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In this paper we consider the given linear positive operatbrs)..>1 and with

their help, we construct linear positive operat®fs,,)»>1. We study the con-
vergence, the evaluation for the rate of convergence in terms of the first modulus
of smoothness for the operatdiS.,. ) m>1.
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1. Introduction

In this section, we recall some notions and operators which we will use in this article.
Let N be the set of positive integers ably = NU {0}. Form € N, let B,, :
C([0,1]) — C([0, 1]) be Bernstein operators, defined for any functfoa C(]0, 1])

by

m

k: Linear Positive Operators
(11) (Bmf) (l’) - Z pm’k (LL’)f (E) ’ Ovidiu T. Pop and Mircea D. Farcas
k=0

vol. 10, iss. 1, art. 30, 2009

wherep,, ,(x) are the fundamental polynomials of Bernstein, defined as follows

(1.2) P(z) = (TZ) 2k (1 — z)m*, Title Page
Contents
foranyz € [0,1] and anyk € {0,1,...,m} (see p] or [24]). For the following
construction, seelp]. Define the natural numben, by K L
max(1,-[6)), if BeR-Z ‘ ¢
max(1,1—g), if pBeZ, Page 3 of 18
where[z], {x} denote the integer and fractional parts respectively of a real number G e
x. Full Screen
For the real numbe#, we have that
Close
(1.4) m+ 03>
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for any natural numbet,, m > m,, where
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For the real numbers, 3, « > 0, we note

. .
(1.6) ple?) = 5 toass
14 O‘V—;ﬁ , If a> (.

For the real numbers andj3, o > 0, we have that < p(*% and
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k+ «
B
(17) 0 S m + ﬁ S lu(a ) Ovidiu T. Pop and Mircea D. Farcas
vol. 10, iss. 1, art. 30, 2009
for any natural number:, m > mq and for anyk € {0,1,...,m}.

For the real numbers and 3, a > 0, my and u(*? defined by (.3) — (1.6),

let the operator;”” : C([0, u*?]) — C([0,1]), defined for any functiorf € Title Page

C([0, p?)]) by Contents
m kL a <« »

1.8 P(a’ﬁ) == m ( ) )

(1.8) (P7f) (@) kzzop RON by —

for any natural numbem, m > mg and for anyz € [0,1]. These operators are RS 1 @l

called Stancu operators, and were introduced and studied in 1969 by D.D. Stancu in Go Back

the paper23]. In [23], the domain of definition of Stancu’s operators(ig[0, 1])

and the numbers and 3 verify the condition) < o < 3. Full Screen

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduceddind sequence of Close

linear positive operatord.,,,)m>1, L, : C([0,00)) — Cp([0,0)), defined for any
function f € C([0,00)) by journal of inequalities
in pure and applied
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for anyx € [0,00) and anym € N, whereCg([0,0)) = {f|f:[0,00) — R, fis
bounded and continuous ¢ co)}.

Form € N, consider the operator$,, : C; ([0,00)) — C([0,00)) defined for
any functionf € C ([0, 00)) by

(110 Sud) () =y B (L),
k=0 '

foranyz € [0, c0), where

2 ([0, 00)) = {f € C([0,00)) : lim L)

z—oo | + 1‘2

exists and is finite} )

The operator$sS,,),,-, are called Mirakjan-Favard-Szasz operators and were in-
troduced in 1941 by G. M. Mirakjan irLp).

They were intensively studied by J. Favard in 19448fgind O. Szasz in 1950 in
[25].

Form € N, the operatofl,,, : C5([0,00)) — C(][0,00)) is defined for any
function f € C, ([0, 00)) by

(1.11) (Vi) () = (1 +fﬂ>_m§: (m+: ) 1) (1ix)kf (%> ’

k=0

for anyz € [0, 00).

The operatorgV;, ), -, are named Baskakov operators and they were introduced
in 1957 by V. A. Baskakov in7].

