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ABSTRACT. In the present paper we find the estimates on thenth coefficients in the Maclaurin’s
series expansion of the inverse of functions in the classSδ(α), (0 ≤ δ < ∞, 0 ≤ α < 1),
consisting of analytic functionsf(z) = z +

∑∞
n=2 anzn in the open unit disc and satisfying∑∞

n=2 nδ
(

n−α
1−α

)
|an| ≤ 1. For eachn these estimates are sharp whenα is close tozero or one

andδ is close tozero. Further for the second, third and fourth coefficients the estimates are sharp
for every admissible values ofα andδ.

Key words and phrases:Univalent functions, Starlike functions of orderα, Convex functions of orderα, Inverse functions,
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1. I NTRODUCTION

Let U denote theopenunit disc in the complex plane

U := {z ∈ C : |z| < 1}.

Let S be the class ofnormalized analytic univalentfunctions inU i.e. f is in S if f is one to
one inU , analytic and

(1.1) f(z) = z +
∞∑

n=2

anz
n; (z ∈ U).
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2 A.K. M ISHRA AND P. GOCHHAYAT

The functionf ∈ S is said to be inS∗(α) (0 ≤ α < 1), the class of univalentstarlike functions
of orderα, if

Re

(
zf ′(z)

f(z)

)
> α, (z ∈ U)

andf is said to be in the classCV(α) of univalent convex functions of orderα if zf ′ ∈ S∗(α).
The linear mappingf → zf ′ is popularly known as theAlexander transformation. A well
known sufficient condition, for the functionf of the form(1.1) to be in the classS, is

(1.2)
∞∑

n=2

n|an| ≤ 1 (see e.g. [17, p. 212]).

In fact,(1.2) is sufficient forf to be in the smaller classS∗(0) ≡ S∗ (see e.g [4]). An analogous
sufficient condition forS∗(α) (0 ≤ α < 1) is

(1.3)
∞∑

n=2

(
n− α

1− α

)
|an| ≤ 1 (see [15]).

The Alexander transformation gives that

(1.4)
∞∑

n=2

n

(
n− α

1− α

)
|an| ≤ 1

is a sufficient condition forf to be inCV(α). We recall the following:

Definition 1.1 ([8, 12]). The functionf given by the series(1.1) is said to be in the classSδ(α)
(0 ≤ α < 1,−∞ < δ < ∞) if

(1.5)
∞∑

n=2

nδ

(
n− α

1− α

)
|an| ≤ 1

is satisfied.

For each fixedn the functionnδ is increasing with respect toδ. Thus it follows that ifδ1 < δ2,
thenSδ2(α) ⊂ Sδ1(α). Consequently, by(1.3), the functions inSδ(α) are univalent starlike of
orderα if δ ≥ 0 and further ifδ ≥ 1, then by (1.4),Sδ(α) contains only univalent convex
functions of orderα. Also we know (see e.g. [12, p. 224]) that ifδ < 0 then the classSδ(α)
contains non-univalent functions as well. Basic properties of the classSδ(α) have been studied
in [8, 11, 12, 13]. We also note that iff ∈ Sδ(α) then

|an| ≤
(1− α)

nδ(n− α)
; (n = 2, 3, . . . )

and equality holds for eachn only for functions of the form

fn(z) = z +
(1− α)

nδ(n− α)
eiθzn, (θ ∈ R).

We shall use this estimate in our investigation.
The inversef−1 of every functionf ∈ S, defined byf−1(f(z)) = z, is analytic in|w| <

r(f), (r(f) ≥ 1
4
) and has Maclaurin’s series expansion

(1.6) f−1(w) = w +
∞∑

n=2

bnw
n

(
|w| < r(f)

)
.

The De-Branges theorem [2], previously known as the Bieberbach conjecture; states that if the
functionf in S is given by the power series (1.1) then|an| ≤ n (n = 2, 3, . . . ) with equality for
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COEFFICIENTS OFINVERSEFUNCTIONS IN A NESTEDCLASS OFSTARLIKE FUNCTIONS OFPOSITIVE ORDER 3

eachn only for the rotations of the Koebe functionz
(1−z)2

. Early in1923 Löwner [10] invented
the famous parametric method to prove the Bieberbach conjecture for the third coefficient(i.e.
|a3| ≤ 3, f ∈ S). Using this method he also found sharp bounds on all the coefficients for the
inverse functions inS (or S∗). Thus, iff ∈ S (or S∗) andf−1 is given by (1.6) then

|bn| ≤
1

n + 1

(
2n

n

)
; (n = 2, 3, . . . ) (cf [10]; also see [5, p. 222])

