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Abstract

A generalization of the Stolarsky means to the case of several variables is pre-
sented. The new means are derived from the logarithmic mean of several vari-
ables studied in [9]. Basic properties and inequalities involving means under
discussion are included. Limit theorems for these means with the underlying
measure being the Dirichlet measure are established.
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1. Introduction and Notation
In 1975 K.B. Stolarsky [16] introduced a two-parameter family of bivariate
means named in mathematical literature as the Stolarsky means. Some authors
call these means the extended means (see, e.g., [6, 7]) or the difference means
(see [10]). For r, s ∈ R and two positive numbersx andy (x 6= y) they are
defined as follows [16]

(1.1) Er,s(x, y) =



[
s

r

xr − yr

xs − ys

] 1
r−s

, rs(r − s) 6= 0;

exp

(
−1

r
+

xr ln x− yr ln y

xr − yr

)
, r = s 6= 0;[

xr − yr

r(ln x− ln y)

] 1
r

, r 6= 0, s = 0;

√
xy, r = s = 0.

The meanEr,s(x, y) is symmetric in its parametersr ands and its variablesx
andy as well. Other properties ofEr,s(x, y) include homogeneity of degree
one in the variablesx andy and monotonicity inr ands. It is known thatEr,s

increases with an increase in eitherr or s (see [6]). It is worth mentioning that
the Stolarsky mean admits the following integral representation ([16])

(1.2) ln Er,s(x, y) =
1

s− r

∫ s

r

ln It dt
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(r 6= s), whereIt ≡ It(x, y) = Et,t(x, y) is the identric mean of ordert. J.
Pěcaríc and V. Šimíc [15] have pointed out that

(1.3) Er,s(x, y) =

[∫ 1

0

(
txs + (1− t)ys

) r−s
s dt

] 1
r−s

(s(r − s) 6= 0). This representation shows that the Stolarsky means belong
to a two-parameter family of means studied earlier by M.D. Tobey [18]. A
comparison theorem for the Stolarsky means have been obtained by E.B. Leach
and M.C. Sholander in [7] and independently by Zs. Páles in [13]. Other results
for the means (1.1) include inequalities, limit theorems and more (see, e.g.,
[17, 4, 6, 10, 12]).

In the past several years researchers made an attempt to generalize Stolarsky
means to several variables (see [6, 18, 15, 8]). Further generalizations include
so-called functional Stolarsky means. For more details about the latter class of
means the interested reader is referred to [14] and [11].

To facilitate presentation let us introduce more notation. In what follows, the
symbolEn−1 will stand for the Euclidean simplex, which is defined by

En−1 =
{
(u1, . . . , un−1) : ui ≥ 0, 1 ≤ i ≤ n− 1, u1 + · · ·+ un−1 ≤ 1

}
.

Further, letX = (x1, . . . , xn) be ann-tuple of positive numbers and letXmin =
min(X), Xmax = max(X). The following

(1.4) L(X) = (n− 1)!

∫
En−1

n∏
i=1

xui
i du = (n− 1)!

∫
En−1

exp(u · Z) du
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is the special case of the logarithmic mean ofX which has been introduced in
[9]. Hereu = (u1, . . . , un−1, 1−u1−· · ·−un−1) where(u1, . . . , un−1) ∈ En−1,
du = du1 . . . dun−1, Z = ln(X) = (ln x1, . . . , ln xn), andx · y = x1y1 + · · ·+
xnyn is the dot product of two vectorsx andy. Recently J. Merikowski [8]
has proposed the following generalization of the Stolarsky meanEr,s to several
variables

(1.5) Er,s(X) =

[
L(Xr)

L(Xs)

] 1
r−s

(r 6= s), whereXr = (xr
1, . . . , x

r
n). In the paper cited above, the author did not

prove thatEr,s(X) is the mean ofX, i.e., that

(1.6) Xmin ≤ Er,s(X) ≤ Xmax

holds true. Ifn = 2 andrs(r − s) 6= 0 or if r 6= 0 ands = 0, then (1.5)
simplifies to (1.1) in the stated cases.