W. Meyer-Koénig and K. Zeller have introduced ihl] a sequence of linear and
positive operators. After a slight adjustment, given by E.W. Cheney and A. Sharma
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in [6], these operators take the fori, : B ([0,1)) — C([0,1)), defined for any
functionf € B([0,1)) by

12 Zw =Y (mz k) (1—a)" ot (L) ,

P m+k

for anym € N and for anyz € [0, 1).
These operators are called the Meyer-Konig and Zeller operators.
Observe that,, : C ([0,1]) — C ([0,1]), m € N.
In [10], M. Ismail and C.P. May consider the operators,, ),,,>1.
Form € N, R,, : C([0,00)) — C([0,00)) is defined for any functiory €
C([0,00)) by

%) k—1 k kx
(1.13) (R f)() = e 155y i Z' - ( : ) el <ﬁ>
k=0 '

1+=x m

foranyz € [0, 00).

We considerl C R, I an interval and we shall use the following function sets:

E(I), F(I) which are subsets of the set of real functions defined ,0B(/) =
{fIf:1—R,fboundedon'}, C(I)={f|f:1— R, fcontinuous on } and
Cp(I)=B(I)nC(I).

If f € B(I), then the first order modulus of smoothnessfof the function
w(f; ) : [0,00) — R defined for anyy > 0 by

(114)  w(f;6) = sup{If()) — fa")] : asa” € I, |' — | < 6}
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2. Preliminaries

For the following construction and result séé] and [18], wherep,, = m for any
m € Norp,, =ocforanym € N. LetI,J C [0,00) be intervals withl N J # (.

For anym € N andk € {0,1,...,p,,} N Ny consider the nodes,,, € I and the
functionsy,, . : J — R with the property thap,,, x(z) > 0 foranyz € J. Let E(I)

and F'(J) be subsets of the set of real functions defined orespectively/ so that
the sum

exists for anyf € E(I), z € Jandm € N. For anyz € I consider the functions
e I — R, Y, (t) =t —xande; : [ — R, e;(t) =t foranyt € I,i € {0,1,2}.
In the following, we suppose that for anyc [ we havey, € E(I) ande; € E(I),
i€{0,1,2}.

Form € N, let the given operatak,, : E(I) — F(J) defined by

2.1) (Lonf)(@) =Y (@) f (@m1)
k=0

with the property that the convergence

(22) Jim (L, f)(z) = /()

is uniform on any compadk’ C I nJ, foranyf € E(I)NC(I).

Remarkl. From .2), for the operator$L,,).,>1 we have that the following con-
vergences

(2.3) lim (Lpe;)(z) = ei(z),

m—0o0
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i€{0,1,2} and
(2.4) 1§nm(Lm¢§)($) =0

are uniform on any compaét C 1 N J.
Remark2. From Remarkl it results that for any compaét C I N J the sequences

(U (K))m>1y (U (K))m>1, (0 (K))m>1 depending ork” exist, so that the conver-
gences

(2.5) 1im uy(K) = lim v, (K) = lim wy,(K) =0
are uniform onk and

(2.6) [(Lineo)(z) — 1] < up(K),

(2.7) [(Lmer)(z) — x| < vp(K),

(2.8) (Lint2)(x) < wp(K),

foranyz € K and anym € N.
In the following, form € N andk € {0,1,...,p,} NNy we consider the nodes
Ym € I SO that

(29) Q= sup |xm,kz - ym,k’| < o0
ke{0,1,....pm }NNo

foranym € N and
(2.10) lim «,, =0.

m—00

Form € Nandk € {0,1,...,p,} NNy we note thaty,, x = Zpkx — Ym.k-
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Definition 2.1. For m € N, define the operatok,,, : E(I) — F(J) by

Pm
(2.11) (Kn)@) =Y pma)f (),
k=0
foranyx € I and anyf € E(I).
Remark3. Similar ideas to the construction above can be found in the recent papers Linear Positive Operators
[9] and [13] Ovidiu T. Pop and Mircea D. Farcas
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3. Main Results

In this section, we study the operators definedy 7).