with equality for everyn for the inverse of the Koebe functionk(z) = z/(1+ z)2. Although the
coefficient estimate problem for inverse functions in the whole classS was completely solved
in early part of the last century; for certain subclasses ofS only partial results are available in
literature. For example, iff ∈ S∗(α), (0 ≤ α < 1) then the sharp estimates

|b2| ≤ 2(1− α)

and

|b3| ≤

 (1− α)(5− 6α); 0 ≤ α ≤ 2
3

1− α; 2
3
≤ α < 1

(cf. [7])

hold. Further, iff ∈ CV then |bn| ≤ 1 (n = 2, 3, . . . , 8) (cf. [1, 9]), while |b10| > 1 [6].
However the problem of finding sharp bounds forbn for f ∈ S∗(α) (n ≥ 4) and forf ∈
CV (n ≥ 9) still remains open.

The object of the present paper is to study the coefficient estimate problem for the inverse of
functions in the classSδ(α); (δ ≥ 0, 0 ≤ α < 1). We find sharp bounds for|b2|, |b3| and|b4|
for f ∈ Sδ(α) (0 ≤ α < 1 andδ ≥ 0). We further show that for every positive integern ≥ 2
there exist positive real numbersεn, δn andtn such that for everyf ∈ Sδ(α) the following sharp
estimates hold:

(1.7) |bn| ≤


2

n2(n−1)δ

(
2n−3
n−2

) (
1−α
2−α

)n−1
; (0 ≤ α ≤ εn, 0 ≤ δ ≤ δn)

1−α
nδ(n−α)

; (1− tn ≤ α < 1, δ > 0).

For eachn = 2, 3, . . . , there are two different extremal functions; in contrast to only one
extremal function for everyn for the whole classS (or S∗(0)). We also obtain crude estimates
for |bn| (n = 2, 3, 4, . . . ; 0 ≤ α < 1, δ > 0; f ∈ Sδ(α)). Our investigation includes some
results of Silverman [16] for the caseδ = 0 and provides new information forδ > 0.

2. NOTATIONS AND PRELIMINARY RESULTS

Let the functions given by the power series

(2.1) s(z) = 1 + d1z + d2z
2 + · · ·

be analytic in a neighbourhood of the origin. For a real numberp define the functionh by

(2.2) h(z) = (s(z))p = (1 + d1z + d2z
2 + · · · )p = 1 +

∞∑
k=1

C
(p)
k zk.

ThusC
(p)
k denotes thekth coefficient in the Maclaurin’s series expansion of thepth power of the

functions(z). We need the following:

Lemma 2.1([14]). Let the coefficientsC(p)
k be defined as in (2.2), then

(2.3) C
(p)
k+1 =

k∑
j=0

[
p− (p + 1)j

k + 1

]
dk+1−jC

(p)
j ; (k = 0, 1, . . . ; C

(p)
0 = 1).
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4 A.K. M ISHRA AND P. GOCHHAYAT

Lemma 2.2([16]). If k andn are positive integers withk ≤ n− 2, then

Aj =

(
n + j − 1

j

)(
n(k + 1− j) + j

2j(k + 2− j)

)
is a strictly increasing function ofj, j = 1, 2, . . . , k.

Lemma 2.3. Letk andn be positive integers withk ≤ n− 2. Write

Aj(α, δ) =
(1− α)

2jδ

(
n + j − 1

j

)
(n(k + 1− j) + j)

(k + 2− j)δ(k + 2− j − α)

(
1− α

2− α

)j

,

(0 ≤ α < 1, δ > 0).

Then for eachn there exist positive real numbersεn and δn such thatAj(α, δ) is strictly in-
creasing inj for 0 ≤ α < εn, 0 ≤ δ < δn andj = 1, 2, . . . , k.

Proof. Write

hj(α, δ) = Aj+1(α, δ)− Aj(α, δ)

=
(1− α)j+1

2jδ(2− α)j

(
n + j − 1

j

)[
(n + j)(n(k − j) + (j + 1))(1− α)

2δ(j + 1)(k + 1− j)δ(k + 1− j − α)(2− α)

− (n(k + 1− j) + j)

(k + 2− j)δ(k + 2− j − α)

]
.