This paper deals with a two-parameter family of multivariate means whose
prototype is given in (1.5). In order to define these means let us introduce more
notation. Byµ we will denote a probability measure onEn−1. The logarithmic
meanL(µ; X) with the underlying measureµ is defined in [9] as follows

(1.7) L(µ; X) =

∫
En−1

n∏
i=1

xui
i µ(u) du =

∫
En−1

exp(u · Z)µ(u) du.
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We define

(1.8) Er,s(µ; X) =


[
L(µ; Xr)

L(µ; Xs)

] 1
r−s

, r 6= s

exp

[
d

dr
lnL(µ; Xr)

]
, r = s.

Let us note that forµ(u) = (n − 1)!, the Lebesgue measure onEn−1, the first
part of (1.8) simplifies to (1.5).

In Section2 we shall prove thatEr,s(µ; X) is the mean value ofX, i.e., it
satisfies inequalities (1.6). Some elementary properties of this mean are also
derived. Section3 deals with the limit theorems for the new mean, with the
probability measure being the Dirichlet measure. The latter is denoted byµb,
whereb = (b1, . . . , bn) ∈ Rn

+, and is defined as [2]

(1.9) µb(u) =
1

B(b)

n∏
i=1

ubi−1
i ,

whereB(·) is the multivariate beta function,(u1, . . . , un−1) ∈ En−1, andun =
1−u1−· · ·−un−1. In the Appendix we shall prove that under certain conditions
imposed on the parametersr ands, the functionEr−s

r,s (x, y) is strictly totally
positive as a function ofx andy.
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2. Elementary Properties ofEr,s(µ; X)

In order to prove thatEr,s(µ; X) is a mean value we need the following version
of the Mean-Value Theorem for integrals.

Proposition 2.1. Let α := Xmin < Xmax =: β and letf, g ∈ C
(
[α, β]

)
with

g(t) 6= 0 for all t ∈ [α, β]. Then there existsξ ∈ (α, β) such that

(2.1)

∫
En−1

f(u ·X)µ(u) du∫
En−1

g(u ·X)µ(u) du
=

f(ξ)

g(ξ)
.

Proof. Let the numbersγ andδ and the functionφ be defined in the following
way

γ =

∫
En−1

g(u ·X)µ(u) du, δ =

∫
En−1

f(u ·X)µ(u) du,

φ(t) = γf(t)− δg(t).

Letting t = u · X and, next, integrating both sides against the measureµ, we
obtain ∫

En−1

φ(u ·X)µ(u) du = 0.

On the other hand, application of the Mean-Value Theorem to the last integral
gives

φ(c ·X)

∫
En−1

µ(u) du = 0,
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wherec = (c1, . . . , cn−1, cn) with (c1, . . . , cn−1) ∈ En−1 andcn = 1 − c1 −
· · · − cn−1. Lettingξ = c ·X and taking into account that∫

En−1

µ(u) du = 1

we obtainφ(ξ) = 0. This in conjunction with the definition ofφ gives the
desired result (2.1). The proof is complete.

The author is indebted to Professor Zsolt Páles for a useful suggestion re-
garding the proof of Proposition2.1.

For later use let us introduce the symbolE (p)
r,s (µ; X) (p 6= 0), where

(2.2) E (p)
r,s (µ; X) =

[
Er,s(µ; Xp)

] 1
p .

We are in a position to prove the following.

