THE ALEXANDER TRANSFORMATION OF A SUBCLASS OF SPIRALLIKE FUNCTIONS OF TYPE β

${ }^{1}$ QINGHUA XU AND ${ }^{1,2}$ SANYA LU
${ }^{1}$ School of Mathematics and Information Science
JiangXi Normal University
Jiangei, 330022, China
xuqhster@gmail.com
${ }^{2}$ Department of Science,
Nanchang Institute of Technology
Jiangei, 330099, China
yasanlu@163.com

Received 13 August, 2008; accepted 27 December, 2008
Communicated by G. Kohr

Abstract

In this paper, a subclass of spirallike function of type β denoted by \hat{S}_{α}^{β} is introduced in the unit disc of the complex plane. We show that the Alexander transformation of class of \hat{S}_{α}^{β} is univalent when $\cos \beta \leq \frac{1}{2(1-\alpha)}$, which generalizes the related results of some authors.

Key words and phrases: Univalent functions, Starlike functions of order α, spirallike functions of type β, Integral transformations.
2000 Mathematics Subject Classification 30C45.

1. Introduction

Let A denote the class of analytic functions f on the unit disk $D=\{z \in \mathbb{C}:|z|<1\}$ normalized by $f(0)=0$ and $f^{\prime}(0)=1, S$ denote the subclass of A consisting of univalent functions, and S^{*} denote starlike functions on D. Obviously, $S^{*} \subset S \subset A$ holds.

In [1], Robertson introduced starlike functions of order α on D.
Definition 1.1. Let $\alpha \in[0,1), f \in S$ and

$$
\Re e\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\alpha, \quad z \in D .
$$

We say that f is a starlike function of order α. Let $S^{*}(\alpha)$ denote the whole starlike functions of order α on D.

[^0]Spaček [2] extended the class of S^{*}, and obtained the class of spirallike functions of type β. In the same article, the author gave an analytical characterization of spirallikeness of type β on D.

Theorem 1.1. Let $f \in S$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then $f(z)$ is a spirallike function of type β on D if and only if

$$
\Re e\left[e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right]>0, \quad z \in D
$$

We denote the whole spirallike functions of type β on D by \hat{S}_{β}.
From Definition 1.1 and Theorem 1.1, it is easy to see that starlike functions of order α and spirallike functions of type β have some relationships on geometry. Spirallike functions of type β map D into the right half complex plane by the mapping $e^{i \beta \frac{z f^{\prime}(z)}{f(z)}}$, while starlike functions of order α map D into the right half complex plane whose real part is greater than α by the mapping $\frac{z f^{\prime}(z)}{f(z)}$. Since $\lim _{z \rightarrow 0} e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}=e^{i \beta}$, we can deduce that if we restrict the image of the mapping $e^{i \beta \frac{z f^{\prime}(z)}{f(z)}}$ in the right complex plane whose real part is greater than a certain constant, then the constant must be smaller than $\cos \beta$. According to this, we introduce the functions class \hat{S}_{α}^{β} on D.
Definition 1.2. Let $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), f \in S$, then $f \in \hat{S}_{\alpha}^{\beta}$ if and only if

$$
\Re e\left[e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right]>\alpha \cos \beta, \quad z \in D
$$

Obviously, when $\beta=0, f \in S^{*}(\alpha)$; while $\alpha=0, f \in \hat{S}_{\beta}$.
Example 1.1. Let $f(z)=\frac{z}{(1-z)^{\frac{2(1-\alpha)}{1+2 \tan \beta}}}, z \in D$. The branch of the power function is chosen such that

$$
\left.[(1-z)]^{\frac{2(1-\alpha)}{1+i \tan \beta}}\right|_{z=0}=1
$$

It is easily proved that $f \in \hat{S}_{\alpha}^{\beta}$. We omit the proof.
For our applications, we set $\hat{S}=\bigcup_{\beta} \hat{S}_{\alpha}^{\beta}$.
In this paper, we first establish the relationships among \hat{S}_{α}^{β} and some important subclasses of S, then investigate the Alexander transformation of \hat{S}_{α}^{β} preserving univalence. Furthermore, some other properties of the class of \hat{S}_{α}^{β} are obtained. These results generalize the related works of some authors.

2. Integral Transformations and Lemmas

Integral Transformation 1. The integral transformation

$$
J[f](z)=\int_{0}^{z} \frac{f(\zeta)}{\zeta} d \zeta
$$

is called the Alexander Transformation and it was introduced by Alexander in [4]. Alexander was the first to observe and prove that the Integral transformation J maps the class S^{*} of starlike functions onto the class K of convex functions in a one-to-one fashion.

