $\ln (X)=\left(\ln x_{1}, \ldots, \ln x_{n}\right)$, and $x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}$ is the dot product of two vectors x and y. Recently J. Merikowski [8] has proposed the following generalization of the Stolarsky mean $E_{r, s}$ to several variables

$$
\begin{equation*}
E_{r, s}(X)=\left[\frac{L\left(X^{r}\right)}{L\left(X^{s}\right)}\right]^{\frac{1}{r-s}} \tag{1.5}
\end{equation*}
$$

$(r \neq s)$, where $X^{r}=\left(x_{1}^{r}, \ldots, x_{n}^{r}\right)$. In the paper cited above, the author did not prove that $E_{r, s}(X)$ is the mean of X, i.e., that

$$
\begin{equation*}
X_{\min } \leq E_{r, s}(X) \leq X_{\max } \tag{1.6}
\end{equation*}
$$

holds true. If $n=2$ and $r s(r-s) \neq 0$ or if $r \neq 0$ and $s=0$, then (1.5) simplifies to (1.1) in the stated cases.
This paper deals with a two-parameter family of multivariate means whose prototype is given in (1.5). In order to define these means let us introduce more notation. By μ we will denote a probability measure on E_{n-1}. The logarithmic mean $\mathcal{L}(\mu ; X)$ with the underlying measure μ is
defined in [9] as follows

$$
\begin{equation*}
\mathcal{L}(\mu ; X)=\int_{E_{n-1}} \prod_{i=1}^{n} x_{i}^{u_{i}} \mu(u) d u=\int_{E_{n-1}} \exp (u \cdot Z) \mu(u) d u . \tag{1.7}
\end{equation*}
$$

We define

$$
\mathcal{E}_{r, s}(\mu ; X)= \begin{cases}{\left[\frac{\mathcal{L}\left(\mu ; X^{r}\right)}{\mathcal{L}\left(\mu ; X^{s}\right)}\right]^{\frac{1}{r-s}},} & r \neq s \tag{1.8}\\ \exp \left[\frac{d}{d r} \ln \mathcal{L}\left(\mu ; X^{r}\right)\right], & r=s\end{cases}
$$

Let us note that for $\mu(u)=(n-1)$!, the Lebesgue measure on E_{n-1}, the first part of (1.8) simplifies to (1.5).
In Section 2 we shall prove that $\mathcal{E}_{r, s}(\mu ; X)$ is the mean value of X, i.e., it satisfies inequalities (1.6). Some elementary properties of this mean are also derived. Section 3 deals with the limit theorems for the new mean, with the probability measure being the Dirichlet measure. The latter is denoted by μ_{b}, where $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathbb{R}_{+}^{n}$, and is defined as [2]

$$
\begin{equation*}
\mu_{b}(u)=\frac{1}{B(b)} \prod_{i=1}^{n} u_{i}^{b_{i}-1}, \tag{1.9}
\end{equation*}
$$

where $B(\cdot)$ is the multivariate beta function, $\left(u_{1}, \ldots, u_{n-1}\right) \in E_{n-1}$, and $u_{n}=1-u_{1}-\cdots-$ u_{n-1}. In the Appendix we shall prove that under certain conditions imposed on the parameters r and s, the function $E_{r, s}^{r-s}(x, y)$ is strictly totally positive as a function of x and y.

2. Elementary Properties of $\mathcal{E}_{r, s}(\mu ; X)$

In order to prove that $\mathcal{E}_{r, s}(\mu ; X)$ is a mean value we need the following version of the MeanValue Theorem for integrals.

Proposition 2.1. Let $\alpha:=X_{\min }<X_{\max }=: \beta$ and let $f, g \in C([\alpha, \beta])$ with $g(t) \neq 0$ for all $t \in[\alpha, \beta]$. Then there exists $\xi \in(\alpha, \beta)$ such that

$$
\begin{equation*}
\frac{\int_{E_{n-1}} f(u \cdot X) \mu(u) d u}{\int_{E_{n-1}} g(u \cdot X) \mu(u) d u}=\frac{f(\xi)}{g(\xi)} . \tag{2.1}
\end{equation*}
$$

