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ABSTRACT. This paper deals with a relation between Hardy-Hilbert's integral inequality and
Mulholland’s integral inequality with a best constant factor, by using the Beta function and in-
troducing a parameter. As applications, the reverse, the equivalent form and some particular
results are considered.
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1. INTRODUCTION

Ifp>1,.+1=1,fg>0satisfy0 < [[* f’(z)dz < oo and0 < [i* g*(x)dx < oo, then
one has two equwalent inequalities as (see [1]):

1

wy [ [ EEY dmd%m {/ e dx};{/omg%x)dx}q;
(1.2) /0 (0 ji)ydl) dy < ol /fp

p
where the constant factorsT and [Sin(jr/p)} are all the best possible. Inequalil.l) is

called Hardy- Hilbert’s integral inequality, which is important in analysis and its applications
(cf. Mitrinovic et al. [2]).
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2 BICHENG YANG

If 0 < [73FP(z)dr < oo and0 < [~ -G(y)dy < oo, then the Mulholland’s integral
inequality is as follows (seé[1] 3]):

where the constant factef 7 is the best possible. Settinfz) = F(x)/x, andg(y) =

G(y)/y in (1.3), by simplification, one has (seée [12])

(1.4) /100 /100 %dmg < @ {/100 xp—lfp(x)da;}; {/100 xq—ng(x)dx}é.

We still call (1.4) Mulholland’s integral inequality.

In 1998, Yangl[11] first introduced an independent parametard thes function for given
an extension of (I]1) (fop = ¢ = 2). Recently, by introducing a parameterYang [8] and
Yang et al. [10] gave some extensions|of | ﬂl 1) and| (1.2) a&: ¥ 2 — min{p.q}, f,.g > 0
satisfy0 < [ 2! f?(z)dx < oo @ando < g/(x)dz < oo, then one has two equivalent
inequalities as:

(1.5) / / f da:dy < kx(p) {/OooxlAfp(x)dm}; {/Oooxlkgq(x)dx};

R { I (xfj ;) dx} < )Y [ 2 s

where the constant factofs (p) and [kx(p)]? (ka(p) = B (”“ prA=2 ata? 2) . B(u,v) is the

function) are all the best possible. By introducing a parameteiKuang [5] gave an ex-
tension of [(1.1L), and Yang [9] gave an improvement of [5] asu It~ 0, f,g > 0 satisfy
0<[5° x(p_l)(l_a)fp( )d:c <ooand0 < [zl DI gd(z)dr < oo, then

7 / / oy —l— ye
< @ {/000 I(p_l)(l_a)fp(a?)dx}p {/OOO x(q_1)(1—a)gq($>d$}q |

where the constargm is the best possible. Recently, Sulaiman [6] gave some new forms
of (I.1) and Hongl[14] gave an extension of Hardy-Hilbert's inequality by introducing two
parameters anda. Yang et al. [13] provided an extensive account of the above results.

The main objective of this paper is to build a relation[to](1.1) (1.4) with a best con-
stant factor, by introducing thg function and a parametex, related to the double integral
N f f(”)g(y) A dedy (A > 0). As applications, the reversion, the equivalent form and some

partlcular results are considered.

0

2. SOME LEMMAS

First, we need the formula of thefunction as (cf. Wang et al. [7]):

(2.1) B(u,v) := /OOO <1+ﬁt“ldt = B(v,u) (u,v > 0).
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Lemma 2.1(cf. []). Ifp > 1,1+ 1 =1,w(0) >0, f,9 >0, f € L}(E) andg € L%(E),
then one has the Hdlder’s inequality with weight as:

@2 [ <{ [ worone} { [ ool

if p <1 (p# 0), with the above assumption, one has the reverse df (2.2), where the equality (in
the above two cases) holds if and only if there exists non-negative real nuamlaerdc,, such
that they are not all zero and f*(c) = c2g%(0), a. e. inE.