In 1960, Biernacki conjectured that $J(S) \subset S$, but Krzyz and Lewandowski disproved it in 1963 by giving the example $f(z)=z(1-i z)^{i-1}$, which is a spirallike function of type $\frac{\pi}{4}$ but is transformed into a non-univalent function by J [4]. In 1969, Robertson studied the Alexander Integral Transformation of spirallike functions of type β. The author showed that $J\left(\hat{S}_{\beta}\right) \subset S$
holds when β satisfies a certain condition, that is $\cos \beta \leq x_{0}$ (a constant). Robertson also noticed that x_{0} cannot be replaced by any number greater than $\frac{1}{2}$ and asked about the best value for this [3]. In 2007, Y.C. Kim and T. Sugawa proved that $J\left(\hat{S}_{\beta}\right) \subset S$ holds precisely when $\cos \beta \leq \frac{1}{2}$ or $\beta=0$ [4].
Integral Transformation 2. Let $\gamma \in \mathbb{C}, f(z) \in A$ be locally univalent, and the Integral transformation I_{γ} [5] be defined by

$$
I_{\gamma}[f](z)=\int_{0}^{z}\left[f^{\prime}(\zeta)\right]^{\gamma} d \zeta=z \int_{0}^{1}\left[f^{\prime}(t z)\right]^{\gamma} d t
$$

Based on the definition of I_{γ}, we may easily show that $I_{\gamma} \circ I_{\gamma^{\prime}}=I_{\gamma \gamma^{\prime}}$.
Let $A(F)=\left\{\gamma \in \mathbb{C}: I_{\gamma}(F) \subset S\right\}, F \subset A$ be locally univalent. According to the definition of the $A(F), J\left(\hat{S}_{\alpha}^{\beta}\right) \subset S$ is equivalent to $1 \in A\left(J\left(\hat{S}_{\alpha}^{\beta}\right)\right)$.

For the proof of the theorems in this paper, we need the following lemma, which establishes the relationships among \hat{S}_{α}^{β} and some important subclasses of S.
Lemma 2.1. For $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), c=e^{-i \beta} \cos \beta$, the following assertions hold:
(i) ([6, 7]) $f \in S^{*}(\alpha)$ if and only if

$$
\frac{f(z)}{z}=\left[\frac{u(z)}{z}\right]^{1-\alpha}, \quad z \in D
$$

where $u(z) \in S^{*}$. The branch of the power function is chosen such that $\left.\left[\frac{u(z)}{z}\right]^{1-\alpha}\right|_{z=0}=1$.
(ii) $f \in \hat{S}_{\alpha}^{\beta}$ if and only if

$$
\frac{f(z)}{z}=\left[\frac{g(z)}{z}\right]^{c}, \quad z \in D
$$

where $g(z) \in S^{*}(\alpha)$. The branch of the power function is chosen such that $\left.\left[\frac{g(z)}{z}\right]^{c}\right|_{z=0}=1$.
(iii) $f \in \hat{S}_{\alpha}^{\beta}$ if and only if

$$
\frac{f(z)}{z}=\left[\frac{s(z)}{z}\right]^{(1-\alpha) c}, \quad z \in D
$$

where $s(z) \in S^{*}$. The branch of the power function is chosen such that $\left.\left[\frac{s(z)}{z}\right]^{(1-\alpha) c}\right|_{z=0}=1$.
Now we give the proof of (ii) and (iii).
Proof. (ii). First, assume that $f(z) \in \hat{S}_{\alpha}^{\beta}$. Setting $g(z)=z\left[\frac{f(z)}{z}\right]^{\frac{e^{i \beta}}{\cos \beta}}$, through simple calculations we may obtain the equality

$$
\frac{z g^{\prime}(z)}{g(z)}=(1+i \tan \beta) \frac{z f^{\prime}(z)}{f(z)}-i \tan \beta .
$$

Therefore the following inequality holds,

$$
\Re e\left[\frac{z g^{\prime}(z)}{g(z)}\right]=\frac{1}{\cos \beta} \Re e\left[e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right]>\frac{\alpha \cos \beta}{\cos \beta}=\alpha
$$

namely $g(z) \in S^{*}(\alpha)$.

