# journal of inequalities in pure and applied mathematics

http://jipam.vu.edu.au

issn: 1443-5756

Volume 10 (2009), Issue 1, Article 17, 7 pp.



© 2009 Victoria University. All rights reserved.

# THE ALEXANDER TRANSFORMATION OF A SUBCLASS OF SPIRALLIKE FUNCTIONS OF TYPE $\beta$

 $^1$ QINGHUA XU AND  $^{1,2}$ SANYA LU

<sup>1</sup>SCHOOL OF MATHEMATICS AND INFORMATION SCIENCE JIANGXI NORMAL UNIVERSITY JIANGXI, 330022, CHINA xuqhster@gmail.com

> <sup>2</sup>DEPARTMENT OF SCIENCE, NANCHANG INSTITUTE OF TECHNOLOGY JIANGXI, 330099, CHINA yasanlu@163.com

Received 13 August, 2008; accepted 27 December, 2008 Communicated by G. Kohr

ABSTRACT. In this paper, a subclass of spirallike function of type  $\beta$  denoted by  $\hat{S}_{\alpha}^{\beta}$  is introduced in the unit disc of the complex plane. We show that the Alexander transformation of class of  $\hat{S}_{\alpha}^{\beta}$  is univalent when  $\cos\beta \leq \frac{1}{2(1-\alpha)}$ , which generalizes the related results of some authors.

Key words and phrases: Univalent functions, Starlike functions of order  $\alpha$ , spirallike functions of type  $\beta$ , Integral transformations.

2000 Mathematics Subject Classification. 30C45.

## 1. Introduction

Let A denote the class of analytic functions f on the unit disk  $D = \{z \in \mathbb{C} : |z| < 1\}$  normalized by f(0) = 0 and f'(0) = 1, S denote the subclass of A consisting of univalent functions, and  $S^*$  denote starlike functions on D. Obviously,  $S^* \subset S \subset A$  holds.

In [1], Robertson introduced starlike functions of order  $\alpha$  on D.

**Definition 1.1.** Let  $\alpha \in [0,1)$ ,  $f \in S$  and

$$\Re e\left[\frac{zf'(z)}{f(z)}\right] > \alpha, \quad z \in D.$$

We say that f is a starlike function of order  $\alpha$ . Let  $S^*(\alpha)$  denote the whole starlike functions of order  $\alpha$  on D.

This research has been supported by the Jiangxi Provincial Natural Science Foundation of China (Grant No. 2007GZS0177) and Specialized Research Fund for the Doctoral Program of JiangXi Normal University.

Spaček [2] extended the class of  $S^*$ , and obtained the class of spirallike functions of type  $\beta$ . In the same article, the author gave an analytical characterization of spirallikeness of type  $\beta$  on D.

**Theorem 1.1.** Let  $f \in S$  and  $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ . Then f(z) is a spirallike function of type  $\beta$  on D if and only if

 $\Re e\left[e^{i\beta}\frac{zf'(z)}{f(z)}\right] > 0, \quad z \in D.$ 

We denote the whole spirallike functions of type  $\beta$  on D by  $\hat{S}_{\beta}$ .

From Definition 1.1 and Theorem 1.1, it is easy to see that starlike functions of order  $\alpha$  and spirallike functions of type  $\beta$  have some relationships on geometry. Spirallike functions of type  $\beta$  map D into the right half complex plane by the mapping  $e^{i\beta}\frac{zf'(z)}{f(z)}$ , while starlike functions of order  $\alpha$  map D into the right half complex plane whose real part is greater than  $\alpha$  by the mapping  $\frac{zf'(z)}{f(z)}$ . Since  $\lim_{z\to 0}e^{i\beta}\frac{zf'(z)}{f(z)}=e^{i\beta}$ , we can deduce that if we restrict the image of the mapping  $e^{i\beta}\frac{zf'(z)}{f(z)}$  in the right complex plane whose real part is greater than a certain constant, then the constant must be smaller than  $\cos\beta$ . According to this, we introduce the functions class  $\hat{S}_{\alpha}^{\beta}$  on D.

