
Journal of Inequalities in Pure and
Applied Mathematics

http://jipam.vu.edu.au/

Volume 6, Issue 1, Article 15, 2005

INEQUALITIES INVOLVING LOGARITHMIC, POWER AND SYMMETRIC
MEANS

EDWARD NEUMAN

DEPARTMENT OFMATHEMATICS

SOUTHERN ILLINOIS UNIVERSITY

CARBONDALE, IL 62901-4408, USA.
edneuman@math.siu.edu

URL: http://www.math.siu.edu/neuman/personal.html

Received 26 October, 2004; accepted 29 November, 2004
Communicated by P.S. Bullen

ABSTRACT. Inequalities involving the logarithmic mean, power means, symmetric means, and
the Heronian mean are derived. They provide generalizations of some known inequalities for the
logarithmic mean and the power means.
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1. I NTRODUCTION AND NOTATION

Let x > 0 andy > 0. In order to avoid trivialities we will always assume thatx 6= y. The
logarithmic mean ofx andy is defined as

(1.1) L(x, y) =
x− y

ln x− ln y
.

Other means used in this paper include the extended logarithmic meanEp, where

(1.2) Ep(x, y) =



[
xp − yp

p(x− y)

] 1
p−1

, p 6= 0, 1;

L(x, y), p = 0;

exp

(
−1 +

x ln x− y ln y

x− y

)
, p = 1,
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the power meanAp, where

(1.3) Ap(x, y) =


(

xp + yp

2

) 1
p

, p 6= 0;

G(x, y), p = 0

with G(x, y) =
√

xy being the geometric mean ofx andy, and the symmetric meansk, where

(1.4) sk(x, y; α) =
1

k

k∑
i=1

x1−αiyαi ,

(α = (α1, . . . , αk), 0 ≤ α1 < · · · < αk ≤ 1). A special case of (1.4) is the Heronian meanH,
where

(1.5) H(x, y) =
x + (xy)1/2 + y

3
.

Substitutingk = 3 andα =
(
0, 1

2
, 1

)
in (1.4) we obtains3(x, y; α) = H(x, y).

The following result is known

(1.6)
1

2

(
x1/4y3/4 + x3/4y1/4

)
< L(x, y) < A1/3(x, y).

The first inequality in (1.6) has been established by B. Carlson [1], while the second one is
proven in [3]. It is worth mentioning that the left inequality in (1.6) has been sharpened by A.
Pittenger [6] who proved that

(1.7)
1

2
(xα1yα2 + xα2yα1) < L(x, y),

whereα1 =
(
1− 1√

3

)/
2, α2 = 1− α1. Let us note that the numbersα1 andα2 are the roots

of the second-degree Legendre polynomialP2(t) = t2− t+ 1
6

on [0, 1]. The inequality (1.7) can
be derived easily by applying the two-point Gauss-Legendre quadrature formula to the integral
formula for the logarithmic mean

L(x, y) =

∫ 1

0

xty1−tdt

(see [4, (2.1)]).
The goal of this note is to obtain new inequalities which involve the logarithmic mean, power

means, and the symmetric means. These results are given in the next section and they provide
improvements and generalizations of known results.

2. M AIN RESULTS

In what follows we will always assume thatαi = (2i − 1)/2k (i = 1, 2, . . . , k) and we will
write sk(x, y) instead ofsk(x, y; α).

We are in a position to prove the following.

Theorem 2.1.Letx andy denote positive numbers and lett ∈ R. Then the following inequali-
ties

(2.1)
[
A2t(x, y)G2(x, y)

]2t/3 ≤ L(x, y)E2t−1
2t (x, y) ≤

(
A2t/3(x, y)

)2t

are valid. They become equalities ift = 0.
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Proof. Let λ = t ln(x/y) (t 6= 0). We substitutex := eλ andy := e−λ into (1.1) and next
multiply the numerator and denominator by(xy)t(x− y) to obtain

(2.2) L(eλ, e−λ) =
L(x, y)E2t−1

2t (x, y)

G2t(x, y)
.

Let A(x, y) = A1(x, y). Lettingx := eλ, y := e−λ and multiplying and dividing by(xy)t we
obtain easily

(2.3) A(eλ, e−λ) =

(
A2t(x, y)

G(x, y)

)2t

.