Proof. Let the numbers γ and δ and the function ϕ be defined in the following way

$$
\begin{gathered}
\gamma=\int_{E_{n-1}} g(u \cdot X) \mu(u) d u, \quad \delta=\int_{E_{n-1}} f(u \cdot X) \mu(u) d u \\
\phi(t)=\gamma f(t)-\delta g(t)
\end{gathered}
$$

Letting $t=u \cdot X$ and, next, integrating both sides against the measure μ, we obtain

$$
\int_{E_{n-1}} \phi(u \cdot X) \mu(u) d u=0 .
$$

On the other hand, application of the Mean-Value Theorem to the last integral gives

$$
\phi(c \cdot X) \int_{E_{n-1}} \mu(u) d u=0
$$

where $c=\left(c_{1}, \ldots, c_{n-1}, c_{n}\right)$ with $\left(c_{1}, \ldots, c_{n-1}\right) \in E_{n-1}$ and $c_{n}=1-c_{1}-\cdots-c_{n-1}$. Letting $\xi=c \cdot X$ and taking into account that

$$
\int_{E_{n-1}} \mu(u) d u=1
$$

we obtain $\phi(\xi)=0$. This in conjunction with the definition of ϕ gives the desired result (2.1). The proof is complete.

The author is indebted to Professor Zsolt Páles for a useful suggestion regarding the proof of Proposition 2.1 .

For later use let us introduce the symbol $\mathcal{E}_{r, s}^{(p)}(\mu ; X)(p \neq 0)$, where

$$
\begin{equation*}
\mathcal{E}_{r, s}^{(p)}(\mu ; X)=\left[\mathcal{E}_{r, s}\left(\mu ; X^{p}\right)\right]^{\frac{1}{p}} \tag{2.2}
\end{equation*}
$$

We are in a position to prove the following.
Theorem 2.2. Let $X \in \mathbb{R}_{+}^{n}$ and let $r, s \in \mathbb{R}$. Then
(i) $X_{\min } \leq \mathcal{E}_{r, s}(\mu ; X) \leq X_{\max }$,
(ii) $\mathcal{E}_{r, s}(\mu ; \lambda X)=\lambda \mathcal{E}_{r, s}(\mu ; X), \lambda>0,\left(\lambda X:=\left(\lambda x_{1}, \ldots, \lambda x_{n}\right)\right)$,
(iii) $\mathcal{E}_{r, s}(\mu ; X)$ increases with an increase in either r and s,
(iv) $\ln \mathcal{E}_{r, s}(\mu ; X)=\frac{1}{r-s} \int_{s}^{r} \ln \mathcal{E}_{t, t}(\mu ; X) d t, r \neq s$,
(v) $\mathcal{E}_{r, s}^{(p)}(\mu ; X)=\mathcal{E}_{p r, p s}(\mu ; X)$,
(vi) $\mathcal{E}_{r, s}(\mu ; X) \mathcal{E}_{-r,-s}\left(\mu ; X^{-1}\right)=1,\left(X^{-1}:=\left(1 / x_{1}, \ldots, 1 / x_{n}\right)\right)$,
(vii) $\mathcal{E}_{r, s}^{s-r}(\mu ; X)=\mathcal{E}_{r, p}^{p-r}(\mu ; X) \mathcal{E}_{p, s}^{s-p}(\mu ; X)$.

Proof of (i). Assume first that $r \neq s$. Making use of (1.8) and (1.7) we obtain

$$
\mathcal{E}_{r, s}(\mu ; X)=\left[\frac{\int_{E_{n-1}} \exp [r(u \cdot Z)] \mu(u) d u}{\int_{E_{n-1}} \exp [s(u \cdot Z)] \mu(u) d u}\right]^{\frac{1}{r-s}} .
$$

Application of (2.1) with $f(t)=\exp (r t)$ and $g(t)=\exp (s t)$ gives

$$
\mathcal{E}_{r, s}(\mu ; X)=\left[\frac{\exp [r(c \cdot Z)]}{\exp [s(c \cdot Z)]}\right]^{\frac{1}{r-s}}=\exp (c \cdot Z)
$$