**Definition 1.2.** Let  $\alpha \in [0,1)$ ,  $\beta \in (-\frac{\pi}{2},\frac{\pi}{2})$ ,  $f \in S$ , then  $f \in \hat{S}^{\beta}_{\alpha}$  if and only if

$$\Re e\left[e^{i\beta}\frac{zf'(z)}{f(z)}\right] > \alpha\cos\beta, \quad z \in D.$$

Obviously, when  $\beta = 0$ ,  $f \in S^*(\alpha)$ ; while  $\alpha = 0$ ,  $f \in \hat{S}_{\beta}$ .

**Example 1.1.** Let  $f(z)=\frac{z}{(1-z)^{\frac{2(1-\alpha)}{1+i\tan\beta}}}, z\in D$ . The branch of the power function is chosen such that

$$[(1-z)]^{\frac{2(1-\alpha)}{1+i\tan\beta}}\Big|_{z=0} = 1.$$

It is easily proved that  $f \in \hat{S}_{\alpha}^{\beta}$ . We omit the proof.

For our applications, we set  $\hat{S} = \bigcup_{\beta} \hat{S}_{\alpha}^{\beta}$ .

In this paper, we first establish the relationships among  $\hat{S}_{\alpha}^{\beta}$  and some important subclasses of S, then investigate the Alexander transformation of  $\hat{S}_{\alpha}^{\beta}$  preserving univalence. Furthermore, some other properties of the class of  $\hat{S}_{\alpha}^{\beta}$  are obtained. These results generalize the related works of some authors.

### 2. INTEGRAL TRANSFORMATIONS AND LEMMAS

**Integral Transformation 1.** The integral transformation

$$J[f](z) = \int_0^z \frac{f(\zeta)}{\zeta} d\zeta$$

is called the Alexander Transformation and it was introduced by Alexander in [4]. Alexander was the first to observe and prove that the Integral transformation J maps the class  $S^*$  of starlike functions onto the class K of convex functions in a one-to-one fashion.

In 1960, Biernacki conjectured that  $J(S)\subset S$ , but Krzyz and Lewandowski disproved it in 1963 by giving the example  $f(z)=z(1-iz)^{i-1}$ , which is a spirallike function of type  $\frac{\pi}{4}$  but is transformed into a non-univalent function by J [4]. In 1969, Robertson studied the Alexander Integral Transformation of spirallike functions of type  $\beta$ . The author showed that  $J(\hat{S}_{\beta})\subset S$ 

holds when  $\beta$  satisfies a certain condition, that is  $\cos \beta \leq x_0$  (a constant). Robertson also noticed that  $x_0$  cannot be replaced by any number greater than  $\frac{1}{2}$  and asked about the best value for this [3]. In 2007, Y.C. Kim and T. Sugawa proved that  $J(\hat{S}_{\beta}) \subset S$  holds precisely when  $\cos \beta \leq \frac{1}{2}$  or  $\beta = 0$  [4].

**Integral Transformation 2.** Let  $\gamma \in \mathbb{C}$ ,  $f(z) \in A$  be locally univalent, and the Integral transformation  $I_{\gamma}$  [5] be defined by

$$I_{\gamma}[f](z) = \int_{0}^{z} [f'(\zeta)]^{\gamma} d\zeta = z \int_{0}^{1} [f'(tz)]^{\gamma} dt.$$

Based on the definition of  $I_{\gamma}$ , we may easily show that  $I_{\gamma} \circ I_{\gamma'} = I_{\gamma\gamma'}$ .

Let  $A(F)=\{\gamma\in\mathbb{C}:I_{\gamma}(F)\subset S\},\ F\subset A$  be locally univalent. According to the definition of the  $A(F),\,J(\hat{S}_{\alpha}^{\beta})\subset S$  is equivalent to  $1\in A(J(\hat{S}_{\alpha}^{\beta}))$ .

For the proof of the theorems in this paper, we need the following lemma, which establishes the relationships among  $\hat{S}^{\beta}_{\alpha}$  and some important subclasses of S.

**Lemma 2.1.** For  $\alpha \in [0,1)$ ,  $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ ,  $c = e^{-i\beta} \cos \beta$ , the following assertions hold:

(i) ([6, 7])  $f \in S^*(\alpha)$  if and only if

$$\frac{f(z)}{z} = \left[\frac{u(z)}{z}\right]^{1-\alpha}, \quad z \in D,$$

where  $u(z) \in S^*$ . The branch of the power function is chosen such that  $\left[\frac{u(z)}{z}\right]^{1-\alpha} \Big|_{z=0} = 1$ .

