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ABSTRACT. In this paper, we obtain the Hyers-Ulam stability for the following functional equa-
tion i

> | fakplyk)den(t) = @la()a). @y € G,

ped K

whereG is a locally compact grougy’ is a compact subgroup ¢, wg is the normalized Haar
measure ofK, ® is a finite group ofK-invariant morphisms oty and f,a : G — C are
continuous complex-valued functions such tfiaatisfies the Kannappan type condition

*) /K/Kf(Zk‘xk_ hyh™)dwg (k)dwg () :/K/Kf(Zk:yk‘_ hah™ Y dwr (k)dwi (h),

forallz,y,z € G.
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2 BELAID BOUIKHALENE, ELHOUCIEN ELQORACHI, AND AHMED REDOUANI

1. INTRODUCTION

Let G be alocally compact group. L&f be a compact subgroup 6f Letwy be the normal-
ized Haar measure df. A mappingy : G — G is a morphism of7 if ¢ is a homeomorphism
of G onto itself which is either a group-homomorphism, (igxy) = o(z)e(y), =,y € G),
or a group-antihomomorphism, (i.&(zy) = ¢(y)e(z), x,y € G). We denote by or(G)
the group of morphisms aff and® a finite subgroup of\/or(G) which is K-invariant (i.e.
o(K) C K, for all p € ®). The number of elements of a finite gro@pwill be designated by
|®|. The Banach algebra of the complex bounded measurésismlenoted byl/ (G), it is the
topological dual of’(G): Banach space of continuous functions vanishing at infinity. Finally
the Banach space of all complex measurable and essentially bounded funct@ms d@enoted
by L..(G) andC(G) designates the space of all continuous complex valued functiofis on

The stability problem for functional equations are strongly related to the question of S.M.
Ulam concerning the stability of group homomorphisims [26], [16]. During the last decades,
the stability problems of several functional equations have been extensively investigated by a
number of mathematiciang ([16],![2],/[3], [22], [23], [24], [25], ]20], ...). The main purpose
of this paper is to generalize the Hyers-Ulam stability problem for the following functional
equation

(1.1) Z/ flako(y)k™Vdwg (k) = |®|a(z)aly), =,y € G,

ped

whered is a locally compact group, anfla € C(G) with the assumption that satisfies the
Kannappan type conditior:](*)

/K /K f(ekak™ hyh™")dwi (k)dwrc (h) = /K /K F(zhyk~ hah ™Y dwg (k)dwi (),

forall z,y,z € G.
In the case wheré&- is a locally compact abelian group, O’Connor[[19], Gajdal [14] and
Stetkeer[[211] studied respectively the functional equation

n

(12) f(x_y)zzal<x)al(y)7 JJ,yEG, TLEN,
(1.3) f(:v+y)+f(fc—y)IZZai(x)ai(y), z,y € G, neN,
and
(L4) [ fah-pdn = aw)al), sy €6
H

whereG is a locally compact group antl is a compact subgroup ofut(é)
In the casen = 1 equations(L.2) and (1.3) are special cases Moreover, taking
G = G x, H the semi direct product af andH, andK = {e} x H, We observe that equation

(1.4) is also a special case (

This equation may be considered as a common generalization of functional equations
(1.5) flay™) = a(z)aly),  =,yed,

(1.6) flay) + flay™) =2a(x)aly), 2,y €G.
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It is also a generalization of the equations

(1.7) /K flaky 'k Y dwg (k) = a(x)a(y), z,y € G,

(1.8) / f(xkyk™) dwg (k / f(xky 'k Ydwk (k) = 2a(x)aly),  z,y € G,

(1.9) / faky X (k)dw (k) = a(@)aly), @y € G,
(1.10) /K (k)X (k)dw (k / Flaky™ )RR dwie(k) = 2a()aly), o,y € G,
(1.11) /K f(aky ) duog (k) = a(x)aly), 2.y € G,

(1.12) /K f(zky)dwg (k / f(xko(y ™)) dwg (k) = 2a(x)aly), =,y < G, ([A0], [1T]).