where $c=\left(c_{1}, \ldots, c_{n-1}, c_{n}\right)$ with $\left(c_{1}, \ldots, c_{n-1}\right) \in E_{n-1}$ and $c_{n}=1-c_{1}-\cdots-c_{n-1}$. Since $c \cdot Z=c_{1} \ln x_{1}+\cdots+c_{n} \ln x_{n}, \ln X_{\min } \leq c \cdot Z \leq \ln X_{\max }$. This in turn implies that $X_{\text {min }} \leq \exp (c \cdot Z) \leq X_{\max }$. This completes the proof of (i) when $r \neq s$. Assume now that $r=s$. It follows from (1.8) and (1.7) that

$$
\ln \mathcal{E}_{r, r}(\mu ; X)=\left[\frac{\int_{E_{n-1}}(u \cdot Z) \exp [r(u \cdot Z)] \mu(u) d u}{\int_{E_{n-1}} \exp [r(u \cdot Z)] \mu(u) d u}\right] .
$$

Application of (2.1) to the right side with $f(t)=t \exp (r t)$ and $g(t)=\exp (r t)$ gives

$$
\ln \mathcal{E}_{r, r}(\mu ; X)=\left[\frac{(c \cdot Z) \exp [r(c \cdot Z)]}{\exp [r(c \cdot Z)]}\right]=c \cdot Z
$$

Since $\ln X_{\min } \leq c \cdot Z \leq \ln X_{\max }$, the assertion follows. This completes the proof of (i).
Proof of (ii). The following result

$$
\begin{equation*}
\mathcal{L}\left(\mu ;(\lambda x)^{r}\right)=\lambda^{r} \mathcal{L}\left(\mu ; X^{r}\right) \tag{2.3}
\end{equation*}
$$

$(\lambda>0)$ is established in [9, (2.6)]. Assume that $r \neq s$. Using (1.8) and (2.3) we obtain

$$
\mathcal{E}_{r, s}(\mu ; \lambda x)=\left[\frac{\lambda^{r} \mathcal{L}\left(\mu ; X^{r}\right)}{\lambda^{s} \mathcal{L}\left(\mu ; X^{s}\right)}\right]^{\frac{1}{r-s}}=\lambda \mathcal{E}_{r, s}(\mu ; X) .
$$

Consider now the case when $r=s \neq 0$. Making use of (1.8) and (2.3) we obtain

$$
\begin{aligned}
\mathcal{E}_{r, r}(\mu ; \lambda X) & =\exp \left[\frac{d}{d r} \ln \mathcal{L}\left(\mu ;(\lambda X)^{r}\right)\right] \\
& =\exp \left[\frac{d}{d r} \ln \left(\lambda^{r} \mathcal{L}\left(\mu ; X^{r}\right)\right)\right] \\
& =\exp \left[\frac{d}{d r}\left(r \ln \lambda+\ln \mathcal{L}\left(\mu ; X^{r}\right)\right)\right]=\lambda \mathcal{E}_{r, r}(\mu ; X)
\end{aligned}
$$

When $r=s=0$, an easy computation shows that

$$
\begin{equation*}
\mathcal{E}_{0,0}(\mu ; X)=\prod_{i=1}^{n} x_{i}^{w_{i}} \equiv G(w ; X), \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{i}=\int_{E_{n-1}} u_{i} \mu(u) d u \tag{2.5}
\end{equation*}
$$

($1 \leq i \leq n$) are called the natural weights or partial moments of the measure μ and $w=$ $\left(w_{1}, \ldots, w_{n}\right)$. Since $w_{1}+\cdots+w_{n}=1, \mathcal{E}_{0,0}(\mu ; \lambda X)=\lambda \mathcal{E}_{0,0}(\mu ; X)$. The proof of (ii) is complete.

Proof of (iii). In order to establish the asserted property, let us note that the function $r \rightarrow$ $\exp (r t)$ is logarithmically convex (log-convex) in r. This in conjunction with Theorem B. 6 in [2], implies that a function $r \rightarrow \mathcal{L}\left(\mu ; X^{r}\right)$ is also log-convex in r. It follows from (1.8) that

$$
\ln \mathcal{E}_{r, s}(\mu ; X)=\frac{\ln \mathcal{L}\left(\mu ; X^{r}\right)-\ln \mathcal{L}\left(\mu ; X^{s}\right)}{r-s}
$$

The right side is the divided difference of order one at r and s. Convexity of $\ln \mathcal{L}\left(\mu ; X^{r}\right)$ in r implies that the divided difference increases with an increase in either r and s. This in turn implies that $\ln \mathcal{E}_{r, s}(\mu ; X)$ has the same property. Hence the monotonicity property of the mean $\mathcal{E}_{r, s}$ in its parameters follows. Now let $r=s$. Then (1.8) yields

$$
\ln \mathcal{E}_{r, r}(\mu ; X)=\frac{d}{d r}\left[\ln \mathcal{L}\left(\mu ; X^{r}\right)\right]
$$

Since $\ln \mathcal{L}\left(\mu ; X^{r}\right)$ is convex in r, its derivative with respect to r increases with an increase in r. This completes the proof of (iii).