Lemma2.2.1fp # 0,1, 5 + 2 =1, ¢, = ¢,(A\) > 0(r = p,q), ¢ + ¢y = A, andu(t) is a
differentiable strict increasing function ifa, b) (—oo < a < b < o0) such thatu(a+) = 0 and
u(b—) = oo, for r = p, q, definew,.(z) as

b (u(y))
23) )= (ua o [y (o 0,

Then forx € (a,b), eachw,(x) is constant, that is
(2.4) wr(2) = B(dp, 0g)  (r=p,q).

Proof. For fixedz, settingv = i N ), one has

(u(y) ' (y) q

A—o '
o) = (e | T

(@) (1 +0)?
oo U¢7‘_1
/0 i +U>Ad’v (r=p,q)
By (2.7), one hag (2]4). The lemma is proved. O

Lemma 2.3.1fp > 1, . + - = 1, ¢, > 0 (r = p,q), satisfys, + ¢, = A, andu(t) is a
differentiable strict increasing function ifu,b) (—oo < a < b < o0) satisfyingu(a+) = 0
andu(b—) = oo, then forc = (1) and0 < ¢ < q¢,,

(2.5) >-B (¢p - g ¢ + —) -0(1);

if 0 <p <1 (orp < 0), with the above assumption aidk ¢ < —q¢, (or 0 < € < ¢q¢,), then

(2.6) r<lp <¢p—f,¢>q+f).
€ q q
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Proof. For fixedz, settingy = % in I, one has

1 :Z/ (U(x))%_%_lul(x) [/ (Sé(xy))l;(qy))/\u/(y)dy] dz

b [e's)
—1—¢ / ]. _&__
:/ (u(z))™? u(ﬂc’)/1 (1—1—1))’\1)% «dvdx
¢ u(x)

B b (z)da o0 gyl b () e pPra!
en = [l wrat ] aere ), mrgr
1 [ U¢p—§—1 b UI(JZ‘) u(lx) bp—=—1
>g/0 (1_1_0)/\dv—/C () [/0 v du | do
L ti N
-2 <1+v>kd“‘<¢p‘§) |

By (2.1), inequality[(2.p) is valid. 16 < p < 1 (orp < 0), by (2.7), one has

bl () <1 e
I 7 S
</c (u(z)) 1+ ””“/ T+op’ v

and then by[(Z2]1), inequality (2.6) follows. The lemma is proved. O

3. MAIN RESuULTS

Theorem3.1.1fp > 1, -+ 0 =1, ¢, > 0(r = p,q), o, + ¢, = A, u(t) is a differentiable strict
increasing function ir(a b) (—o00 < a < b < o0),such thatu(a+) =0 andu( —) = oo, and

f,g > 0 satisfy0 < f )g):’qf 1f (x)dx < oo and 0 < f )q ;) ¢f) gl (x)dx < oo,

then

(3.1) / / i)gl(b _dudy

b (u(z))Pd—9a)-1 ) » (u(z))a1=¢0)= 3
<snoa { [ T rwief { [t o)
where the constant factaB(¢,, ¢,) is the best possible. | < 1 (p # 0), {\;¢, > 0(r =

p.q), ¢y + &g = A} # ¢, with the above assumption, one has the reversé of (3.1), and the
constant is still the best possible.

Proof. By @), one has

J. Inequal. Pure and Appl. Math6(4) Art. 112, 2005 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

A RELATION TO HARDY-HILBERT'S INTEGRAL INEQUALITY AND MULHOLLAND'S INEQUALITY 5

= {/ U (< (< )))% <u )%y) dy] (u<3')<(i>;(-11 “ %)dl’}p

on ([ R e m)

If (8.2) takes the form of equality, then by (P.2), there exist non-negative numbersd c;,
such that they are not all zero and

() ()0
) o ()

(o) — ey D) T2

T =y e W)
a.e.in(a,b) x (a,b).