Theorem 2.2.LetX ∈ Rn
+ and letr, s ∈ R. Then

(i) Xmin ≤ Er,s(µ; X) ≤ Xmax,

(ii) Er,s(µ; λX) = λEr,s(µ; X), λ > 0, (λX := (λx1, . . . , λxn)),

(iii) Er,s(µ; X) increases with an increase in eitherr ands,

(iv) ln Er,s(µ; X) =
1

r − s

∫ r

s
ln Et,t(µ; X) dt , r 6= s,

(v) E (p)
r,s (µ; X) = Epr,ps(µ; X),
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(vi) Er,s(µ; X)E−r,−s(µ; X−1) = 1, (X−1 := (1/x1, . . . , 1/xn)),

(vii) Es−r
r,s (µ; X) = Ep−r

r,p (µ; X)Es−p
p,s (µ; X).

Proof of (i). Assume first thatr 6= s. Making use of (1.8) and (1.7) we obtain

Er,s(µ; X) =

[∫
En−1

exp
[
r(u · Z)

]
µ(u) du∫

En−1
exp

[
s(u · Z)

]
µ(u) du

] 1
r−s

.

Application of (2.1) with f(t) = exp(rt) andg(t) = exp(st) gives

Er,s(µ; X) =

[
exp

[
r(c · Z)

]
exp

[
s(c · Z)

]] 1
r−s

= exp(c · Z),

wherec = (c1, . . . , cn−1, cn) with (c1, . . . , cn−1) ∈ En−1 andcn = 1 − c1 −
· · · − cn−1. Sincec · Z = c1 ln x1 + · · ·+ cn ln xn, ln Xmin ≤ c · Z ≤ ln Xmax.
This in turn implies thatXmin ≤ exp(c · Z) ≤ Xmax. This completes the proof
of (i) whenr 6= s. Assume now thatr = s. It follows from (1.8) and (1.7) that

ln Er,r(µ; X) =

[∫
En−1

(u · Z) exp
[
r(u · Z)

]
µ(u) du∫

En−1
exp

[
r(u · Z)

]
µ(u) du

]
.

Application of (2.1) to the right side withf(t) = t exp(rt) andg(t) = exp(rt)
gives

ln Er,r(µ; X) =

[
(c · Z) exp

[
r(c · Z)

]
exp

[
r(c · Z)

] ]
= c · Z.
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Sinceln Xmin ≤ c · Z ≤ ln Xmax, the assertion follows. This completes the
proof of (i).

Proof of (ii). The following result

(2.3) L
(
µ; (λx)r

)
= λrL(µ; Xr)

(λ > 0) is established in [9, (2.6)]. Assume thatr 6= s. Using (1.8) and (2.3)
we obtain

Er,s(µ; λx) =

[
λrL(µ; Xr)

λsL(µ; Xs)

] 1
r−s

= λEr,s(µ; X).

Consider now the case whenr = s 6= 0. Making use of (1.8) and (2.3) we
obtain

Er,r(µ; λX) = exp

[
d

dr
lnL

(
µ; (λX)r

)]
= exp

[
d

dr
ln
(
λrL(µ; Xr)

)]
= exp

[
d

dr

(
r ln λ + lnL(µ; Xr)

)]
= λEr,r(µ; X).

Whenr = s = 0, an easy computation shows that

(2.4) E0,0(µ; X) =
n∏

i=1

xwi
i ≡ G(w; X),

http://jipam.vu.edu.au/
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where

(2.5) wi =

∫
En−1

uiµ(u) du

(1 ≤ i ≤ n) are called the natural weights or partial moments of the measureµ
andw = (w1, . . . , wn). Sincew1 + · · · + wn = 1, E0,0(µ; λX) = λE0,0(µ; X).
The proof of (ii) is complete.

Proof of (iii). In order to establish the asserted property, let us note that the
function r → exp(rt) is logarithmically convex (log-convex) inr. This in
conjunction with Theorem B.6 in [2], implies that a functionr → L(µ; Xr) is
also log-convex inr. It follows from (1.8) that

ln Er,s(µ; X) =
lnL(µ; Xr)− lnL(µ; Xs)

r − s
.