If G is a compact group, equatidi.1)) may be considered as a generalization of the equations

(113 [ 1ty it = atwialy). wyec,
(1.14) /f(xtyt‘l)dt—i—/ f(zty %t YYdt = 2a(x)aly),  z,y € G,
G G
(1.15) 3 / Fately ~ [@la(@)al), ©yeG.
ped
Furthermore the following equations are also a particular cage B
(1.16) D fleey™) =®la(x)aly),  wyed,
ped
(117) S [ kol dox() = [Blae)als), oy € G,
ped

@18) X [ flakel DXRx(E) = [Pla@ial), 5y €G.

ped

wherey is a character of{. For more information about the equatiqfisl|) — (1.18)) (see[1],
(4], (6], [i7], [L1], [22], [24], [15], [19], [21]).
In the next section, we note some results for later use.
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2. GENERALIZED STABILITY RESULTS OF CAUCHY’S AND WILSON'S EQUATIONS

Let G, K and® be given as above. One can prove ($ee [4]) the following two propositions.

Proposition 2.1. For an arbitrary fixedr € ®, the mapping
P>pr—poTed

is a bijection and for allz, y € GG, we have

> [ kol o) = 3 [ flakot)kdo(h)

ped Pped

Proposition 2.2. Lety € ® and f € C(G). Then

/ f(xkp(hy)k™ ) dwi (k / f(zkp(yh)k™ N dwg (k), r,y € G, heK.
K

i) Moreover, iff satisfies the Kannappan type conditi), then we have

/K/Kf(ZhSO(?kak_l)h_l)dwK Ydwi (k //fzhcp rkyk ™ )h ) dwy (h)dwi (k),

forall z,y,z € G.
The next results extend the ones obtainedin [4], [8], [9], [10] and [13].
Theorem 2.3.Lets : G — R be a continuous function. Lgtg : G — C be continuous

functions such thaf satisfies the Kannappan type conditi@f) and

@) |3 /fark:so Ve (k) — || f(2)g(y)

ped

<ely), =zyed.

If fis unbounded, them satisfies the functional equation

(2.2) 3 / (ehp(y)k ) dwrc (k) = [@lg(@)g(y), 2y € G.

ped

Proof. Lete : G — R™ be a continuous function, and Iétg € C(G) satisfying inequality
[2.1). Let® = &F U @, whered™ (resp. @) is a set of group-homomorphisms (resp. of
group-antihomomorphisms). By using Propositipng P.1], 2.2 and the facy thatisfies the
condition (), for allz, y, = € G, we get

e / (wkp(y)k ) dure (k) — |Blg(2)g(y)
S / 1B (2)g (whep(y)k)dwie (k) — |0 F(2)g(2)(y)
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<

S [ 3 [ stehrabotnh o (Vo)

ped Ted

> | 121f(2)g(@hp(y)k " )dwi (k)

ped K

>[5 [ stetrtoko by

peD TED

o) Y /K F(ehr(@)h ) dwr (h)

TED

> [ fekr @ o) - 2l )gle)

TED

_l_

+ [®[lg(y)]

S [ 3 [ stehrtaboth o (o)

ped Ted

D NLIETE St

ped

+

>[5 [ etk R

ped TEPT

+) /K > /K Fzhk™ " (y)kT(z)h ) dwi (k) dwy (h)

ped TED—

—[®lg(y) Y /K F(ehr(@)h ) dwr (h)

Ted

+ [@||g(y)]

> [ fekr @b o) - 2l )gle)

TeD

S [ [ stetrtaboloh e ()

ped TED

- Z/K|<1>If(Z)g(:rkw(y)k—l)dwK(k)

ped

+

> /K > /K Flzhr(z)h ke (y)k ™ dwy (k) dwic (h)

ped TEDT

+y /K 3 /K fzhr(2)h ™ kp (y)k ™) dwpe (k) dwic ()

ped TEDP—

~1#lo) S [ Hehr(oh ot

TP

+12[lg(y)]

> [ fekr @k donch) - 215 )gle)

TeD
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= / > / Flzhr(zko(y)k™Yh Y dwy (k) dwg (h)

=3 [ 10l Glgtebetu)h ot
f(zhr(z)h ki (2) k™) dwg (k) dwg (h)
=
—|®|g(y Z/fzhr “Ndwp ()
#1919 |3 [ F(eRr@lkdon(k) = [0l (2)g(o)
<y / 3 / P (ko (y)k™ ) dwie(h) — |91f(2)g(whp(y)k)|dworc (k)
+3 / 3 / Fhr(@)h k() dwr (h) — |01 f(zhr (2)h " )g(y) |duorc (h)
Ped
+allsw) |3 / PR (@)™ ok (1) = [0 (2)g(a)
<y / (whp () )dorc (k) + [@le(y) + 8] g(y)|=(2).