It follows that

(U(JJ))p(l_%) P(z) :Cz( (y?)Q(l or)

c - gl(y) =c3, a.e.in(a,b) x (a,b),
W@y Wy W T ae b o))
wherecs is a constant. Without loss of generality, suppose: 0. One has
p(1—¢q)—1 !
<u(x,)) P(z) = ik (x), a.e.in(a,b),
(u'(z))P~1 cu(z)

which contradicts$) < f %ﬂ”( )dx < co. Then by .) one has

& J<{/ab“”(x)(ui?zj>l>zqf_lf”<m>dx}é{/ooowqw)( e gq(x)dx};,

and in view of (2.4), it follows tha{ (3]1) is valid.
For0 < & < q¢,, settingf.(z) = g-.(z) =0,z € (a,c) (c=u"'(1));

’

fo@) = (u(@))? 7 (@), ge(x) = (u())™ 7 (2),
€ [e,b), we find

i

If the constant facto3(¢,, ¢,) in (3.1) is not the best possible, then, there exists a positive
constant < B(¢,, ¢,), such that|{(3.[1) is still valid if one replacéX ¢,, ¢,) by k. In particular,

by (2.6) and|[(34), one has
B <¢p - §7¢q + E) —e0(1)
q q

1 @)
<< [ [ G+ st

<a{[ (“Ej?()j;)ff1f5<a:>das}; A <“§f}()jf)1;pflgg<x>dx}; .

and thenB(¢,, ¢,) < k (¢ — 07). This contradicts the fact that < B(¢,, ¢,). Hence the
constant factoB3(¢,, ¢,) in (3.1) is the best possible.
For0 < p < 1 (orp < 0), by the reverse of (2.2) and using the same procedures, one can

obtain the reverse of (3.1). For< ¢ < —q¢, (0r0 < ¢ < g¢,), settingf.(z) andg.(z) as the
above, we still have (3/4). If the constant facfe,, ¢,) in the reverse of (3]1) is not the best
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possible, then, there exists a positive constant B(¢,, ¢,), such that the reverse .1) IS
still valid if one replaces3(¢,, ¢,) by K. In particular, by[(2]7) and (3.4), one has

B(aﬁp—f,d)ﬁf)
o ]

(uz))Pa—¢0-1 » /b (u())11=6n)1
K r : =K
. {/ Wy FOTE A, Ty 0y =
and thenB(¢,, ¢,) > K (¢ — 07). This contradiction concludes that the constant in the reverse

of (3.1)) is the best possible. The theorem is proved. O

Theorem 3.2. Let the assumptions of Theorgm|3.1 hold.
() Ifp> 1,1+ 1 =1, one obtains the equivalent inequality 3.1) as follows

(3:9) / <u<Z;§lﬁp¢p U <u<m>ffi<y>>xd4pdy
b (u(z))P0-en 1

< By} [ o P

(i) If 0 < p < 1, one obtains the reverse ¢f (B.5) equivalent to the reverge adf (3.1);
(iii) If p < 0, one obtains inequality (3.5) equivalent to the revers¢ of (3.1),

where the constants in the above inequalities are all the best possible.

=

Proof. Set

and use[(3]1) to obtain

0</ (u Ey))q;l)_%)_lgq(y)dy

q
- ><>1)p¢p U <u<x>ffi<y>>*d:”] W

/ / edady < B(6,.6,)

oo [ <“Ez?2;;if1fp<x>dx}‘l’ ([ )
o<{[ (”Ei?iz(;%f‘lg%wdy}1‘3 |
B {/ab (U(Z)()?ﬁ”"ﬁp {/ab (u(:r)fq(txz)b(y))xdxrdy}p
(3.7) < B(dy, 6,) { / ’ (ug?g:;)_iqf—lfp(m)dx}p .
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It follows that [3.6) takes the form of strict inequality by using [3.1); so does$ (3.7). Hence one
can get[(3.5). On the other hand,[if (3.5) is valid, py|2.2),

/ab /a" (u(f(fr)g(y) drdy

[ s o)

Hence by[(3.5)[(3]1) yields. It follows that (8.1) apd (3.5) are equivalent.

If the constant factor in (3]5) is not the best possible, one can get a contradiction that the
constant factor irf (3]1) is not the best possible by using (3.8). Hence the constant fgcidr in (3.5)
is still the best possible.

If 0 < p < 1(orp < 0), one can get the reverses [of (3.6), [3.7) (3.8), and thus concludes
the equivalence. BY (3.6), fér< p < 1, one can obtain the reverse pf (3.5); fox 0, one can
get (3.5). If the constant factor in the reverse[of](3.5) (or siniply (3.5)) is not the best possible,
then one can get a contradiction that the constant factor in the revejse|of (3.1) is not the best
possible by using the reverse pf (3.8). Thus the theorem is proved. O

4, SOME PARTICULAR RESULTS

We point out that the constant factors in the following particular results of Thegreins 3.1 —
[3.4 are all the best possible.