Conversely, suppose $g(z) \in S^{*}(\alpha)$, then according to the above calculation, we have the inequality

$$
\frac{1}{\cos \beta} \Re e\left[e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right]=\Re e\left[\frac{z g^{\prime}(z)}{g(z)}\right]>\alpha
$$

This implies

$$
\Re e\left[e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right]>\alpha \cos \beta
$$

i.e., $f(z) \in \hat{S}_{\alpha}^{\beta}$.
(iii). It is easy to see from (ii) that $f \in \hat{S}_{\alpha}^{\beta}$ if and only if $g \in S^{*}(\alpha)$ such that $\frac{f(z)}{z}=\left[\frac{g(z)}{z}\right]^{c}$, here $c=e^{-i \beta} \cos \beta$. Noting that $g(z) \in S^{*}(\alpha)$ if and only if $s(z) \in S^{*}$ such that $\frac{g(z)}{z}=\left[\frac{s(z)}{z}\right]^{1-\alpha}$ which holds in (i), we may obtain an important relationship between the class of \hat{S}_{α}^{β} and the class of $S^{*}: f \in \hat{S}_{\alpha}^{\beta}$ if and only if there exists $s(z) \in S^{*}$ such that $\frac{f(z)}{z}=\left[\frac{s(z)}{z}\right]^{(1-\alpha) c}$. Here, $c=$ $e^{-i \beta} \cos \beta$ and the branch of the power function is chosen such that $\left.\left[\frac{s(z)}{z}\right]^{(1-\alpha) c}\right|_{z=0}=1$.

Lemma 2.1 expresses the relations of the \hat{S}_{α}^{β} and S^{*} classes, which play a key role in this paper.
Lemma 2.2 ([5], [8]). $A(K)=\left\{|\gamma| \leq \frac{1}{2}\right\} \cup\left[\frac{1}{2}, \frac{3}{2}\right]$.
Lemma 2.3. For $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), J\left(\hat{S}_{\alpha}^{\beta}\right)=I_{(1-\alpha) e^{-i \beta \cos \beta}(K) \text {. }}$
Proof. Let $f \in J\left(\hat{S}_{\alpha}^{\beta}\right)$, then there exists $g(z) \in \hat{S}_{\alpha}^{\beta}$ such that $f(z)=\int_{0}^{z} \frac{g(\zeta)}{\zeta} d \zeta$. According to (iii) of Lemma 2.1 there is $s(z) \in S^{*}$ such that

$$
g(z)=z\left[\frac{s(z)}{z}\right]^{(1-\alpha) e^{-i \beta} \cos \beta}
$$

therefore

$$
f(z)=\int_{0}^{z}\left[\frac{s(\zeta)}{\zeta}\right]^{(1-\alpha) e^{-i \beta} \cos \beta} d \zeta
$$

By the relationship of the S^{*} class and the K class, there exists $u(z) \in K$ such that $s(z)=$ $z u^{\prime}(z)$, thus

$$
f(z)=\int_{0}^{z}\left[u^{\prime}(\zeta)\right]^{(1-\alpha) e^{-i \beta} \cos \beta} d \zeta
$$

i.e., $f(z) \in I_{(1-\alpha) e^{-i \beta} \cos \beta}(K)$. As a result, $J\left(\hat{S}_{\alpha}^{\beta}\right) \subset I_{(1-\alpha) e^{-i \beta} \cos \beta}(K)$ holds.

Conversely, when $f(z) \in I_{(1-\alpha) e^{-i \beta} \cos \beta}(K)$, we can trace back the above procedure to get $f \in J\left(\hat{S}_{\alpha}^{\beta}\right)$, so $I_{(1-\alpha) e^{-i \beta} \cos \beta}(K) \subset J\left(\hat{S}_{\alpha}^{\beta}\right)$.

From the above proof, we obtain the assertion.
Remark 1. If, in the hypothesis of Lemma 2.3, we set $\alpha=0$, we arrive at Lemma 4 of [4].

3. The Main Results and Their Proofs

In this section, we let $[z, w]$ denote the closed line segment with endpoints z and w for $z, w \in \mathbb{C}$.
Now we give the main results and their proofs.
Theorem 3.1. For $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$
A\left(J\left(\hat{S}_{\alpha}^{\beta}\right)\right)=\left\{|\gamma| \leq \frac{1}{2(1-\alpha) \cos \beta}\right\} \bigcup\left\{\frac{e^{i \beta}}{2(1-\alpha) \cos \beta}, \frac{3 e^{i \beta}}{2(1-\alpha) \cos \beta}\right\} .
$$

Proof. By Lemma 2.3, we have

$$
I_{\gamma}\left(J\left(\hat{S}_{\alpha}^{\beta}\right)\right)=I_{\gamma}\left(I_{(1-\alpha) e^{-i \beta} \cos \beta}(K)\right)=I_{\gamma(1-\alpha) e^{-i \beta} \cos \beta}(K) .
$$

