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ABSTRACT. In this note we extend recent results of A. McD. Mercer and I. Gavrea on convex
sequences to other classes of sequences.
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1. I NTRODUCTION

The following result is valid [1, 2]. Leta = (a0, a1, . . . , an) be a real sequence. The inequal-
ity

(1.1)
n∑

k=0

akuk ≥ 0

holds for every convex sequenceu = (u0, u1, . . . , un) if and only if the polynomial

Pa(x) :=
n∑

k=0

akx
k

hasx = 1 as a double root and the coefficientsck (k = 0, 1, . . . , n− 2) of the polynomial

Pa(x)

(x− 1)2
=

n−2∑
k=0

ckx
k

are non-negative. The sufficiency and necessity of this result are due, respectively, to A. McD.
Mercer [2] and to I. Gavrea [1].

The purpose of this note is to extend the above result to other classes of sequencesu.

ISSN (electronic): 1443-5756

c© 2005 Victoria University. All rights reserved.

219-05

http://jipam.vu.edu.au/
mailto:marek.niezgoda@ar.lublin.pl
http://www.ams.org/msc/


2 MAREK NIEZGODA

2. BASIC L EMMA

A convex coneis a non-empty setC ⊂ Rn+1 such thatαC + βC ⊂ C for all non-negative
scalarsα andβ. We say that a convex coneC is generated bya setV ⊂ C, and writeC =
coneV , if every vector inC can be expressed as a non-negative linear combination of a finite
number of vectors inV .

Let 〈·, ·〉 stand for the standard inner product onRn+1. Thedual coneof C is the cone defined
by

dualC := {u ∈ Rn+1 : 〈u, v〉 ≥ 0 for all v ∈ C}.
It is well-known that

(2.1) dual dualC = C

for any closed convex coneC ⊂ Rn+1 (cf. [3, Theorem 14.1, p. 121]). The result below
is a key fact in our considerations. It is a consequence of (2.1) for a finitely generated cone
C = cone {v0, v1, . . . , vp}.

Lemma 2.1(Farkas lemma). Let v, v0, v1, . . . , vp be vectors inRn+1. The following two state-
ments are equivalent:

(i): The inequality〈u, v〉 ≥ 0 holds for allu ∈ Rn+1 such that〈u, vi〉 ≥ 0, i = 0, 1, . . . , p.
(ii): There exist non-negative scalarsci, i = 0, 1, . . . , p, such that

v = c0v0 + c1v1 + · · ·+ cpvp.

3. M AIN RESULT

Given a sequenceq = (q0, q1, . . . , qr) ∈ Rr+1 with 0 ≤ r ≤ n, we define

(3.1) vi := (0, . . . , 0︸ ︷︷ ︸
i times

, q0, q1, . . . , qr, 0, . . . , 0) = Siv0 ∈ Rn+1 for i = 0, 1, . . . , n− r.

HereS is theshift operatorfrom Rn+1 to Rn+1 defined by

(3.2) S(z0, z1, . . . , zn) := (0, z0, z1, . . . , zn−1).

A sequenceu = (u0, u1, . . . , un) ∈ Rn+1 is said to be ofq-class, if

(3.3) 〈u, vi〉 ≥ 0 for all i = 0, 1, . . . , n− r.

In other words, theq-class consists of all vectors of the cone

(3.4) D := dual cone {v0, v1, . . . , vn−r}.

Example 3.1.
(a). Setr = 0, q0 = 1 and

vi = (0, . . . , 0︸ ︷︷ ︸
i times

, 1, 0, . . . , 0) ∈ Rn+1 for i = 0, 1, . . . , n.

Then (3.3) reduces to
ui ≥ 0 for i = 0, 1, . . . , n.

ThusD is the class of non-negative sequences.
(b). Putr = 1, q0 = −1 andq1 = 1, and denote

vi = (0, . . . , 0︸ ︷︷ ︸
i times

,−1, 1, 0, . . . , 0) ∈ Rn+1 for i = 0, 1, . . . , n− 1.

Then (3.3) gives
ui ≤ ui+1 for i = 0, 1, . . . , n− 1,
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ON RESULTS OFMERCER ANDGAVREA 3

which means thatD is the class of non-decreasing sequences.
(c). Considerr = 2, q0 = 1, q1 = −2, q2 = 1 and

vi = (0, . . . , 0︸ ︷︷ ︸
i times

, 1,−2, 1, 0, . . . , 0) ∈ Rn+1 for i = 0, 1, . . . , n− 2.

In this case, (3.3) is equivalent to

ui+1 ≤
ui + ui+2

2
for i = 0, 1, . . . , n− 2.

This says thatu is a convex sequence. ThereforeD is the class of convex sequences.

Theorem 3.1. Let a = (a0, a1, . . . , an) ∈ Rn+1 andq = (q0, q1, . . . , qr) ∈ Rr+1 be given with
0 ≤ r ≤ n. Then the inequality

(3.5)
n∑

k=0

akuk ≥ 0

holds for every sequenceu = (u0, u1, . . . , un) of q-class if and only if the polynomial

Pa(x) :=
n∑

k=0

akx
k

is divisible by the polynomial

Pq(x) :=
r∑

k=0

qkx
k,

and the coefficientsck (k = 0, 1, . . . , n− r) of the polynomial

Pa(x)

Pq(x)
=

n−r∑
k=0

ckx
k

are non-negative.