4.1. The first reversible form.

Corollary 4.1. Let the assumptions of Theorefns] 3[1 4 3.2 hold. quo& (1-H(A=2)+
1(r = p,q), 0 < fb (u(z)) fp( Ydr < oo and 0 < f ﬁgq( r)dr < oo, setting

o (@)

k(p) = B (MM)

p q

@ Ifp>1, Il) + % = 1, A > 2 — min{p, ¢} , then we have the following two equivalent
inequalities:

(4.1) / / ; dady

' f@ ] o [0 @)
“2) / o | e e < o [ (e
(i) If0<p<land2—p < A < 2— g, one obtains two equivalent reverses[of|4.1) and
@.2),

(i) If p < 0and2 — g < A < 2 — p, we have the reverse ¢f (4.1) and the inequality|(4.2),
which are equivalent. In particular, by (4.1),
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(a) settingu(x) = z* (o > 0,z € (0,00)), one has
* [ f@)g(y)
(4.3) /0 /O (xa+ya)/\da:dy
l OoxpflJra(?f)\fp) P(2)d };{ > a=1+a(2=A=49) 14 ( 1\ } .
<ino{ [ Pt f [ gayir |

(b) settingu(z) =Inz, z € (1,00), one has

(4.4) /1 h /1 h —le(jlg;;Q dxdy

< ka(p) { /1 U (In g f”(x)d:z:} ! { /1 (I x)ng@)dx} :

(c) settingu(x) = e*, x € (—o0,0), one has

@s) [ Z / Z (J;Eﬁ—gﬁdmy

< ka(p) {/Z 6(2_p_k):"fp(x)da:}; {/Z 6(2_q_)‘)$gq(x)dx} ;

(d) settingu(x) = tanx,z € (0, 7), one has

T[T f(2)g(y)
(4.6) /0 /0 (tan:c—i—tany))‘dxdy
1-A v z 1-A
<kx(p){/o %fp(a:)dx} {/0 mgq(aﬁ)dw} ;

(e) settingu(z) = secx — 1,z € (0, §), one has
FE f@)g(y)
(4.7) /0 /0 (secx +secy — 2>Adq:dy

1
2 (seca — 1)1 Y > (secx — 1)1
d Ux)d
<kp) {/0 (secxtanx)l’—lf (w)da /0 (secxtanx)q—lg (z)dz
4.2. The second reversible form.
Corollary 4.2. Let the assumptions of Theorens|3. E—] 3.2 hold. o= 251 + 1 (r =

S

Q=

Q=

Q=

(NE]
[N
-+
&
=
8

Q=

—A
, 0 < f = fp( Jdz < oo and 0 < fb %gq( z)dr < oo, settingky(p) =
A 2 g\ 2
B (;D 2£+ 7q 2Z+ 7
@ Ifp>1, 117 + é =1L,A>1- 2min{%, %} , then one can get two equivalent inequalities
as follows:
Pt f@)gly)
(4.8) / S dxdy
o Ja (u(@)+uly))
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“o [ <u<:l>(>i)15* V <u<x>ffa)t<y>>kdxrdy< o) [ e

(i) F0<p<1,1-2<)<1-2 onecangettwo equivalent reverS|onsl4 8) and

“.9),
(i) fp <0,1—-2 <\ <12 one can get the reversion of (4.8) and |nequa.(4 9),

which are equwalent In particular, by (4.8),
(@) settlngu( ) z* (> 0,2 € (0,00)), one has

y
4.10 dxd
(4.10) / / x”y L vy
L 1%
< ak’\( ){/ Lp-1tra(l-pEd) fp( \d }P {/ xq—l—i-a(l—ql'g)‘)gq(x)dx} :
0 0

(b) settingu(z) = Inx, x € (1,00), one has

(4.11) / / fmy
< B\ ){/:Oxp lna)?'s fo(a )dx}’l’ {[qu—l(lnx)ql?gq(@dx} ;