Therefore, $\gamma \in A\left(J\left(\hat{S}_{\alpha}^{\beta}\right)\right)$ if and only if $\gamma(1-\alpha) e^{-i \beta} \cos \beta \in A(K)$, and by Lemma 2.2 we may easily get the result.
Remark 2. In this theorem, if we set $\alpha=0$, we obtain Theorem 3 of [4].
Theorem 3.2. For $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the inclusion relation $J\left(\hat{S}_{\alpha}^{\beta}\right) \subset S$ holds precisely if either $\cos \beta \leq \frac{1}{2(1-\alpha)}$ or $\alpha=\beta=0$.
Proof. As $\alpha=\beta=0$, the result holds evidently by Integral transformation 1; while for $\alpha=0$ and $\beta \neq 0$, the result is Theorem 1 of [4] and was proved by Y.C. Kim and T. Sugawa [4].

If $\alpha \neq 0$ and $\beta=0$, then $f(z) \in S^{*}(\alpha)$. By Lemma 2.1(i), there exists $u(z) \in S^{*}$ such that $u(z)=z\left(\frac{f(z)}{z}\right)^{\frac{1}{1-\alpha}}$. The branch of the power function is chosen such that $\left.\left(\frac{f(z)}{z}\right)^{\frac{1}{1-\alpha}}\right|_{z=0}=1$. From Integral transformation 1, we can easily see that there exists $g(z) \in J\left(\hat{S}_{\alpha}^{\beta}\right)$ such that

$$
g(z)=\int_{0}^{z}\left(\frac{f(\zeta)}{\zeta}\right)^{\frac{1}{1-\alpha}} d \zeta
$$

For

$$
\Re e\left[1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right]=\Re e\left[\frac{1}{1-\alpha} \frac{z f^{\prime}(z)}{f(z)}\right]
$$

and $\Re e\left[\frac{z f^{\prime}(z)}{f(z)}\right]>\alpha$, we can deduce that $\Re e\left[1+\frac{z g^{\prime \prime}(z)}{g^{\prime}(z)}\right]>0$. This implies $g(z) \in K$ and $J\left(S^{*}(\alpha)\right) \subset S$.
Now let $\alpha \neq 0$ and $\beta \neq 0$. Since $J\left(\hat{S}_{\alpha}^{\beta}\right) \subset S$ is equivalent to $1 \in A\left(J\left(\hat{S}_{\alpha}^{\beta}\right)\right)$ and $1 \notin$ $\left[\frac{e^{i \beta}}{2(1-\alpha) \cos \beta}, \frac{3 e^{i \beta}}{2(1-\alpha) \cos \beta}\right]$, by Theorem 3.1, we deduce that $1 \leq \frac{1}{2(1-\alpha) \cos \beta}$, i.e., $\cos \beta \leq \frac{1}{2(1-\alpha)}$.
Summarizing the above procedure, for $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right), J\left(\hat{S}_{\alpha}^{\beta}\right) \subset S$ holds when $\cos \beta \leq \frac{1}{2(1-\alpha)}$ or $\alpha=\beta=0$. This completes the proof.
Remark 3. This theorem is an extension of Theorem 1 of [4]. Indeed, if we set $\alpha=0$, we will obtain the result of [4].
Theorem 3.3. For $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$,

$$
A(J(\hat{S}))=\left\{|\gamma| \leq \frac{1}{2(1-\alpha) \cos \beta}\right\}
$$

Proof. In view of $\hat{S}=\bigcup_{\beta} \hat{S}_{\alpha}^{\beta}$ and $A(F)=\left\{\gamma \in \mathbb{C}: I_{\gamma}(F) \subset S\right\}$, we deduce $A(J(\hat{S}))=$ $\bigcap_{\beta}\left(J\left(\hat{S}_{\alpha}^{\beta}\right)\right)$. With the aid of Theorem 3.1, a simple observation gives $A(J(\hat{S}))=$ $\left\{|\gamma| \leq \frac{1}{2(1-\alpha) \cos \beta}\right\}$. Thus the proof is now complete.

Remark 4. For $\alpha=\beta=0$, Theorem 3.3 implies the Theorem 2 of [4].
At the end of this paper, we mention the norm estimate of pre-Schwarzian derivatives. The hyperbolic norm of the pre-Schwarzian derivative $T_{f}=f^{\prime \prime} / f^{\prime}$ of $f \in A$ is defined to be

$$
\|f\|=\sup _{|z|<1}\left(1-|z|^{2}\right)\left|T_{f}(z)\right|
$$

It is known that f is bounded if $\|f\|<2$ and the bound depends only on the value of $\|f\|$ ([9]). Since

$$
\begin{aligned}
\left\|I_{\gamma}[f]\right\| & =\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{\left(\int_{0}^{z}\left[f^{\prime}(\zeta)\right]^{\gamma} d \zeta\right)^{\prime \prime}}{\left(\int_{0}^{z}\left[f^{\prime}(\zeta)\right]^{\gamma}\right)^{\prime}}\right| \\
& =\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{\left(\left[f^{\prime}(z)\right]^{\gamma}\right)^{\prime}}{\left.f^{\prime}(z)\right]^{\gamma}}\right| \\
& =\sup _{|z|<1}\left(1-|z|^{2}\right)\left|\frac{\gamma f^{\prime \prime}(z)}{f^{\prime}(z)}\right|=|\gamma|\|f\| .
\end{aligned}
$$