(ii)  $f \in \hat{S}^{\beta}_{\alpha}$  if and only if

$$\frac{f(z)}{z} = \left[\frac{g(z)}{z}\right]^c, \quad z \in D,$$

where  $g(z) \in S^*(\alpha)$ . The branch of the power function is chosen such that  $\left[\frac{g(z)}{z}\right]^c\Big|_{z=0}=1$ .

(iii)  $f \in \hat{S}^{\beta}_{\alpha}$  if and only if

$$\frac{f(z)}{z} = \left[\frac{s(z)}{z}\right]^{(1-\alpha)c}, \quad z \in D,$$

where  $s(z) \in S^*$ . The branch of the power function is chosen such that  $\left[\frac{s(z)}{z}\right]^{(1-\alpha)c}\Big|_{z=0} = 1$ .

Now we give the proof of (ii) and (iii).

*Proof.* (ii). First, assume that  $f(z) \in \hat{S}^{\beta}_{\alpha}$ . Setting  $g(z) = z \left[ \frac{f(z)}{z} \right]^{\frac{e^{i\beta}}{\cos\beta}}$ , through simple calculations we may obtain the equality

$$\frac{zg'(z)}{g(z)} = (1 + i\tan\beta)\frac{zf'(z)}{f(z)} - i\tan\beta.$$

Therefore the following inequality holds,

$$\Re e\left[\frac{zg'(z)}{g(z)}\right] = \frac{1}{\cos\beta}\Re e\left[e^{i\beta}\frac{zf'(z)}{f(z)}\right] > \frac{\alpha\cos\beta}{\cos\beta} = \alpha,$$

namely  $g(z) \in S^*(\alpha)$ .

Conversely, suppose  $g(z) \in S^*(\alpha)$ , then according to the above calculation, we have the inequality

$$\frac{1}{\cos\beta}\Re e\left[e^{i\beta}\frac{zf'(z)}{f(z)}\right]=\Re e\left[\frac{zg'(z)}{g(z)}\right]>\alpha.$$

This implies

$$\Re e\left[e^{i\beta}\frac{zf'(z)}{f(z)}\right] > \alpha\cos\beta,$$

i.e.,  $f(z) \in \hat{S}_{\alpha}^{\beta}$ .

(iii). It is easy to see from (ii) that  $f \in \hat{S}_{\alpha}^{\beta}$  if and only if  $g \in S^*(\alpha)$  such that  $\frac{f(z)}{z} = \left\lceil \frac{g(z)}{z} \right\rceil^c$ , here  $c = e^{-i\beta}\cos\beta$ . Noting that  $g(z) \in S^*(\alpha)$  if and only if  $s(z) \in S^*$  such that  $\frac{g(z)}{z} = \left[\frac{s(z)}{z}\right]^{1-\alpha}$  which holds in (i), we may obtain an important relationship between the class of  $\hat{S}_{\alpha}^{\beta}$  and the class of  $S^*: f \in \hat{S}_{\alpha}^{\beta}$  if and only if there exists  $s(z) \in S^*$  such that  $\frac{f(z)}{z} = \left[\frac{s(z)}{z}\right]^{(1-\alpha)c}$ . Here,  $c = \frac{s(z)}{z}$  $e^{-i\beta}\cos\beta$  and the branch of the power function is chosen such that  $\left\lceil \frac{s(z)}{z} \right\rceil^{(1-\alpha)c} = 1$ .