Proof of (iv). Let $r \neq s$. It follows from (1.8) that

$$
\begin{aligned}
\frac{1}{r-s} \int_{s}^{r} \ln \mathcal{E}_{t, t}(\mu ; X) d t & =\frac{1}{r-s} \int_{s}^{r} \frac{d}{d t}\left[\ln \mathcal{L}\left(\mu ; X^{t}\right)\right] d t \\
& =\frac{1}{r-s}\left[\ln \mathcal{L}\left(\mu ; X^{r}\right)-\ln \mathcal{L}\left(\mu ; X^{s}\right)\right] \\
& =\ln \mathcal{E}_{r, s}(\mu ; X)
\end{aligned}
$$

Proof of (v). Let $r \neq s$. Using (2.2) and (1.8) we obtain

$$
\mathcal{E}_{r, s}^{(p)}(\mu ; X)=\left[\mathcal{E}_{r, s}\left(\mu ; X^{p}\right)\right]^{\frac{1}{p}}=\left[\frac{\mathcal{L}\left(X^{p r}\right)}{\mathcal{L}\left(X^{p s}\right)}\right]^{\frac{1}{p(r-s)}}=\mathcal{E}_{p r, p s}(\mu ; X) .
$$

Assume now that $r=s \neq 0$. Making use of (2.2), (1.8) and (1.7) we have

$$
\begin{aligned}
\mathcal{E}_{r, r}^{(p)}(\mu ; X) & =\exp \left[\frac{1}{p} \frac{d}{d r} \ln \mathcal{L}\left(\mu ; X^{p r}\right)\right] \\
& =\exp \left[\frac{1}{\mathcal{L}\left(\mu ; X^{p r}\right)} \int_{E_{n-1}}(u \cdot Z) \exp [p r(u \cdot Z)] \mu(u) d u\right] \\
& =\mathcal{E}_{p r, p r}(\mu ; X) .
\end{aligned}
$$

The case when $r=s=0$ is trivial because $\mathcal{E}_{0,0}(\mu ; X)$ is the weighted geometric mean of X.
Proof of (vi). Here we use (v) with $p=-1$ to obtain $\mathcal{E}_{r, s}\left(\mu ; X^{-1}\right)^{-1}=\mathcal{E}_{-r,-s}(\mu ; X)$. Letting $X:=X^{-1}$ we obtain the desired result.

Proof of (vii). There is nothing to prove when either $p=r$ or $p=s$ or $r=s$. In other cases we use (1.8) to obtain the asserted result. This completes the proof.

In the next theorem we give some inequalities involving the means under discussion.

Theorem 2.3. Let $r, s \in \mathbb{R}$. Then the following inequalities

$$
\begin{equation*}
\mathcal{E}_{r, r}(\mu ; X) \leq \mathcal{E}_{r, s}(\mu ; X) \leq \mathcal{E}_{s, s}(\mu ; X) \tag{2.6}
\end{equation*}
$$

are valid provided $r \leq s$. If $s>0$, then

$$
\begin{equation*}
\mathcal{E}_{r-s, 0}(\mu ; X) \leq \mathcal{E}_{r, s}(\mu ; X) \tag{2.7}
\end{equation*}
$$