Since f is unbounded, then it follows thatis a solution of(2.1)). This ends the proof of our
theorem. OJ

The next results extend the ones obtainedin [8] and [13].

Theorem 2.4.Lete : G — R*. Letf,g : G — C be continuous functions such that
satisfies the conditiofy)) and

(2.3)

Z/ flako(y)k™ ) dwg (k) — |®[f(z)g(y)| < (), x,y € G.

ped

Suppose furthermore there exists € G such thatg(zy)| > 1. Then there exists exactly one
solutionF' € C(G) of the equation

(2.4) > [ Flakek don(k) = [9IP)gl). @y € G

ped

such thatt” — f is bounded and one has

£(xo)

(2.5) |F(x) — f(z)] < 12|(Jg(z0)| — 1)’

r €.
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Proof. In the proof, we use the ideas and methods that are analogous to the ones Used in [8],
[13] and [20]. Let5 = |®|g(x), for all x € G, one has

(2.6) 3 / F(ehp(ro)k )durc (k) — B(z)| < e(zo), 2y €.
ped
We define the following functions sequence
(2.7) Z/ f(xho(xo)k Hdwg (k), ze€G,
ped
(2.8) G Z/ Gro(zko(xo)k™ ) dwi (k), xr € Gandn € N.

Next, we will prove the uniform convergence of the function sequépcéd,, ), >1, therefore
we need to show by induction the following inequalities

(2.9) Gi1(z) — G (x)] < |®["e(x0), 2€Gn>1,
(2.10) Go(@) = B" f ()] < e(ao)(|@"" +[@"2B] + -+ |B]" "),
and

(2.11) 18- VG 1 (x) = B7"G()| < |81V @ e (o).

In view of one has foralk € G
|Ga(z) — BGH ()]

= Z/ Gh(zkep(zo)k™")dw (k 52/ f(ahp(wo) k™) dwie (k)

— Z/ Z/ f(zkp(x0)k™ hr(z0)h™ Y dwi (h)dwg (k)
—ﬁZ/ f(xkT(x0)k™ ) dwi (k)
/ Z/ Fakr(x0) kL hep (o) Y dwic (h)

— Bf(xkT(xo)k™)
< [@le(zo).

dwK(k)
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Assume(2.8) holds forn > 1, then forn + 1, one has

Z/ a1 (Tho(zo) k™ dwi (k)

ped

| n+2( ) ﬁGn-I-l |_

—ﬁZ/ G(wko(o)k )dwK(k)

< Z/ |Grg1 (zho(z0) k™) dwi (k)

ped

— BGu(zkep(z0)k™")|dwic (k)
< |@" e (o).

In view of we have for all: € G

Z/ f(zko(zo)k )dWK(k> — Bf(x)

ped
< e(xo).
Suppose2.9) is true forn > 1. Forn + 1 one has
|Grii(z) = 8" f(2)] < |Grpr () = BG(@)| + |B|Glx) — 5" f(2)]
< |®|"e(wo) + [Ble(wo) (| @["" + @8] + -+ [B]")
= e(zo)(|2[" + "] + -+ + [8").
For inequality(2.10)), using(2-8), for all z € G we get
B~ VG i (2) = 57 G(@)] = 187"V |Gy (2) — BG(2))]
< |87 V1@|"e (o).

So by using inequality2.10]) we deduce the uniform convergence of the sequéficeG,,),,>1.
Let F" be a continuous function defined by

F(z)= lim p7"G,(z), reG.

n—-- —+00

Gi(x) = Bf(2)] =

Since
B, (@) = 5 Y / B Golwkp(eo)k ) duwrc (k).
ped
then one has

Z/ (wkp(x)k™Hdwi (k), r €.

ped

In view of (2.9), one has for alk € G
87" Gn() = f(@)] < |B] e (o) (19" + @8] + -~ + 8" 7),

which proves that
e e(zo)
@ = I < gt = 1)

Now we are going to show thdt satisfies the equation

3 / (wkp(y)k)dw (k) = |B|F(2)g(y), 2.y € G.

ped

zed.
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Thus we need to show by induction the inequality

(2.12)

> [ B Guakol)k dun(h) — 9157 Gow)a)| <

ped

Forn = 1, one has, by using the fact thasatisfies the conditiof)

