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ABSTRACT. In this note we extend recent results of A. McD. Mercer and |. Gavrea on convex
sequences to other classes of sequences.
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1. INTRODUCTION

The following result is valid [1,2]. Led = (ao, a4, . .., a,) be areal sequence. The inequal-
ity
(1.1) > agu >0
k=0

holds for every convex sequenge= (ug, uy, - . ., u,) if and only if the polynomial

Pa(x) = Z apx”

k=0

hasx = 1 as a double root and the coefficientdk = 0,1, ..., n — 2) of the polynomial

Pa(r) _ X~

— Y = CLT

(x —1)? ;

are non-negative. The sufficiency and necessity of this result are due, respectively, to A. McD.
Mercer [2] and to |. Gavrea [1].
The purpose of this note is to extend the above result to other classes of sequences
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2 MAREK NIEZGODA

2. BAsiC LEMMA

A convex conés a non-empty sef’ ¢ R""! such thatnC + 3C C C for all non-negative
scalarsce and 3. We say that a convex corng is generated by setl” C C, and writeC' =
cone V/, if every vector inC' can be expressed as a non-negative linear combination of a finite
number of vectors iy

Let (-, -) stand for the standard inner producti®®™. Thedual coneof C'is the cone defined

by
dual C := {u € R*"!: (u,v) > 0 forallve C}.

It is well-known that
(2.1) dualdualC' = C

for any closed convex con€ c R™™! (cf. [3, Theorem 14.1, p. 121]). The result below
is a key fact in our considerations. It is a consequencé of (2.1) for a finitely generated cone
C = cone {Vy, V1, ...,V }.

Lemma 2.1(Farkas lemma)Letv, vy, vy, ..., V, be vectors ifR"*!. The following two state-
ments are equivalent:

(i): The inequalityu, v) > 0 holds for allu € R"*! such thatu,v;) > 0,i =0,1,...,p.
(i): There exist non-negative scalatsi = 0,1, ..., p, such that

V=coVo+ Vi + -+ cpVp.
3. MAIN RESULT

Given a sequenag= (qo, q1, - - -, ¢-) € R with 0 < r < n, we define
(3.1) Vv, = (0,...,0,q0,q1,---,¢0,...,0) = Sy € R™™ fori=0,1,...,n—r.
——

i times
HereS is theshift operatorfrom R™*! to R"*! defined by
(3.2) S(z0, 215+ 2n) = (0,20, 215+ -+, Zn_1)-
A sequencel = (ug,ug,...,u,) € R"™ is said to be ofj-class if
(3.3) (u,v;) >0 foralli =0,1,...,n—r.
In other words, thej-class consists of all vectors of the cone
(3.4) D := dual cone {Vy, V1, ...,V }.

Example 3.1.
(a).Setr =0,¢,=1and
v; =(0,...,0,1,0,...,0) € R™™ fori=0,1,...,n.

\—.\,—/

i times
Then [3.8) reduces to

u; >0 fori=0,1,... n.

ThusD is the class of non-negative sequences.
(b). Putr =1, go = —1 andg; = 1, and denote

v, =(0,...,0,—1,1,0,...,0) e R™™ fori=0,1,...,n — 1.
W—/
1 times
Then [3.3) gives
(% Sui—i-l fOI’i:O,l,...,n—l,
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which means thab is the class of hon-decreasing sequences.
(c). Considerr =2,qo=1,¢q1 = —2,¢; = 1 and

v; =(0,...,0,1,-2,1,0,...,0) € R™™ fori=0,1,...,n — 2.
\—.\/—/
i times
In this case,[(3]3) is equivalent to
fori=0,1,...,n—2.
This says thatl is a convex sequence. Therefdpas the class of convex sequences.

Theorem 3.1.Leta = (ag,ay,...,a,) € R*™tandq = (qo, q1,...,q.) € R™™! be given with
0 <r < n. Then the inequality

k=0
holds for every sequentce= (ug, u1, . . ., u,) of g-class if and only if the polynomial

Pa(z) = Z apx”
k=0
is divisible by the polynomial
Pq(z) == Z qrz”,
k=0

and the coefficients, (k = 0,1,...,n — r) of the polynomial

Pa(fﬂ) . TH“C 2
Pq(z) — Z *

are non-negative.