Lemma 2.1 expresses the relations of the  $\hat{S}^{\beta}_{\alpha}$  and  $S^*$  classes, which play a key role in this

**Lemma 2.2** ([5], [8]).  $A(K) = \{ |\gamma| \le \frac{1}{2} \} \cup [\frac{1}{2}, \frac{3}{2}].$ 

**Lemma 2.3.** For  $\alpha \in [0,1)$ ,  $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ ,  $J(\hat{S}^{\beta}_{\alpha}) = I_{(1-\alpha)e^{-i\beta\cos\beta}}(K)$ 

*Proof.* Let  $f \in J(\hat{S}^{\beta}_{\alpha})$ , then there exists  $g(z) \in \hat{S}^{\beta}_{\alpha}$  such that  $f(z) = \int_{0}^{z} \frac{g(\zeta)}{\zeta} d\zeta$ . According to (iii) of Lemma 2.1 there is  $s(z) \in S^*$  such that

$$g(z) = z \left[ \frac{s(z)}{z} \right]^{(1-\alpha)e^{-i\beta}\cos\beta},$$

therefore

$$f(z) = \int_0^z \left[ \frac{s(\zeta)}{\zeta} \right]^{(1-\alpha)e^{-i\beta}\cos\beta} d\zeta.$$

By the relationship of the  $S^*$  class and the K class, there exists  $u(z) \in K$  such that s(z) =zu'(z), thus

$$f(z) = \int_0^z [u'(\zeta)]^{(1-\alpha)e^{-i\beta}\cos\beta} d\zeta,$$

i.e.,  $f(z) \in I_{(1-\alpha)e^{-i\beta}\cos\beta}(K)$ . As a result,  $J(\hat{S}_{\alpha}^{\beta}) \subset I_{(1-\alpha)e^{-i\beta}\cos\beta}(K)$  holds. Conversely, when  $f(z) \in I_{(1-\alpha)e^{-i\beta}\cos\beta}(K)$ , we can trace back the above procedure to get  $f \in J(\hat{S}_{\alpha}^{\beta})$ , so  $I_{(1-\alpha)e^{-i\beta}\cos\beta}(K) \subset J(\hat{S}_{\alpha}^{\beta})$ . From the above proof, we obtain the assertion.

**Remark 1.** If, in the hypothesis of Lemma 2.3, we set  $\alpha = 0$ , we arrive at Lemma 4 of [4].

#### 3. THE MAIN RESULTS AND THEIR PROOFS

In this section, we let [z,w] denote the closed line segment with endpoints z and w for  $z,w\in\mathbb{C}$ .

Now we give the main results and their proofs.

**Theorem 3.1.** For  $\alpha \in [0, 1)$ ,  $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ ,

$$A(J(\hat{S}_{\alpha}^{\beta})) = \left\{ |\gamma| \leq \frac{1}{2(1-\alpha)\cos\beta} \right\} \bigcup \left\{ \frac{e^{i\beta}}{2(1-\alpha)\cos\beta}, \frac{3e^{i\beta}}{2(1-\alpha)\cos\beta} \right\}.$$

Proof. By Lemma 2.3, we have

$$I_{\gamma}(J(\hat{S}_{\alpha}^{\beta})) = I_{\gamma}(I_{(1-\alpha)e^{-i\beta}\cos\beta}(K)) = I_{\gamma(1-\alpha)e^{-i\beta}\cos\beta}(K).$$

Therefore,  $\gamma \in A(J(\hat{S}_{\alpha}^{\beta}))$  if and only if  $\gamma(1-\alpha)e^{-i\beta}\cos\beta \in A(K)$ , and by Lemma 2.2 we may easily get the result.

**Remark 2.** In this theorem, if we set  $\alpha = 0$ , we obtain Theorem 3 of [4].

**Theorem 3.2.** For  $\alpha \in [0,1)$ ,  $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ , the inclusion relation  $J(\hat{S}_{\alpha}^{\beta}) \subset S$  holds precisely if either  $\cos \beta \leq \frac{1}{2(1-\alpha)}$  or  $\alpha = \beta = 0$ .

*Proof.* As  $\alpha = \beta = 0$ , the result holds evidently by Integral transformation 1; while for  $\alpha = 0$  and  $\beta \neq 0$ , the result is Theorem 1 of [4] and was proved by Y.C. Kim and T. Sugawa [4].

If  $\alpha \neq 0$  and  $\beta = 0$ , then  $f(z) \in S^*(\alpha)$ . By Lemma 2.1(i), there exists  $u(z) \in S^*$  such that  $u(z) = z \left(\frac{f(z)}{z}\right)^{\frac{1}{1-\alpha}}$ . The branch of the power function is chosen such that  $\left(\frac{f(z)}{z}\right)^{\frac{1}{1-\alpha}}\Big|_{z=0} = 1$ .