%Z | Grlake(u)i () = 191G (@)a(0)
:% Z/ ;/ F(ako(y)k™ b (zo) b ) dwsc (k) dwic ()
—|®|g(y ;/karf 20)k ™) dwic (k)
_% ;/ %/ f(@kr(20)k hio(y)h ™Y dwi (k) dwi (h)
—|®|g(y ;/f:m 20)k ™) dwic (k)
%;/ ;/ f(@hr (o) k™ hp(y)h ™Y dwic (h)
— [@lg(y) f(zhT(z0)k™)g(y) |dwi (k)
[Ple(y) _ e(y)
Bl lg(xo)l

Assume(2.12)) holds for some: > 1. Forn + 1, one has by using the fact thAtsatisfies the
condition ()

S [ B G (ahp()n(F) = 19167V G ()90

Z/ Z/ BTG (xko(y) k™ hr ()b dwie (R)dw (k)

—|®g(y Z/ﬁ "G (kT (20)k ™) dwi (k)|
1 n —1 1
3;/ %/5 G(xkt(x0) k™ hep(y)h ™) dwic (R)
— |®]g(y) 57" G (kT (o) k™) | dwic (k)]
2] ely) ey

= |®| | g(zo) || |g(zo)|  |g(xo)|
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3. THE MAIN RESULTS

In the next proposition, we investigate the stability of the functional equétiai.
Proposition 3.1. Leté > 0. Let f,a € C(G) such that

S [ kol o ()~ [Bla(e)aly)

ped

(3.1) <9, x,y €G.

Then
i) If fis bounded then is bounded and one has,

\<r/sup|f\+
z)| < la(e) 1/sup|f]+ — z €.

i) If fis unbounded thea(e) # 0. Furthermore there exists, € G such thatia(zg)| >
la(e)].
Proof. i) Let f be a continuous bounded solution(Bf1]), then by taking: = y in we get
@lla(2)[* < |@]sup|f|+06, =z €G,

)| < r/sup|f|+

[f ()] < la(x)l]a(e )|+@,

Fory = ein (3.1)) we get

ie.
)4 /sup | f] —|— €qG.
We will prove (i) by contradiction. Ifa(e) = 0 then]f %'
If |a(z)| < |a(e)], forall z € G, then by taking) = e |n 1-) one has
@) <l +gr. 7 €G.
i.e. f is bounded, which is the desired contradiction. O

The main results are the following theorems.

Theorem 3.2.Leté > 0. Assume thaf,a € C(G) satisfy inequality[(3]1) and fulfills ().
Then

i) f,a are bounded
or
i) fis unbounded and

(3.2 @ [ kel dox(k) = [Blie)iln), .y €0,

ped

whered(z) = a(z1), forz € G.
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Proof. ii) Since f is unbounded then by Propositipn[3.1 we haye) # 0. By using the fact
that f anda satisfy inequality(3.1]) one has

S [ kol k) = 19la(w)it) +0r.0), .y € G

ped

where|0(z,y)| < §. By takingy = e we get for allz € G
@ (z) = |®|a(x)ale) + O(z,e),

50 1
(/(a) = afayale)) = rb.c).
then we get
> [ ko don(h) - 91 (@)o0)| <), @y €G.
where -

g(y) = =5, and e(y) =51+ |g(y)])-
In view of Theoreni 2J3, we deduce that

Z/ (who(y)k dwk (k) = [Bi(@)ily), o,y € G.

ped
The cases of bounded follows from Propositign 3.1. O

Theorem 3.3.Leté > 0. Assume thaf,a € C(G) satisfy inequality[(3]1) and fulfills ().
Then either

(3.3) o) < \swlfl+gr. w€C
(5 5

or there existry € G such thata(zy)| > |a(e)| and a unique continuous functidn: G — C
such that

a)
103 [ Plakplh dox(h) = [91F@a6), 2. €G.
ped

b) F' — f is bounded and one has

d(lafe)] + |a(zo))
F(r) — f x S )
P = HO= ol age)]  fate))

Proof. If f is bounded, by using Theorgm 3.2 and Propositioh 3.1, we obtain the first case of

the theorem.
Now, let f be unbounded. Sinege) # 0 it follows that

re(.