Theorem 3.1.Forany f € E(I) N C(I) we have that the convergence

(3.1)

lim (Ko f)(x) = f(x)

m—00

is uniform on any compact C I N J.

Proof. Forz €¢ K andm € N we have that

(Kmto) (x )=(/C e2)(x) — 22(Kpn 61)( ) + 2*(Kimeo) ()

—Z(Pmk

= Z P o () (T — Qi)
k=0

Pm
— 2 Z Pon k() (T — Qo) + 27 Y D)

-2 g Spmk xm,kOém,k

_szgomk

( )amk‘i‘w Z@mk

k=0

Pm

ymk+x ngmk

k=0

DPm

k=0

xm,k
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< (L) (x) + 20 (Limer ) (@) + (a2, + 2z ) (Lieo) ().
Taking Remarkl and Remark into account, it results thag(1) holds. O

Theorem 3.2.1f f € E(INJ)NC(INJ), thenforanyr € K = [a,b] C INJ
and anym € N, we have that

(3.2) |(Knf)(z) = f(z)| < f ()] [(Lmeo(z)) = 1] + ((Lmeo)(x) + D (f; Om,e)
< Muy (K) + (2 + wn (K))w(f; 0m),
where
Oma =V (Lim€0) (@) [(Lnth2) () + 204 (Liner) () + (02, + 2x0u,) (Limeo) (2)],
6m = V(1 + U (K)) [y (K) + 200, (b 4 00 (K) 4 (2, + 2b0iy,) (1 + t (K))]
and

M =sup{|f(x)|: z € K}.

Proof. We apply the Shisha-Mond Theorem (s@@][or [24]) for the operatorC,,
and taking the inequality from the proof of the Theoréminto account verified by
(K.»¥?)(z) and Remark, the inequality §.2) follows. O

Corollary 3.3. If
pm

(3.3) Z Omr(xr) =1
k=0

foranyz € J,thenforanyf € E(INJ)NnC(INJ),anyz € K = [a,b] C INJ
and anym € N we have that

(3.4) (K f)(2) = f(2)] < 20(f;0ma) < 2w(f;5,,)
whereé! = \/wm(K) + 20,05, (K) 4+ a2, + 4ba,.
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Proof. It results from Theoren®.2, becausé L,,ey)(z) = 1, for anym € N and
x € J, sou,(K) =0, foranym € N. O

Remarkd4. From the conditions of Theoref2we have that

(K f)(@) = f(2)] < Mg (K) + (2 4 um (K))w(f; 0m)

and becausdim §,, = 0, it results that the convergendém (K, f)(z) = f(z) is

m—00

uniform on K.

In the following, by particularisation of the sequengg,, m € N, k € {0, 1,
.., pm} NNy and applying Theorerfi.1 and Corollary3.3, we can obtain a conver-
gence and approximation theorem for the new operators. In Applicatieris let
Pm =M, O () = pmi(x), wherem e N, k € {0,1,...,m} andK = [0, 1].

Application 1. If I = J = [0,1], E(I) = F(J) = C([0,1]), Zmr = £, m € N,
k € {0,1,...,m}, we obtain the Bernstein operators. We have that[0, 1]) = 0,
vm([0,1]) = 0andw,, ([0, 1]) = +—, m € N. We consider the nodes, ,, = kf:“),
1

meN, ke {0,1,...,m}. Then it is verified immediately that,, = Ry et
m € Nand lim «,, = 0. In this case, the operato(s,,),.>1 have the form

- k(k+1

- $ o ()
k=0
/ 5 2 3

fec(o,1]),z €[0,1],m € Nandy, < \/4m + e < B M € N.
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Application 2. We study a particular case of the Stancu operators.d.et 10 and

8 = —5. We obtain/ = [0, 22] and for anyf € C([0,22]), z € [0,1] andm € N
- 2k + 20
(10,-1/2) _
(FE20) ()= 3 st (5).
. 4k+40)

We consider the nodes, j
the form

—z - In this case, the operatordC,, ),.>1 have

S ().

wher;f e C([0,22]), z € [0,1], m € Nandd/, < ‘/36"13*2(2;32’”12) 00mtsl o A
m € N.