Proof. The mapyp that assigns to each sequeiice (bg, b1, . .., b,,) the polynomial
o(b) := Py(z) = Zbkxk
k=0

is a one-to-one linear map froR™*! to the space of polynomials of degree at mastAlso,
) = o~ ! is a one-to-one linear map. It is not difficult to check that

Y(a* Py(w)) = S*(Py(x)).
Therefore, for any polynomial
Pe(z) =co+caz+- +cppz" ",

we have

Y(Pe(x)Pg(w)) = oS + c1.5Vo + -+ - + €y Vo = CoVo + C1V1 + -+ + GV,
wherey; are given by[(3]1). In other words,
(3.6) Pe(r)Pg(z) = @(coVo + c1Vi + - -+ + cpyVn—r) fOranyc = (co,c1,...,cnr).

We are now in a position to show that the following statements are mutually equivalent:

(i): Inequality [3.5) holds for every of g-class.
(i): (a,u) > 0for everyu € dual cone {Vvo,Vy,...,V,_,}.
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(ii): There exist non-negative scalatsci, ..., c,_, such thaa = coVvy + vy + -+ - +
Cn—rVn—r-
(iv): There exist non-negative scalagsci, . . ., ¢, such thata(z) = (co + iz +-- - +
Cn—rz™ ") Py().
In fact, (i) is an easy reformulation of (i) (see (8.4)). That (ii) and (iii) are equivalent is
a direct consequence of Farkas lemma (see Lemma 2.1). We now show the validity of the
implication (jii) = (iv). By (iii) and (3.6), we have
Pa(z) = (@) = p(coVo + Vi + -+ -+ + cny V) = Pe(x) Pg(o)

for certain scalarg, > 0,k =0,1,...,n —r. Thus (iv) is proved.
To prove the implication (iv)=- (iii) assume (iv) holds, that i®a(z) = Pc(r)Pq(z) with
¢ >0,k=0,1,...,n—r. Then by[(3.5),
a=y(Pa(z)) = ¢(Pe(r)Py(z))
= ¢@(COVO +ovi+-ee Cn—rvn—r)
= CoVo +C1Vi + -+ -+ Cp—yrVi—p.
This completes the proof of Theor¢m|3.1. O

4. APPLICATIONS FOR CONVEX SEQUENCES OF ORDER r

In this section we study special types of sequences related to difference calculus and gener-
alized convex sequences.
We introduce thalifference operatoon sequences= (zg, 21, . . . , zm) by

AZ:= (21 — 20,22 — 21, -+ Zm — Zm—1)-
Notice thatA = A,, acts fromR™+! to R™. We define
Az:=zand A"z:= A, yi1 - ANz forr=1,2,...,m.

A sequencal € R"*! is said to beconvex of order (in short,r-convey, if

A"u > 0.
The last inequality is meant in the componentwise sen&&ii—", that is
(4.2) (A"u,e) >0 fori =0,1,...,n—r,

where
e :=(0,...,0,1,0,...,0) € R""'",
H.,_/
i times
In order to relate the--convex sequences to thipclass of Sectiofi|3, observe that (4.1)
amounts to
(u,(A"Tg) >0 fori=0,1,...,n—r,
where(-)” denotes the transpose. By a standard induction argument, we get
(A"Te, = S'vy fori=0,1,...,n —r,
wheres is the shift operator fronR"*! to R"+! given by [3.2), and

(4.2)  v:=(9,0,...,0) e R and q:= (g0, q1,...,9) With g := (;) (—1)r,

Asin (3.1), we set
v, =S, fori=0,1,...,n—r.
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In summary, the-convex sequences form tlyeclass forq given by [4.2). For example, the
class ofr-convex sequences for= 0 (resp.r = 1, r = 2) is the class of non-negative (resp.
non-decreasing, convex) sequenceR'n! (cf. Exampld 3.11).

By virtue of (4.2) we get

Pg(z) = quxk =(x—1)".

k=0
Therefore we obtain from Theordm B.1

Corollary 4.1. Leta = (ag, ay, .. ., a,) € R"™! be given with) < r < n. Then the inequality

n

k=0
holds for every--convex sequenae= (ug, u1, . .., u,) if and only if the polynomial
Pa(x) = Z agx”
k=0
hasz = 1 as a root of multiplicity at least, and the coefficients, (k =0,1,...,n —r) of the
polynomial

Pa() «— k
— Y = Crx
>
are non-negative.

Corollary[4.] extends the mentioned results of A. McD. Mercer and |. Gavreasfrera to
an arbitrary0 < r <n.
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