We obtain the following assertion.
Proposition 3.4. For each $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the sharp inequality $\|f\| \leq 4(1-\alpha) \cos \beta$ holds for $f \in J\left(\hat{S}_{\alpha}^{\beta}\right)$. Moreover, if $\cos \beta<\frac{1}{2(1-\alpha)}$, then a function in $J\left(\hat{S}_{\alpha}^{\beta}\right)$ is bounded by a constant depending on α and β.
Proof. For each $f \in J\left(\hat{S}_{\alpha}^{\beta}\right)$, by Lemma 2.3, there is a function $k \in K$ such that $f=I_{\gamma}(k)$, where $\gamma=(1-\alpha) e^{-i \beta} \cos \beta$. Noting that $\|k\| \leq 4$ [10], we obtain the following inequality

$$
\|f\|=|\gamma|\|k\| \leq 4|\gamma|=4(1-\alpha) \cos \beta
$$

Since the inequality $\|k\| \leq 4$ is sharp, the above inequality is also sharp. If $\cos \beta<\frac{1}{2(1-\alpha)}$, the above inequality implies $\|f\| \leq 4(1-\alpha) \cos \beta<2$, so f is bounded by a constant depending on α and β.

Remark 5. If, in the statement of Proposition 3.4, we set $\alpha=0$, we arrive at the result of [4].
In the above proposition, the bound $\frac{1}{2}$ cannot be replaced by any number greater than $\frac{1}{\sqrt{2(1-\alpha)}}$. Indeed, by the Alexander transformation, if the function

$$
g(z)=z(1-z)^{-2(1-\alpha) e^{-i \beta} \cos \beta} \in \hat{S}_{\alpha}^{\beta}
$$

then the function

$$
f(z)=\frac{(1-z)^{1-2(1-\alpha) e^{-i \beta} \cos \beta}-1}{2(1-\alpha) e^{-i \beta} \cos \beta-1} \in J\left(\hat{S}_{\alpha}^{\beta}\right)
$$

and we may verify that the latter is unbounded when $\cos \beta>\frac{1}{\sqrt{2(1-\alpha)}}$.

References

[1] M.S. ROBERTSON, On the theory of univalent functions, Ann. Math., 37 (1936), 374-408.
[2] L. SPAČEK, Contribution à la théorie des fonctions univalentes, Casopis Pěst Math., 62 (1932), 12-19, (in Russian).
[3] M.S. ROBERTSON, Univalent functions $f(z)$ for which $z f^{\prime}(z)$ is spirallike, Michigan Math. J., 16 (1969), 97-101.
[4] Y.C. KIM and T. SUGAWA, The Alexander transform of a spirallike function, J. Math. Anal. Appl., 325(1) (2007), 608-611.
[5] Y.C. KIM, S. PONNUSAMY AND T. SUGAWA, Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives, J. Math. Anal. Appl., 299 (2004), 433-447.
[6] A.W. GOODMAN, Univalent functions, I-II, Mariner Publ.Co.,Tampa Florida,1983.
[7] I. GRAHAM AND G. KOHR, Geometric function theory in one and higher dimensions, Marcel Dekker, New York, 2003.
[8] L.A. AKSENT'EV AND I.R. NEZHMETDINOV, Sufficient conditions for univalence of certain integral transforms, Tr. Semin. Kraev. Zadacham. Kazan, 18 (1982), 3-11 (in Russian); English translation in: Amer. Math. Soc. Transl., 136(2) (1987), 1-9.
[9] Y.C. KIM AND T. SUGAWA, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, Rocky Mountain J. Math., 32 (2002), 179-200.
[10] S. YAMASHITA, Norm estimates for function starlike or convex of order alpha, Hokkaido Math. J., 28 (1999), 217-230.

[^0]: This research has been supported by the Jiangxi Provincial Natural Science Foundation of China (Grant No. 2007GZS0177) and Specialized Research Fund for the Doctoral Program of JiangXi Normal University.

 225-08