Application 3. If I = J = [0,00), E(I) = C([0,00)), F(J) = C([0,00)), K =
0,0, pm = 00, Ty = %, Omr(z) =€ ’m(”;j)k m € N, k € Ny, we obtain the
Mirakjan-Favard-Szész operators and we have thgtK) = 0, v,,(K) = 0 and
wn(K) =2, m e N We consider the nodeg, , = 25 1 e N, k € Ny and

m@k+1) T
we have thatx m € N. In this case, the operato(gC,,).,>1 have the form

2 7

I 2. (mx)k 2k(k+1)
(Kmf)(z) =€ l; ! f(m(2k+1))’
wheref € C5([0,0)), € [0,00), m € Nandé,, = /2 + L. meN,
Application 4. Let] = J = [0,00), E(I) = Cy(]0,00)), F(J) = C([0,00)),
K =1[0,b], pm = 00, Tk = 2, pr(z) = (1 4+ 2)~ m(m+,f Y (Hix)k,m eN ke
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Ny. In this case, we obtain the Baskakov operators and we haveufhdt’) = 0,
U (K) = 0 andw,, (K) = 202 m e N, We consider the nodes, , = YA H1k2,
m € N, k € Ny and we have that,, 2 The operator$/C,,)»>1 have the form

(K f)(z) = (1+m)_m§: (m+,f— 1) (1ix)kf (m) ,

2m
k=0

:\/(HHQ\[)—F ==, m €N
2m=" )

Application 5. If I = J = [0,00), E(I) = F(J) = C([0,00)), K = [0,b], p, =

k
o0y Tk = m?

wheref € Cy(]0,00)), x € [0,00), m € Nandd/,

m(m+ k)R e\ e
Om(T) = ol T4z e e m e N,k € Ny,

we obtain the Ismail-May operators and we have thatK) = 0, v,,(K) = 0 and

3
— VR e N ke N,

m

3+ In this case, the operato(¥C,,),,>1 have the form

W (K) = 2 oy N We consider the nodes,
and we have thatz

(m+ k)

o k—1 k 2
: () et (P2 ).
— ! 1+ m

(Knf)a) =75y =3

wheref € C([0,00)), m € Nand¢/, = \/M + 555, meN.

3m
Application 6. We consider/ = J = [0,00), E(I) = F(J) = Cg([0,00)),
K = [O7b], Pm = My Tk = ﬁ, gom,k(x) = m(?)ﬂc, m € N, k €
{0,1,...,m}. In this case we obtain the Bleimann-Butzer-Hahn operators and we
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have thatu,,(K) = 0, v,(K) = b(1%)" andw,(K) = “250° 1 ¢ N We

consider the nodeg,,. = 222, m € N, k € {0,1,...,m}, where(B3,,),>1 is
a sequence of positive real numbers such that m(1 — 3,,) = 0 and we have

, m € N. The operatorg/C,,),,>1 have the form

am =m|l — G,

i) = Y (F)ots ().

wherez € [0,00), m € N, f € Cp([0,0)).

Application 7. If I = J = [0,1], E({) = B([0,1]), F(J) = C([0,1)), K =
0,1], pm = 00, Tip = mLJrk, Omi(T) = (m:k)(l — )"k m e N, k € N,
we obtain the Meyer-Konig and Zeller operators and we have 4h4fo0, 1]) = 0,
v ([0,1]) = 0 and w,, ([0, 1]) = m € N. We consider the nodeg, , =

1
4(m—+1)?

Mbm_ m e N, k € Ny, where(5,,)>1 IS a sequence of positive real numbers so

m+k+67rL’
that lim —2=— = 0. Then itis verified immediately that, = —°=— m e N and

m—o00o m+LBm m+LBm’

the operator§X,,).,>1 have the form

k@) =3 (") mtaty (),

k=0

_ 1 Bon (4m-+55,m)
wheref € B([0,1]),z € [0,1], m € NandJ,, = \/4(m+1) + S mEeN.
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