Also, we need the following formula

(2.4) A1/3(e
λ, e−λ) =

(
A2t/3(x, y)

G(x, y)

)2t

.

We have

A
1/3
1/3(e

λ, e−λ) =
1

2

[(
x

y

) t
3

+
(y

x

) t
3

]

=

(xy)
t
3

[(
x

y

) t
3

+
(y

x

) t
3

]
2

· 1

(xy)
t
3

=
x

2t
3 + y

2t
3

2
· 1

(xy)
t
3

=

(
A2t/3(x, y)

G(x, y)

) 2t
3

.

Hence (2.4) follows. In order to establish the inequalities (2.1) we employ the following ones

(2.5)
[
A(u, v)G2(u, v)

] 1
3 ≤ L(u, v) ≤ A1/3(u, v)

(u, v > 0). The first inequality in (2.5) has been proven by E. Leach and M. Sholander in [2]
(see also [5, (3.10)] for its generalization) while the second one is due to T. Lin [3]. To complete
the proof of inequalities (2.1) we substituteu = eλ andv = e−λ into (2.5) and next utilize (2.3)
and (2.4) to obtain the desired result. Whent = 0, then the inequalities (2.1) become equalities
becauseE−1

0 (x, y) = 1/L(x, y). The proof is complete. �

Corollary 2.2. Letx > 0, y > 0 and letk = 1, 2, . . .. Then

(2.6)

[
A1/k(x, y)

G(x, y)

] 1
3k

≤ L(x, y)

sk(x, y)
≤

[
A1/3k(x, y)

G(x, y)

] 1
k

and

(2.7) lim
k→∞

sk(x, y) = L(x, y).

Proof. In order to establish inequalities (2.6) we use (2.1) witht = 1/2k to obtain

(2.8)
[
A1/k(x, y)G2(x, y)

] 1
3k ≤ L(x, y)E

1/k−1
1/k (x, y) ≤

[
A1/3k(x, y)

] 1
k .
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It follows from (1.2) that

E
1/k−1
1/k (x, y) =

x1/k − y1/k

1
k
(x− y)

=

[
1

k

k∑
i=1

x(k−i)/ky(i−1)/k

]−1

.

Substituting this into (2.8) and next multiplying all terms of the resulting inequality by1/(xy)1/2k

gives the desired result (2.6). For the proof of (2.7) we use

lim
k→∞

A1/k(x, y) = lim
k→∞

A1/3k(x, y) = G(x, y)

together with (2.6). The proof is complete. �

The first inequality in (2.6), withk = 2, provides a refinement of the first inequality in (1.6).
We have

1 <

[
A1/2(x, y)

G(x, y)

] 1
6

≤ L(x, y)

s2(x, y)
,

where the first inequality is an obvious consequence ofG(x, y) < A1/2(x, y).

Corollary 2.3. The following inequalities

(2.9)
[
A1/2(x, y)A3/2(x, y)G2(x, y)

] 1
4 ≤

[
L(x, y)H(x, y)

] 1
2 ≤ A1/2(x, y),

(2.10)
1

L(x, y)
+

1

H(x, y)
≥ 2

A1/2(x, y)

and

(2.11)
1

A1/2(x, y)
+

1

A3/2(x, y)
+

2

G(x, y)
≥ 4√

L(x, y)H(x, y)

hold true.

Proof. Inequalities (2.9) follow from (2.1) by lettingt = 3/4 and from

E
1/2
3/2(x, y) =

H(x, y)

A
1/2
1/2(x, y)

,

where the last result is a special case of (1.2) whenp = 3/2. For the proof of (2.10) we use the
second inequality in (2.9) together with the inequality of arithmetic and geometric means. We
have

1

A1/2(x, y)
≤

[
1

L(x, y)
· 1

H(x, y)

] 1
2

≤ 1

2

[
1

L(x, y)
+

1

H(x, y)

]
.

Inequality (2.11) is a consequence of the first inequality in (2.9) and the inequality for the
weighted arithmetic and geometric means. Proceeding as in the proof of (2.10) we obtain

1√
L(x, y)H(x, y)

≤
[

1

A1/2(x, y)

] 1
4
[

1

A3/2(x, y)

] 1
4
[

1

G(x, y)

] 1
2

≤ 1

4A1/2(x, y)
+

1

4A3/2(x, y)
+

1

2G(x, y)
.

This completes the proof. �
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