(c) settingu(x) = e*, x € (—o0, 00), one has
f(@)g(y)
(4.12) / / (e + 6y))\dacdy
<h{ [~ prp@anl { [ ooyl
(d) settingu(z) = tanx, x € (0, %), one has

PE o f@)gy)
(4.13) /0 /0 (tanx—i—tany)’\dxdy

1
P 5 tanP' 7 gz P2\ i 3 tand's 1(p)d
< ka(p) /0 mf (z)dx /0 sec2@—1) 27 (z)dz o

(e) settingu(z) = secx — 1,z € (0, §), one has

P fa)gly)
(4.14) /0 /0 (secx+secy—2)Adxdy

- B (secx — 1T ’ /W (secx — 1)1
k P(x)d Ux)d
< kap) {/0 (secxtanx)f’*lf (w)da 0 (secxtanx)qflg (w)dz
4.3. The form which does not have a reverse.

Corollary 4.3. Let the assumptions of Theorems|3[1 4 3.2 hold.dFor= 2(r = p,q), if p >

Li+i=1x>0, 0< [ (” NP0 pr(a)de < 0o and 0 < f° @) éq);iﬂ)gq(:c)d:c<

Q=

Q=

Q=

Q=

™)
Q=
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00, then one can get two equivalent inequalities as:

" fl)gly)
(4.15) /a/a (a(z) + uf ))\da:dy

< (B[ e ) [ o)

AN o
s (o)) [ e e
In particular, by [4.15),
(a) settingu(z) = 2%(a > 0;z € (0,00)), one has

Mlﬂ(/ /

d;z: dy

(z
l ( > { (P 1)(10M)fp(x)d$}p {/OO m(ql)(lak)gq(x)dx}q;
o 0
(b) settingu(z) = Inz,z € (1,00), one has
<[ [(x)g(y) - <é ﬁ){ 1y ) P-DA-N) £p 0 x}’l’
(4.18) /1 /1 (lnxy)*d dy < B i /1 (Inx) fP(x)d
X {/oo 297 (In ) 4D ga )da:}q;

(c) settingu(z) = e*,x € (—o0,0), one has
* [ fl@)gly)

< B <é7 i) {/ e(l_p)’\xf”(x)dx}p {/ e(l_‘;’))‘rgq(x)dx}q :
P q) /- .

(d) settingu(x) = tanz,z € (0, 75), one has

(4.20) /g/g f@ew)
. o Jo (tanz + tany)*
A A 2 tan(P-D0=X) 4 z 2 tan(@—DI=X) 4 a
—, — - = fP e g .
=7 (p’ C]) {/o sec2(P=1) g JH)da /0 soc2a-1) 5 I (z)dz
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(e) settingu(z) = secx — 1,z € (0, §), one has

P [y
.2 /0 /o (secx + secy — 2)Adxdy
AA % (secz — 1)~ ) 7
<P (]_97 E) {/o (sec x tan x)P~! ! (m)dm}

3 (Secm — 1)(‘1*1)(1*/\) q a
8 {/0 (secz tan x)a-1 g'(w)du o
Remark 4.4. Fora = 1, (4.3) reduces td (I]5). For = 1, inequalities|(4.8)[(4.10) anf (4]17)
reduce to[(1]7), and inequalitig¢s (4.4), (4.11) and (4.18) redufe fo (1.4). It follows that inequality

(3.5) is a relation betweeh (1.4) aid (1.7)(ro [1.1)) with a paramet&till for A = 1, (4.5),
(4.12) and[(4.19) reduce to

(4.22) /_ Z /_ Z J@9W) 4

er + eY

g { o).

(#.8), [4.138) and (4.20) reduce to
52 f(2)gy)
(4.23) /0 /0 tanz + tan ydxdy

< —F {/2 cos*P~ b xfp(a:)d:r} {/2 cos?@=b xgq(:v)d:v} :
sin (%) 0 0

and [4.7),[(4.14) andl (4.R1) reduce to
P fa)e(y)
(4.24) /0 /0 secx+secy—2dmdy
- x

iU ) e ([ () )
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