Inequality (2.7) is reversed if $s<0$ and it becomes an equality if $s=0$. Assume that $r, s>0$ and let $p \leq q$. Then

$$
\begin{equation*}
\mathcal{E}_{r, s}^{(p)}(\mu ; X) \leq \mathcal{E}_{r, s}^{(q)}(\mu ; X) \tag{2.8}
\end{equation*}
$$

with the inequality reversed if $r, s<0$.
Proof. Inequalities (2.6) and (2.7) follow immediately from Part (iii) of Theorem 2.2. For the proof of (2.8), let $r, s>0$ and let $p \leq q$. Then $p r \leq q r$ and $p s \leq q s$. Applying Parts (v) and (iii) of Theorem 2.2, we obtain

$$
\mathcal{E}_{r, s}^{(p)}(\mu ; X)=\mathcal{E}_{p r, p s}(\mu ; X) \leq \mathcal{E}_{q r, q s}(\mu ; X)=\mathcal{E}_{r, s}^{(q)}(\mu ; X) .
$$

When $r, s<0$, the proof of (2.8) goes along the lines introduced above, hence it is omitted. The proof is complete.

3. The Mean $\mathcal{E}_{r, s}(b ; X)$

An important probability measure on E_{n-1} is the Dirichlet measure $\mu_{b}(u), b \in \mathbb{R}_{+}^{n}$ (see (1.9)). Its role in the theory of special functions is well documented in Carlson's monograph [2]. When $\mu=\mu_{b}$, the mean under discussion will be denoted by $\mathcal{E}_{r, s}(b ; X)$. The natural weights w_{i} (see (2.5)) of μ_{b} are given explicitly by

$$
\begin{equation*}
w_{i}=b_{i} / c \tag{3.1}
\end{equation*}
$$

$(1 \leq i \leq n)$, where $c=b_{1}+\cdots+b_{n}$ (see [2] (5.6-2)]). For later use we define $w=\left(w_{1}, \ldots, w_{n}\right)$. Recall that the weighted Dresher mean $D_{r, s}(p ; X)$ of order $(r, s) \in \mathbb{R}^{2}$ of $X \in \mathbb{R}_{+}^{n}$ with weights $p=\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}_{+}^{n}$ is defined as

$$
D_{r, s}(p ; X)= \begin{cases}{\left[\frac{\sum_{i=1}^{n} p_{i} x_{i}^{r}}{\sum_{i=1}^{n} p_{i} x_{i}^{s}}\right]^{\frac{1}{r-s}},} & r \neq s \tag{3.2}\\ \exp \left[\frac{\sum_{i=1}^{n} p_{i} x_{i}^{r} \ln x_{i}}{\sum_{i=1}^{n} p_{i} x_{i}^{r}}\right], & r=s\end{cases}
$$

(see, e.g., [1, Sec. 24]).
In this section we present two limit theorems for the mean $\mathcal{E}_{r, s}$ with the underlying measure being the Dirichlet measure. In order to facilitate presentation we need a concept of the Dirichlet average of a function. Following [2, Def. 5.2-1] let Ω be a convex set in \mathbb{C} and let $Y=\left(y_{1}, \ldots, y_{n}\right) \in \Omega^{n}, n \geq 2$. Further, let f be a measurable function on Ω. Define

$$
\begin{equation*}
F(b ; Y)=\int_{E_{n-1}} f(u \cdot Y) \mu_{b}(u) d u \tag{3.3}
\end{equation*}
$$

Then F is called the Dirichlet average of f with variables $Y=\left(y_{1}, \ldots, y_{n}\right)$ and parameters $b=\left(b_{1}, \ldots, b_{n}\right)$. We need the following result [2, Ex. 6.3-4]. Let Ω be an open circular disk in \mathbb{C}, and let f be holomorphic on Ω. Let $Y \in \Omega^{n}, c \in \mathbb{C}, c \neq 0,-1, \ldots$, and $w_{1}+\cdots+w_{n}=1$. Then

$$
\begin{equation*}
\lim _{c \rightarrow 0} F(c w ; Y)=\sum_{i=1}^{n} w_{i} f\left(y_{i}\right) \tag{3.4}
\end{equation*}
$$

where $c w=\left(c w_{1}, \ldots, c w_{n}\right)$.
We are in a position to prove the following.
Theorem 3.1. Let $w_{1}>0, \ldots, w_{n}>0$ with $w_{1}+\cdots+w_{n}=1$. If $r, s \in \mathbb{R}$ and $X \in \mathbb{R}_{+}^{n}$, then

$$
\lim _{c \rightarrow 0^{+}} \mathcal{E}_{r, s}(c w ; X)=D_{r, s}(w ; X)
$$

Proof. We use (1.7) and (3.3) to obtain $\mathcal{L}(c w ; X)=F(c w ; Z)$, where $Z=\ln X=\left(\ln x_{1}, \ldots, \ln x_{n}\right)$. Making use of (3.4) with $f(t)=\exp (t)$ and $Y=\ln X$ we obtain

$$
\lim _{c \rightarrow 0^{+}} \mathcal{L}(c w ; X)=\sum_{i=1}^{n} w_{i} x_{i}
$$