Proof. The mapϕ that assigns to each sequenceb = (b0, b1, . . . , bm) the polynomial

ϕ(b) := Pb(x) :=
m∑

k=0

bkx
k

is a one-to-one linear map fromRm+1 to the space of polynomials of degree at mostm. Also,
ψ := ϕ−1 is a one-to-one linear map. It is not difficult to check that

ψ(xkPb(x)) = Skψ(Pb(x)).

Therefore, for any polynomial

Pc(x) := c0 + c1x+ · · ·+ cn−rx
n−r,

we have

ψ(Pc(x)Pq(x)) = c0S
0v0 + c1S

1v0 + · · ·+ cn−rS
n−rv0 = c0v0 + c1v1 + · · ·+ cn−rvn−r,

wherevi are given by (3.1). In other words,

(3.6) Pc(x)Pq(x) = ϕ(c0v0 + c1v1 + · · ·+ cn−rvn−r) for anyc = (c0, c1, . . . , cn−r).

We are now in a position to show that the following statements are mutually equivalent:

(i): Inequality (3.5) holds for everyu of q-class.
(ii): 〈a,u〉 ≥ 0 for everyu ∈ dual cone {v0, v1, . . . , vn−r}.
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4 MAREK NIEZGODA

(iii): There exist non-negative scalarsc0, c1, . . . , cn−r such thata = c0v0 + c1v1 + · · · +
cn−rvn−r.

(iv): There exist non-negative scalarsc0, c1, . . . , cn−r such thatPa(x) = (c0 + c1x+ · · ·+
cn−rx

n−r)Pq(x).

In fact, (ii) is an easy reformulation of (i) (see (3.4)). That (ii) and (iii) are equivalent is
a direct consequence of Farkas lemma (see Lemma 2.1). We now show the validity of the
implication (iii) ⇒ (iv). By (iii) and (3.6), we have

Pa(x) = ϕ(a) = ϕ(c0v0 + c1v1 + · · ·+ cn−rvn−r) = Pc(x)Pq(x)

for certain scalarsck ≥ 0, k = 0, 1, . . . , n− r. Thus (iv) is proved.
To prove the implication (iv)⇒ (iii) assume (iv) holds, that isPa(x) = Pc(x)Pq(x) with

ck ≥ 0, k = 0, 1, . . . , n− r. Then by (3.6),

a = ψ(Pa(x)) = ψ(Pc(x)Pq(x))

= ψϕ(c0v0 + c1v1 + · · ·+ cn−rvn−r)

= c0v0 + c1v1 + · · ·+ cn−rvn−r.

This completes the proof of Theorem 3.1. �

4. APPLICATIONS FOR CONVEX SEQUENCES OF ORDER r

In this section we study special types of sequences related to difference calculus and gener-
alized convex sequences.

We introduce thedifference operatoron sequencesz = (z0, z1, . . . , zm) by

∆z := (z1 − z0, z2 − z1, . . . , zm − zm−1).

Notice that∆ = ∆m acts fromRm+1 to Rm. We define

∆0z := z and ∆rz := ∆m−r+1 · · ·∆m−1∆mz for r = 1, 2, . . . ,m.

A sequenceu ∈ Rn+1 is said to beconvex of orderr (in short,r-convex), if

∆ru ≥ 0.

The last inequality is meant in the componentwise sense inRn+1−r, that is

(4.1) 〈∆ru,ei〉 ≥ 0 for i = 0, 1, . . . , n− r,

where
ei := (0, . . . , 0︸ ︷︷ ︸

i times

, 1, 0, . . . , 0) ∈ Rn+1−r.

In order to relate ther-convex sequences to theq-class of Section 3, observe that (4.1)
amounts to

〈u, (∆r)T ei〉 ≥ 0 for i = 0, 1, . . . , n− r,

where(·)T denotes the transpose. By a standard induction argument, we get

(∆r)T ei = Siv0 for i = 0, 1, . . . , n− r,

whereS is the shift operator fromRn+1 to Rn+1 given by (3.2), and

(4.2) v0 := (q, 0, . . . , 0) ∈ Rn+1 and q := (q0, q1, . . . , qr) with qj :=

(
r

j

)
(−1)r−j.

As in (3.1), we set
vi := Siv0 for i = 0, 1, . . . , n− r.
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In summary, ther-convex sequences form theq-class forq given by (4.2). For example, the
class ofr-convex sequences forr = 0 (resp.r = 1, r = 2) is the class of non-negative (resp.
non-decreasing, convex) sequences inRn+1 (cf. Example 3.1).

By virtue of (4.2) we get

Pq(x) =
r∑

k=0

qkx
k = (x− 1)r.

Therefore we obtain from Theorem 3.1

Corollary 4.1. Leta = (a0, a1, . . . , an) ∈ Rn+1 be given with0 ≤ r ≤ n. Then the inequality

(4.3)
n∑

k=0

akuk ≥ 0

holds for everyr-convex sequenceu = (u0, u1, . . . , un) if and only if the polynomial

Pa(x) =
n∑

k=0

akx
k

hasx = 1 as a root of multiplicity at leastr, and the coefficientsck (k = 0, 1, . . . , n− r) of the
polynomial

Pa(x)

(x− 1)r
=

n−r∑
k=0

ckx
k

are non-negative.

Corollary 4.1 extends the mentioned results of A. McD. Mercer and I. Gavrea fromr = 2 to
an arbitrary0 ≤ r ≤ n.
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