From Integral transformation 1, we can easily see that there exists  $g(z) \in J(\hat{S}^{\beta}_{\alpha})$  such that

$$g(z) = \int_0^z \left(\frac{f(\zeta)}{\zeta}\right)^{\frac{1}{1-\alpha}} d\zeta.$$

For

$$\Re e\left[1 + \frac{zg''(z)}{g'(z)}\right] = \Re e\left[\frac{1}{1-\alpha}\frac{zf'(z)}{f(z)}\right]$$

and  $\Re e\left[\frac{zf'(z)}{f(z)}\right] > \alpha$ , we can deduce that  $\Re e\left[1 + \frac{zg''(z)}{g'(z)}\right] > 0$ . This implies  $g(z) \in K$  and  $J(S^*(\alpha)) \subset S$ .

Now let  $\alpha \neq 0$  and  $\beta \neq 0$ . Since  $J(\hat{S}_{\alpha}^{\beta}) \subset S$  is equivalent to  $1 \in A(J(\hat{S}_{\alpha}^{\beta}))$  and  $1 \notin \left[\frac{e^{i\beta}}{2(1-\alpha)\cos\beta}, \frac{3e^{i\beta}}{2(1-\alpha)\cos\beta}\right]$ , by Theorem 3.1, we deduce that  $1 \leq \frac{1}{2(1-\alpha)\cos\beta}$ , i.e.,  $\cos\beta \leq \frac{1}{2(1-\alpha)}$ .

Summarizing the above procedure, for  $\alpha \in [0,1)$ ,  $\beta \in (-\frac{\pi}{2},\frac{\pi}{2})$ ,  $J(\hat{S}_{\alpha}^{\beta}) \subset S$  holds when  $\cos \beta \leq \frac{1}{2(1-\alpha)}$  or  $\alpha = \beta = 0$ . This completes the proof.

**Remark 3.** This theorem is an extension of Theorem 1 of [4]. Indeed, if we set  $\alpha = 0$ , we will obtain the result of [4].

**Theorem 3.3.** For  $\alpha \in [0, 1)$ ,  $\beta \in (-\frac{\pi}{2}, \frac{\pi}{2})$ ,

$$A(J(\hat{S})) = \left\{ |\gamma| \le \frac{1}{2(1-\alpha)\cos\beta} \right\}.$$

*Proof.* In view of  $\hat{S} = \bigcup_{\beta} \hat{S}_{\alpha}^{\beta}$  and  $A(F) = \{ \gamma \in \mathbb{C} : I_{\gamma}(F) \subset S \}$ , we deduce  $A(J(\hat{S})) = \bigcap_{\beta} (J(\hat{S}_{\alpha}^{\beta}))$ . With the aid of Theorem 3.1, a simple observation gives  $A(J(\hat{S})) = \{ |\gamma| \leq \frac{1}{2(1-\alpha)\cos\beta} \}$ . Thus the proof is now complete.  $\square$ 

**Remark 4.** For  $\alpha = \beta = 0$ , Theorem 3.3 implies the Theorem 2 of [4].

At the end of this paper, we mention the norm estimate of pre-Schwarzian derivatives. The hyperbolic norm of the pre-Schwarzian derivative  $T_f = f''/f'$  of  $f \in A$  is defined to be

$$||f|| = \sup_{|z|<1} (1-|z|^2)|T_f(z)|.$$

It is known that f is bounded if ||f|| < 2 and the bound depends only on the value of ||f|| ([9]). Since

$$||I_{\gamma}[f]|| = \sup_{|z|<1} (1 - |z|^{2}) \left| \frac{\left(\int_{0}^{z} [f'(\zeta)]^{\gamma} d\zeta\right)''}{\left(\int_{0}^{z} [f'(\zeta)]^{\gamma}\right)'} \right|$$

$$= \sup_{|z|<1} (1 - |z|^{2}) \left| \frac{([f'(z)]^{\gamma})'}{f'(z)]^{\gamma}} \right|$$

$$= \sup_{|z|<1} (1 - |z|^{2}) \left| \frac{\gamma f''(z)}{f'(z)} \right| = |\gamma| ||f||.$$