Hence

$$
\begin{equation*}
\lim _{c \rightarrow 0^{+}} \mathcal{L}\left(c w ; X^{r}\right)=\sum_{i=1}^{n} w_{i} x_{i}^{r} . \tag{3.5}
\end{equation*}
$$

Assume that $r \neq s$. Application of (3.5) to (1.8) gives

$$
\lim _{c \rightarrow 0^{+}} \mathcal{E}_{r, s}(c w ; X)=\lim _{c \rightarrow 0^{+}}\left[\frac{\mathcal{L}\left(c w ; X^{r}\right)}{\mathcal{L}\left(c w ; X^{s}\right)}\right]^{\frac{1}{r-s}}=\left[\frac{\sum_{i=1}^{n} w_{i} x_{i}^{r}}{\sum_{i=1}^{n} w_{i} x_{i}^{s}}\right]^{\frac{1}{r-s}}=D_{r, s}(w ; X)
$$

Let $r=s$. Application of (3.4) with $f(t)=t \exp (r t)$ gives

$$
\lim _{c \rightarrow 0^{+}} F(c w ; Z)=\sum_{i=1}^{n} w_{i} z_{i} \exp \left(r z_{i}\right)=\sum_{i=1}^{n} w_{i}\left(\ln x_{i}\right) x_{i}^{r}
$$

This in conjunction with (3.5) and (1.8) gives

$$
\lim _{c \rightarrow 0^{+}} \mathcal{E}_{r, r}(c w ; X)=\lim _{c \rightarrow 0^{+}} \exp \left[\frac{F(c w ; Z)}{\mathcal{L}\left(c w ; X^{r}\right)}\right]=\exp \left[\frac{\sum_{i=1}^{n} w_{i} x_{i}^{r} \ln x_{i}}{\sum_{i=1}^{n} w_{i} x_{i}^{r}}\right]=D_{r, r}(w ; X)
$$

This completes the proof.
Theorem 3.2. Under the assumptions of Theorem 3.1 one has

$$
\begin{equation*}
\lim _{c \rightarrow \infty} \mathcal{E}_{r, s}(c w ; X)=G(w ; X) \tag{3.6}
\end{equation*}
$$

Proof. The following limit (see [9, (4.10)])

$$
\begin{equation*}
\lim _{c \rightarrow \infty} \mathcal{L}(c w ; X)=G(w ; X) \tag{3.7}
\end{equation*}
$$

will be used in the sequel. We shall establish first (3.6) when $r \neq s$. It follows from (1.8) and (3.7) that

$$
\lim _{c \rightarrow \infty} \mathcal{E}_{r, s}(c w ; X)=\lim _{c \rightarrow \infty}\left[\frac{\mathcal{L}\left(c w ; X^{r}\right)}{\mathcal{L}\left(c w ; X^{s}\right)}\right]^{\frac{1}{r-s}}=\left[G(w ; X)^{r-s}\right]^{\frac{1}{r-s}}=G(w ; X)
$$

Assume that $r=s$. We shall prove first that

$$
\begin{equation*}
\lim _{c \rightarrow \infty} F(c w ; Z)=[\ln G(w ; X)] G(w ; X)^{r} \tag{3.8}
\end{equation*}
$$

where F is the Dirichlet average of $f(t)=t \exp (r t)$. Averaging both sides of

$$
f(t)=\sum_{m=0}^{\infty} \frac{r^{m}}{m!} t^{m+1}
$$

we obtain

$$
\begin{equation*}
F(c w ; Z)=\sum_{m=0}^{\infty} \frac{r^{m}}{m!} R_{m+1}(c w ; Z) \tag{3.9}
\end{equation*}
$$

where R_{m+1} stands for the Dirichlet average of the power function t^{m+1}. We will show that the series in (3.9) converges uniformly in $0<c<\infty$. This in turn implies further that as $c \rightarrow \infty$, we can proceed to the limit term by term. Making use of [2, 6.2-24)] we obtain