The right side is the divided difference of order one atr ands. Convexity of
lnL(µ; Xr) in r implies that the divided difference increases with an increase
in eitherr ands. This in turn implies thatln Er,s(µ; X) has the same property.
Hence the monotonicity property of the meanEr,s in its parameters follows.
Now let r = s. Then (1.8) yields

ln Er,r(µ; X) =
d

dr

[
lnL(µ; Xr)

]
.

SincelnL(µ; Xr) is convex inr, its derivative with respect tor increases with
an increase inr. This completes the proof of (iii).
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Proof of (iv). Let r 6= s. It follows from (1.8) that

1

r − s

∫ r

s

ln Et,t(µ; X) dt =
1

r − s

∫ r

s

d

dt

[
lnL(µ; X t)

]
dt

=
1

r − s

[
lnL(µ; Xr)− lnL(µ; Xs)

]
= ln Er,s(µ; X).

Proof of (v). Let r 6= s. Using (2.2) and (1.8) we obtain

E (p)
r,s (µ; X) =

[
Er,s(µ; Xp)

] 1
p =

[
L(Xpr)

L(Xps)

] 1
p(r−s)

= Epr,ps(µ; X).

Assume now thatr = s 6= 0. Making use of (2.2), (1.8) and (1.7) we have

E (p)
r,r (µ; X) = exp

[
1

p

d

dr
lnL(µ; Xpr)

]
= exp

[
1

L(µ; Xpr)

∫
En−1

(u · Z) exp
[
pr(u · Z)

]
µ(u) du

]
= Epr,pr(µ; X).

The case whenr = s = 0 is trivial becauseE0,0(µ; X) is the weighted
geometric mean ofX.

Proof of (vi). Here we use (v) withp = −1 to obtainEr,s(µ; X−1)−1 =
E−r,−s(µ; X). LettingX := X−1 we obtain the desired result.
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Proof of (vii). There is nothing to prove when eitherp = r or p = s or r = s.
In other cases we use (1.8) to obtain the asserted result. This completes the
proof.

In the next theorem we give some inequalities involving the means under
discussion.

Theorem 2.3.Let r, s ∈ R. Then the following inequalities

(2.6) Er,r(µ; X) ≤ Er,s(µ; X) ≤ Es,s(µ; X)

are valid providedr ≤ s. If s > 0, then

(2.7) Er−s,0(µ; X) ≤ Er,s(µ; X).

Inequality(2.7) is reversed ifs < 0 and it becomes an equality ifs = 0. Assume
that r, s > 0 and letp ≤ q. Then

(2.8) E (p)
r,s (µ; X) ≤ E (q)

r,s (µ; X)

with the inequality reversed ifr, s < 0.

Proof. Inequalities (2.6) and (2.7) follow immediately from Part (iii) of Theo-
rem2.2. For the proof of (2.8), let r, s > 0 and letp ≤ q. Thenpr ≤ qr and
ps ≤ qs. Applying Parts (v) and (iii) of Theorem2.2, we obtain

E (p)
r,s (µ; X) = Epr,ps(µ; X) ≤ Eqr,qs(µ; X) = E (q)

r,s (µ; X).

Whenr, s < 0, the proof of (2.8) goes along the lines introduced above, hence
it is omitted. The proof is complete.
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3. The MeanEr,s(b; X)
An important probability measure onEn−1 is the Dirichlet measureµb(u), b ∈
Rn

+ (see (1.9)). Its role in the theory of special functions is well documented
in Carlson’s monograph [2]. When µ = µb, the mean under discussion will
be denoted byEr,s(b; X). The natural weightswi (see (2.5)) of µb are given
explicitly by

(3.1) wi = bi/c

(1 ≤ i ≤ n), wherec = b1 + · · ·+ bn (see [2, (5.6-2)]). For later use we define
w = (w1, . . . , wn). Recall that the weighted Dresher meanDr,s(p; X) of order
(r, s) ∈ R2 of X ∈ Rn