Z/ flako(y)k™dwk (k) — |1 f(x)g(y)| <ely),  z,y€,

ped
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where

o) = 29 and c(y) = 5(1 + lg(y)]).

a(e)
Finally, by using Proposition 3.1 and Theorgm| 2.4 we get the rest of the proof. O

¢

4. APPLICATIONS

The following theorems are a particular case of Thedrein 3.3.
If K C Z(G), then we have

Theorem 4.1.Letd > 0. Let f, a be a complex-valued functions 6hsuch thatf satisfies the
Kannappan condition (s€48])

(4.1) flzay) = f(zyx),  zyed
and the functional inequality

(4.2) > flae(y) —|®la(x)aly)| <6,  zyed
ped
Then either
4.3) la(x)] < y/[sup|f|+ %, ze€QG,
) )
(4.4 @) < lae)ly[swlf| + g+ g T EC

or there existry € G such thatla(x)| > |a(e)| and a unique functio” : G — C such that
a)
a(e) Y Flrely)) = |®|F(2)aly),  wy€G,
ped
b) F' — f is bounded and one has

e Se@)l el
F@) = 1@< Gl —aey  *€¢

If G is abelian then conditiofjl.1)) holds. By takingd = {I} (resp.® = {I,—I}), we get
the following corollaries.

Corollary 4.2. Letd > 0. Let f, a be complex-valued functions éhsuch that
(4.5) |f(x—y) —alx)aly)| <06,  =zyeC
Then either

(4.6) la(z)| < /sup|f|+ 0, r e,
4.7) x)| <la(e)|\/sup|f| +d+9, z e G,

or there existry € G such thata(zo)| > |a(e)| and a unique functiod’ : G — C such that
a)
a(e)F(z+y) = F(r)aly), wy€eq,

J. Inequal. Pure and Appl. Math6(2) Art. 32, 2005 http://jipam.vu.edu.au/
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b) F — fis bounded and one has
d(la(e)] + la(zo)])

Fx)— f(x)] < , xeQq.

@ =IO oz = @)
Corollary 4.3. Leté > 0. Let f, a be a complex-valued functions Ghsuch that
(4.8) [fl+y)+ fle—y) —2a(z)aly)| <6,  z,yed.

Then either

(4.9) la(z)] < 4/sup |f| + g, r €@,
o 0
’f(x)\§|a(€)|\/sup|f|+§+§a SN E

or there existry € G such thata(zy)| > |a(e)| and a unique functiott” : G — C such that
a)
a(e)F(z +y) +a(e)F(z —y) =2F(z)aly), =xy€G,
b) FF — fis bounded and one has
d(la(e)] + la(zo)])
F(x)— f(z)] < , r € (.
=N S o)~ Jate))
If f(kxh) = x(k)f(x)x(h), k,h € K andz € G, wherey is a character of{, then we have

Theorem 4.4.Let§ > 0 and lety be a character ofK. Assume thatf,a) € C(G) satisfy
f(kxh) = x(k)f(x)x(h), k,h € K,z € G,

(4.10) / / F(zhahy X0 () dwse (k) deore (B)
= [ [ fCekuha) X0 don k) ()

and

(4.11) Z/ Fakoly ) X(R)dwx (k) — |@la(@)aly)| <6, zy€ .
Then either

(4.12) o) < \[swfl+ g7, w€C,

(4.13) @) < lafe)yfsup ||+ g7+ 7. € G

or there existry, € G such thata(zy)| > |a(e)| and a unique continuous functidn: G — C
such that

a)
@Y [ Flkel)x(den(t) = PIF@iW. oG
b) FF— fis bf)unded and one has

[@[(la(xo)| — la(e)])’
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Corollary 4.5. Leté > 0 and lety be a character of. Assume thatf,a) € C(G) satisfy
f(kxh) = x(k)f(z)x(h), k,h e K,z € G,

//lemhy E)XX(h)dwg (k)dwg (h //fzk:yh:t X (h)dwg (k)dwk (h)

k)dwg (k / floky™! k)dwg (k) — 2a(x)a(y)| <6, z,y € G.

Then either

(4.15) (@) < \fswlf|+ 3, zec
)
(4.16) F@) < la@ /s lf+ 5 +2,  zec

or there existry € G such thata(xg)| > |a(e)| and a unique continuous functidn: G — C
such that

a)
ale) /K Faky)X(k)dor (k) + a(e) /K Flaky ™) X(Hdwic (k) = 2F(2)a(y), .y € G,
b) FF — f is bounded and one has

d(lale)] + la(zo)])
F(x) —
P =TS Gl ~ o))
Corollary 4.6. Let5 > 0 and letx be a character ofK. Assume thatf,a) € C(G) satisfy
f(kxh) = x(k)f(x)x(h),k,h € K,z € G, and

z e G.