$$
\left|R_{m+1}(c w ; Z)\right| \leq|Z|^{m+1}, \quad m \in \mathbb{N}
$$

where $|Z|=\max \left\{\left|\ln x_{i}\right|: 1 \leq i \leq n\right\}$. By the Weierstrass M test the series in (3.9) converges uniformly in the stated domain. Taking limits on both sides of (3.9) we obtain with the aid of (3.4)

$$
\begin{aligned}
\lim _{c \rightarrow \infty} F(c w ; Z) & =\sum_{m=0}^{\infty} \frac{r^{m}}{m!} \lim _{c \rightarrow \infty} R_{m+1}(c w ; Z) \\
& =\sum_{m=0}^{\infty} \frac{r^{m}}{m!}\left(\sum_{i=1}^{n} w_{i} z_{i}\right)^{m+1} \\
& =[\ln G(w ; X)] \sum_{m=0}^{\infty} \frac{r^{m}}{m!}[\ln G(w ; X)]^{m} \\
& =[\ln G(w ; X)] \sum_{m=0}^{\infty} \frac{1}{m!}\left[\ln G(w ; X)^{r}\right]^{m} \\
& =[\ln G(w ; X)] G(w ; X)^{r}
\end{aligned}
$$

This completes the proof of (3.8). To complete the proof of (3.6) we use (1.8), (3.7), and (3.8) to obtain

$$
\lim _{c \rightarrow \infty} \ln \mathcal{E}_{r, r}(\mu ; X)=\lim _{c \rightarrow \infty} \frac{F(c w ; Z)}{\mathcal{L}\left(c w ; X^{r}\right)}=\frac{[\ln G(w ; X)] G(w ; X)^{r}}{G(w ; X)^{r}}=\ln G(w ; X) .
$$

Hence the assertion follows.

Appendix A. Total Positivity of $E_{r, s}^{r-s}(x, y)$

A real-valued function $h(x, y)$ of two real variables is said to be strictly totally positive on its domain if every $n \times n$ determinant with elements $h\left(x_{i}, y_{j}\right)$, where $x_{1}<x_{2}<\cdots<x_{n}$ and $y_{1}<y_{2}<\cdots<y_{n}$ is strictly positive for every $n=1,2, \ldots$ (see [5]).

The goal of this section is to prove that the function $E_{r, s}^{r-s}(x, y)$ is strictly totally positive as a function of x and y provided the parameters r and s satisfy a certain condition. For later use we recall the definition of the R-hypergeometric function $R_{-\alpha}\left(\beta, \beta^{\prime} ; x, y\right)$ of two variables $x, y>0$ with parameters $\beta, \beta^{\prime}>0$

$$
\begin{equation*}
R_{-\alpha}\left(\beta, \beta^{\prime} ; x, y\right)=\frac{\Gamma\left(\beta+\beta^{\prime}\right)}{\Gamma(\beta) \Gamma\left(\beta^{\prime}\right)} \int_{0}^{1} u^{\beta-1}(1-u)^{\beta^{\prime}-1}[u x+(1-u) y]^{-\alpha} d u \tag{A1}
\end{equation*}
$$

(see [2, (5.9-1)]).
Proposition A.1. Let $x, y>0$ and let $r, s \in \mathbb{R}$. If $|r|<|s|$, then $E_{r, s}^{r-s}(x, y)$ is strictly totally positive on \mathbb{R}_{+}^{2}.

Proof. Using (1.3) and (A1) we have

$$
\begin{equation*}
E_{r, s}^{r-s}(x, y)=R_{\frac{r-s}{s}}\left(1,1 ; x^{s}, y^{s}\right) \tag{A2}
\end{equation*}
$$