+ with weightsp = (p1, . . . , pn) ∈ Rn
+ is defined as

(3.2) Dr,s(p; X) =



[∑n
i=1 pix

r
i∑n

i=1 pixs
i

] 1
r−s

, r 6= s

exp

[∑n
i=1 pix

r
i ln xi∑n

i=1 pixr
i

]
, r = s

(see, e.g., [1, Sec. 24]).
In this section we present two limit theorems for the meanEr,s with the un-

derlying measure being the Dirichlet measure. In order to facilitate presentation
we need a concept of the Dirichlet average of a function. Following [2, Def. 5.2-
1] let Ω be a convex set inC and letY = (y1, . . . , yn) ∈ Ωn, n ≥ 2. Further, let
f be a measurable function onΩ. Define

(3.3) F (b; Y ) =

∫
En−1

f(u · Y )µb(u) du.

http://jipam.vu.edu.au/
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ThenF is called the Dirichlet average off with variablesY = (y1, . . . , yn) and
parametersb = (b1, . . . , bn). We need the following result [2, Ex. 6.3-4]. Let
Ω be an open circular disk inC, and letf be holomorphic onΩ. Let Y ∈ Ωn,
c ∈ C, c 6= 0,−1, . . ., andw1 + · · ·+ wn = 1. Then

(3.4) lim
c→0

F (cw; Y ) =
n∑

i=1

wif(yi),

wherecw = (cw1, . . . , cwn).
We are in a position to prove the following.

Theorem 3.1.Letw1 > 0, . . . , wn > 0 with w1 + · · ·+ wn = 1. If r, s ∈ R and
X ∈ Rn

+, then
lim

c→0+
Er,s(cw; X) = Dr,s(w; X).

Proof. We use (1.7) and (3.3) to obtainL(cw; X) = F (cw; Z), whereZ =
ln X = (ln x1, . . . , ln xn). Making use of (3.4) with f(t) = exp(t) andY =
ln X we obtain

lim
c→0+

L(cw; X) =
n∑

i=1

wixi.

Hence

(3.5) lim
c→0+

L(cw; Xr) =
n∑

i=1

wix
r
i .

Assume thatr 6= s. Application of (3.5) to (1.8) gives

lim
c→0+

Er,s(cw; X) = lim
c→0+

[
L(cw; Xr)

L(cw; Xs)

] 1
r−s

=

[∑n
i=1 wix

r
i∑n

i=1 wixs
i

] 1
r−s

= Dr,s(w; X).
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Let r = s. Application of (3.4) with f(t) = t exp(rt) gives

lim
c→0+

F (cw; Z) =
n∑

i=1

wizi exp(rzi) =
n∑

i=1

wi(ln xi)x
r
i .

This in conjunction with (3.5) and (1.8) gives

lim
c→0+

Er,r(cw; X) = lim
c→0+

exp

[
F (cw; Z)

L(cw; Xr)

]
= exp

[∑n
i=1 wix

r
i ln xi∑n

i=1 wixr
i

]
= Dr,r(w; X).

This completes the proof.

Theorem 3.2.Under the assumptions of Theorem3.1one has

(3.6) lim
c→∞

Er,s(cw; X) = G(w; X).

Proof. The following limit (see [9, (4.10)])

(3.7) lim
c→∞

L(cw; X) = G(w; X)

will be used in the sequel. We shall establish first (3.6) whenr 6= s. It follows
from (1.8) and (3.7) that

lim
c→∞

Er,s(cw; X) = lim
c→∞

[
L(cw; Xr)

L(cw; Xs)

] 1
r−s

=
[
G(w; X)r−s

] 1
r−s = G(w; X).
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Assume thatr = s. We shall prove first that

(3.8) lim
c→∞

F (cw; Z) =
[
ln G(w; X)