(4.17) / f(oky™! k)dwg (k) — a(x)a(y)| < 0, x,y € G.
Then either
(4.18) |a(a:)| < /sup|f]+ 9, z € G,

z)| <la(e)|v/sup |f|+0+6, z € G,

or there existry € G such thalja(a:o)| > |a(e)| and a unique continuous functidn: G — C
such that

a)
) | Plaky)x(b)don(k) = F@)iy). oy €G.

b) F — f is bounded and one has
oy < e | aw) )
O = HOTE o)l Jate))

Remark 4.7. If the algebraywy * M(G) * Ywx is commutative then the conditiaf) holds
[4]. Furthermore in the case whede= {I}, we do not need the conditiaf).

z e d.

In the next theorem we assume tlfais bi-K-invariant (i.e. f(hzk) = f(z),h,k € K,z €
(), then we have
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Theorem 4.8.Let > 0 and assume thatf,a) € C(G) satisfy f(kxzh) = f(x), k,h € K,
x € G,

(4.19) / / F(zkzhy)dws (k)dwg (b / / F(zkyha)dws (k)dw ()

and

(4.20) Z/ f(zko(y™))dwg (k) — |®la(z)a(y)| <6, z,yeG.
ped
Then either
(4.21) la(x)] <y /sup|f|+ %, z €@,
) )
(4.22) ()] < fa(e)| sup|f|+@+@, x€G,

or there existry, € G such thafa(xg)| > |a(e)| and a unique continuous functidn: G — C
such that

a)

@ [ Plakpti)donr) = [BF@)ils).  =.y€C,

ped
b) FF — f is bounded and one has

e e el
F@) =@ < G (ato) = ate)) £

Corollary 4.9. Letd > 0 and assume thatf,a) € C(G) satisfy f(kxzh) = f(z), k,h € K,
x €@,

//fzk:why Ydwre (k)dwg (h //fzk;yha: Ydwrc (k)dwg (h)

and

(4.23)

[ stk + [ f(xky1>>dwK<k>—2a<sc>a<y>\ <5 myed

Then either

(4.24) la(x)| < 4/sup |f] + g, r e G,
b 0
F@)| < la(@)ly/sup A+ 242 zea

or there existry € G such thata(zy)| > |a(e)| and a unique continuous functidn: G — C
such that

a)
a(e) / Flaky)dwi (k) + a(e) / FlakyY)dwre (k) = 2F(2)a(y), 2.y € G,
b) FF — f is bounded and one has

|a
(la ( o)l = la(e)])’

x € G.
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Corollary 4.10. Lety > 0 and assume thatf,a) € C(G) satisfyf(kzh) = f(z), k,h € K,
z € G, and

(4.25)

/K f(aky™)do (K) — a()aly)| <5, zyeG.

Then either

(4.26) la(z)| < \/sup|f|+ 0, x € G,
x)| < la(e)|\/sup |f| +d + 6, z €@,

or there existry € G such thaqa(:z:o)| > |a(e)| and a unique continuous functidn: G — C
such that

a)
a(e) /K F(zky)dwg (k) = F(z)a(y), x,y € G,
b) FF — f is bounded and one has
e < 80a()] + o))
O =IO Tt =Tt

Remark 4.11. If the algebravy * M (G) x wk is commutative then the conditid)) holds [4].

rz e (.

In the next corollary, we assume th@t= K is a compact group.

Theorem 4.12.Letd > 0 and letf, a be complex measurable and essentially bounded functions
on G such thatf is a central function andf, a) satisfy the inequality

(4.27) Z/fww _@la(@aw)| <s  wyed.
ped
Then
)
(4.28) la(z)| < suplf!+@,
and
F@)] < lae)]y [sup [f] + — + >
- ] [®|
forall x € G.

Proof. Let f,a € L*°(G). Sincef is central, then it satisfies the conditi¢g) ([4], [6]). If f is
unbounded then is a solution of the functional equati@d.2). In view of [15], we get the fact
thata is continuous. Sincé&' is compact them is bounded. Consequentfyis bounded, which
is the desired property. O
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