We obtain the following assertion

**Proposition 3.4.** For each  $\alpha \in [0,1)$ ,  $\beta \in (-\frac{\pi}{2},\frac{\pi}{2})$ , the sharp inequality  $||f|| \le 4(1-\alpha)\cos\beta$  holds for  $f \in J(\hat{S}_{\alpha}^{\beta})$ . Moreover, if  $\cos\beta < \frac{1}{2(1-\alpha)}$ , then a function in  $J(\hat{S}_{\alpha}^{\beta})$  is bounded by a constant depending on  $\alpha$  and  $\beta$ .

*Proof.* For each  $f \in J(\hat{S}_{\alpha}^{\beta})$ , by Lemma 2.3, there is a function  $k \in K$  such that  $f = I_{\gamma}(k)$ , where  $\gamma = (1 - \alpha)e^{-i\beta}\cos\beta$ . Noting that  $||k|| \le 4$  [10], we obtain the following inequality

$$||f|| = |\gamma| ||k|| \le 4|\gamma| = 4(1-\alpha)\cos\beta.$$

Since the inequality  $||k|| \le 4$  is sharp, the above inequality is also sharp. If  $\cos \beta < \frac{1}{2(1-\alpha)}$ , the above inequality implies  $||f|| \le 4(1-\alpha)\cos \beta < 2$ , so f is bounded by a constant depending on  $\alpha$  and  $\beta$ .

**Remark 5.** If, in the statement of Proposition 3.4, we set  $\alpha = 0$ , we arrive at the result of [4].

In the above proposition, the bound  $\frac{1}{2}$  cannot be replaced by any number greater than  $\frac{1}{\sqrt{2(1-\alpha)}}$ . Indeed, by the Alexander transformation, if the function

$$g(z) = z(1-z)^{-2(1-\alpha)e^{-i\beta}\cos\beta} \in \hat{S}_{\alpha}^{\beta},$$

then the function

$$f(z) = \frac{(1-z)^{1-2(1-\alpha)e^{-i\beta}\cos\beta} - 1}{2(1-\alpha)e^{-i\beta}\cos\beta - 1} \in J(\hat{S}_{\alpha}^{\beta}),$$

and we may verify that the latter is unbounded when  $\cos \beta > \frac{1}{\sqrt{2(1-\alpha)}}$ .

#### REFERENCES

- [1] M.S. ROBERTSON, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408.
- [2] L. SPAČEK, Contribution à la théorie des fonctions univalentes, *Casopis Pěst Math.*, **62** (1932), 12–19, (in Russian).
- [3] M.S. ROBERTSON, Univalent functions f(z) for which zf'(z) is spirallike, *Michigan Math. J.*, **16** (1969), 97–101.
- [4] Y.C. KIM AND T. SUGAWA, The Alexander transform of a spirallike function, *J. Math. Anal. Appl.*, **325**(1) (2007), 608–611.

- [5] Y.C. KIM, S. PONNUSAMY AND T. SUGAWA, Mapping properties of nonlinear integral operators and pre-Schwarzian derivatives, *J. Math. Anal. Appl.*, **299** (2004), 433–447.
- [6] A.W. GOODMAN, Univalent functions, I-II, Mariner Publ. Co., Tampa Florida, 1983.
- [7] I. GRAHAM AND G. KOHR, Geometric function theory in one and higher dimensions, Marcel Dekker, New York ,2003.
- [8] L.A. AKSENT'EV AND I.R. NEZHMETDINOV, Sufficient conditions for univalence of certain integral transforms, *Tr. Semin. Kraev. Zadacham. Kazan*, **18** (1982), 3–11 (in Russian); English translation in: *Amer. Math. Soc. Transl.*, **136**(2) (1987), 1–9.
- [9] Y.C. KIM AND T. SUGAWA, Growth and coefficient estimates for uniformly locally univalent functions on the unit disk, *Rocky Mountain J. Math.*, **32** (2002), 179–200.
- [10] S. YAMASHITA, Norm estimates for function starlike or convex of order alpha, *Hokkaido Math. J.*, **28** (1999), 217–230.