]
G(w; X)r,

whereF is the Dirichlet average off(t) = t exp(rt). Averaging both sides of

f(t) =
∞∑

m=0

rm

m!
tm+1

we obtain

(3.9) F (cw; Z) =
∞∑

m=0

rm

m!
Rm+1(cw; Z),

whereRm+1 stands for the Dirichlet average of the power functiontm+1. We
will show that the series in (3.9) converges uniformly in0 < c < ∞. This in
turn implies further that asc → ∞, we can proceed to the limit term by term.
Making use of [2, 6.2-24)] we obtain

|Rm+1(cw; Z)| ≤ |Z|m+1, m ∈ N,

where|Z| = max
{
| ln xi| : 1 ≤ i ≤ n

}
. By the WeierstrassM test the series

in (3.9) converges uniformly in the stated domain. Taking limits on both sides
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of (3.9) we obtain with the aid of (3.4)

lim
c→∞

F (cw; Z) =
∞∑

m=0

rm

m!
lim
c→∞

Rm+1(cw; Z)

=
∞∑

m=0

rm

m!

(
n∑

i=1

wizi

)m+1

=
[
ln G(w; X)

] ∞∑
m=0

rm

m!

[
ln G(w; X)

]m
=
[
ln G(w; X)

] ∞∑
m=0

1

m!

[
ln G(w; X)r

]m
=
[
ln G(w; X)

]
G(w; X)r.

This completes the proof of (3.8). To complete the proof of (3.6) we use (1.8),
(3.7), and (3.8) to obtain

lim
c→∞

ln Er,r(µ; X) = lim
c→∞

F (cw; Z)

L(cw; Xr)

=

[
ln G(w; X)

]
G(w; X)r

G(w; X)r
= ln G(w; X).

Hence the assertion follows.
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A. Appendix: Total Positivity of Er−s
r,s (x, y)

A real-valued functionh(x, y) of two real variables is said to be strictly totally
positive on its domain if everyn×n determinant with elementsh(xi, yj), where
x1 < x2 < · · · < xn andy1 < y2 < · · · < yn is strictly positive for every
n = 1, 2, . . . (see [5]).

The goal of this section is to prove that the functionEr−s
r,s (x, y) is strictly

totally positive as a function ofx andy provided the parametersr ands satisfy a
certain condition. For later use we recall the definition of theR-hypergeometric
functionR−α(β, β′; x, y) of two variablesx, y > 0 with parametersβ, β′ > 0

(A1) R−α(β, β′; x, y) =
Γ(β + β′)

Γ(β)Γ(β′)

∫ 1

0

uβ−1(1−u)β′−1
[
ux+(1−u)y

]−α
du

(see [2, (5.9-1)]).

Proposition A.1. Let x, y > 0 and letr, s ∈ R. If |r| < |s|, thenEr−s
r,s (x, y) is

strictly totally positive onR2
+.

Proof. Using (1.3) and(A1) we have

(A2) Er−s
r,s (x, y) = R r−s

s
(1, 1; xs, ys)

(s(r−s) 6= 0). B. Carlson and J. Gustafson [3] have proven thatR−α(β, β′; x, y)
is strictly totally positive inx andy providedβ, β′ > 0 and0 < α < β + β′.
Letting α = 1 − r/s, β = β′ = 1, x := xs, y := ys, and next, using(A2) we
obtain the desired result.
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Corollary A.2. Let0 < x1 < x2, 0 < y1 < y2 and let the real numbersr ands
satisfy the inequality|r| < |s|. If s > 0, then

(A3) Er,s(x1, y1)Er,s(x2, y2) < Er,s(x1, y2)Er,s(x2, y1).

Inequality(A3) is reversed ifs < 0.

Proof. Let aij = Er−s
r,s (xi, yj) (i, j = 1, 2). It follows from PropositionA.1 that

det
(
[aij]

)
> 0 provided|r| < |s|. This in turn implies[
Er,s(x1, y1)Er,s(x2, y2)

]r−s
>
[
Er,s(x1, y2)Er,s(x2, y1)

]r−s
.

Assume thats > 0. Then the inequality|r| < s impliesr − s < 0. Hence(A3)
follows whens > 0. The case whens < 0 is treated in a similar way.
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