$(s(r-s) \neq 0)$. B. Carlson and J. Gustafson [3] have proven that $R_{-\alpha}\left(\beta, \beta^{\prime} ; x, y\right)$ is strictly totally positive in x and y provided $\beta, \beta^{\prime}>0$ and $0<\alpha<\beta+\beta^{\prime}$. Letting $\alpha=1-r / s$, $\beta=\beta^{\prime}=1, x:=x^{s}, y:=y^{s}$, and next, using (A2) we obtain the desired result.
Corollary A.2. Let $0<x_{1}<x_{2}, 0<y_{1}<y_{2}$ and let the real numbers r and satisfy the inequality $|r|<|s|$. If $s>0$, then
(A3)

$$
E_{r, s}\left(x_{1}, y_{1}\right) E_{r, s}\left(x_{2}, y_{2}\right)<E_{r, s}\left(x_{1}, y_{2}\right) E_{r, s}\left(x_{2}, y_{1}\right) .
$$

Inequality (A3) is reversed if $s<0$.
Proof. Let $a_{i j}=E_{r, s}^{r-s}\left(x_{i}, y_{j}\right)(i, j=1,2)$. It follows from Proposition A. 1 that $\operatorname{det}\left(\left[a_{i j}\right]\right)>0$ provided $|r|<|s|$. This in turn implies

$$
\left[E_{r, s}\left(x_{1}, y_{1}\right) E_{r, s}\left(x_{2}, y_{2}\right)\right]^{r-s}>\left[E_{r, s}\left(x_{1}, y_{2}\right) E_{r, s}\left(x_{2}, y_{1}\right)\right]^{r-s} .
$$

Assume that $s>0$. Then the inequality $|r|<s$ implies $r-s<0$. Hence (A3) follows when $s>0$. The case when $s<0$ is treated in a similar way.

References

[1] E.F. BECKENBACH AND R. BELLMAN, Inequalities, Springer-Verlag, Berlin, 1961.
[2] B.C. CARLSON, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
[3] B.C. CARLSON AND J.L. GUSTAFSON, Total positivity of mean values and hypergeometric functions, SIAM J. Math. Anal., 14(2) (1983), 389-395.
[4] P. CZINDER and Zs. PÁLES An extension of the Hermite-Hadamard inequality and an application for Gini and Stolarsky means, J. Ineq. Pure Appl. Math., 5(2) (2004), Art. 42. [ONLINE: http://jipam.vu.edu.au/article.php?sid=399].
[5] S. KARLIN, Total Positivity, Stanford Univ. Press, Stanford, CA, 1968.
[6] E.B. LEACH AND M.C. SHOLANDER, Extended mean values, Amer. Math. Monthly, 85(2) (1978), 84-90.
[7] E.B. LEACH AND M.C. SHOLANDER, Multi-variable extended mean values, J. Math. Anal. Appl., 104 (1984), 390-407.
[8] J.K. MERIKOWSKI, Extending means of two variables to several variables, J. Ineq. Pure Appl. Math., 5(3) (2004), Art. 65. [ONLINE:http://jipam.vu.edu.au/article.php?sid= 411].
[9] E. NEUMAN, The weighted logarithmic mean, J. Math. Anal. Appl., 188 (1994), 885-900.
[10] E. NEUMAN AND Zs. PÁLES, On comparison of Stolarsky and Gini means, J. Math. Anal. Appl., 278 (2003), 274-284.
[11] E. NEUMAN, C.E.M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ, The generalized Hadamard inequality, g-convexity and functional Stolarsky means, Bull. Austral. Math. Soc., 68 (2003), 303-316.
[12] E. NEUMAN AND J. SÁNDOR, Inequalities involving Stolarsky and Gini means, Math. Pannonica, 14(1) (2003), 29-44.
[13] Zs. PÁLES, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271-281.
[14] C.E.M. PEARCE, J. PEČARIĆ AND V. ŠIMIĆ, Functional Stolarsky means, Math. Inequal. Appl., 2 (1999), 479-489.
[15] J. PEČARIĆ AND V. ŠIMIĆ, The Stolarsky-Tobey mean in n variables, Math. Inequal. Appl., 2 (1999), 325-341.
[16] K.B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag., 48(2) (1975), 87-92.
[17] K.B. STOLARSKY, The power and generalized logarithmic means, Amer. Math. Monthly, 87(7) (1980), 545-548.
[18] M.D. TOBEY, A two-parameter homogeneous mean value, Proc. Amer. Math. Soc., 18 (1967), 9-14.

[^0]: ISSN (electronic): 1443-5756
 (C) 2005 Victoria University. All rights reserved.

 The author is indebted to a referee for several constructive comments on the first draft of this paper.
 201-04