We observe that for each fixedj (j = 1, 2, . . . , k − 1) hj(α, δ) is a continuous function of
(α, δ). Also lim(α,δ)→(0,0) hj(α, δ) = hj(0, 0) = Aj+1(0, 0) − Aj(0, 0) > 0 by Lemma 2.2.
Thus there exists an open circular discB(0, rj) with center at(0, 0) and radiusrj > 0 such that
hj(α, δ) > 0 for (α, δ) ∈ B(0, rj) for eachj = 1, 2, . . . , k − 1. Consequently,hj(α, δ) > 0
for all j (j = 1, 2, . . . , k − 1) and(α, δ) ∈ B(0, r), wherer = min1≤j≤k−1 rj. If we choose
εn = δn =

√
2

2
r, thenAj(α, δ) is strictly increasing inj for 0 ≤ α < εn, 0 ≤ δ < δn and

j = 1, 2, . . . , k. The proof of Lemma 2.3 is complete. �

3. M AIN RESULTS

We have the following:

Theorem 3.1. Let the functionf , given by the series(1.1) be inSδ(α) (0 ≤ α < 1, 0 ≤ δ <
∞). Write

(3.1) f−1(w) = w +
∞∑

n=2

bnw
n, (|w| < r0(f))

for somer0(f) ≥ 1
4
. Then

(a)

(3.2) |b2| ≤
(1− α)

2δ(2− α)
; (0 ≤ α < 1, 0 ≤ δ < ∞).

Set

(3.3) δ0 =
log 3− log 2

log 4− log 3
and δ1 =

log 5

log 2
− 1.
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(b) (i) If 0 ≤ δ ≤ δ0, then

(3.4) |b3| ≤


2(1−α)2

22δ(2−α)2
; (0 ≤ α ≤ α0),

(1−α)
3δ(3−α)

; (α0 ≤ α < 1),

whereα0 is the only root, in the interval0 ≤ α < 1, of the equation

(3.5) (2 · 3δ − 22δ)α2 − 4(2 · 3δ − 22δ)α + (6 · 3δ − 4 · 22δ) = 0.

(ii) Further, if δ > δ0, then

(3.6) |b3| ≤
(1− α)

3δ(3− α)
; (0 ≤ α < 1).

(c) (i) If 0 ≤ δ ≤ δ1, then

(3.7) |b4| ≤


5(1−α)3

23δ(2−α)3
; (0 ≤ α < α1),

(1−α)
4δ(4−α)

; (α1 ≤ α < 1),

whereα1 is the only root in the interval0 ≤ α < 1, of the equation

(3.8) (23δ − 5 · 4δ)α3 − 6(23δ − 5 · 4δ)α2 − 3(15 · 4δ − 4 · 23δ)α + 4(5 · 4δ − 2 · 23δ) = 0.

(ii) If δ > δ1, then

(3.9) |b4| ≤
(1− α)

4δ(4− α)
; (0 ≤ α < 1).

All the estimates are sharp.

Proof. We know from [7] that

bn =
1

2πin

∫
|z|=r

[
1

f(z)

]n

dz.

For fixedn write

h(z) =

[
z

f(z)

]n

=
1

(1 +
∑∞

k=2 akzk−1)
n = 1 +

∞∑
k=1

C
(−n)
k zk.

Thus

nbn =
1

2πi

∫
|z|=r

h(z)

zn
dz =

h(n−1)(0)

(n− 1)!
= C

(−n)
n−1 .

Therefore a function, which maximizes
∣∣C(−n)

n−1

∣∣ will also maximize|bn|. Now write w(z) =

−
∑∞

k=2 akz
k−1 andh(z) = (1 + w(z) + w2(z) + · · · )n, (z ∈ U). It follows that all the

coefficients in the expansion ofh(z) shall be nonnegative iff(z) is of the form

(3.10) f(z) = z −
∞∑

k=2

akz
k, (ak ≥ 0 ; k = 2, 3, . . . ).

Consequently,maxf∈Sδ(α)

∣∣C(−n)
n−1

∣∣ must occur for a function inSδ(α) with the representation
(3.10).
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6 A.K. M ISHRA AND P. GOCHHAYAT

(a) Now (
z

f(z)

)2

=

(
1−

∞∑
k=2

akz
k−1

)−2

= 1 + 2a2z + · · · .

Therefore

C
(−2)
1 = 2a2 =

2(1− α)

2δ(2− α)
λ2; (0 ≤ λ2 ≤ 1, 0 ≤ α < 1, 0 ≤ δ < 1)

and the maximumC(−2)
1 is obtained by replacingλ2 = 1. Equivalently

|b2| =
C

(−2)
1

2
≤ 1− α

2δ(2− α)
; (0 ≤ α < 1, 0 ≤ δ < ∞).

We get(3.2). To show that equality holds in(3.2), consider the functionf2(z) defined
by

(3.11) f2(z) = z − (1− α)

2δ(2− α)
z2; (z ∈ U , 0 ≤ α < 1, 0 ≤ δ < ∞).

For this function(
z

f2(z)

)2

= 1 +
2(1− α)

2δ(2− α)
z + · · · = 1 + C

(−2)
1 z + · · ·

and

|b2| =
C

(−2)
1

2
=

(1− α)

2δ(2− α)
.

The proof of (a) is complete.
To find sharp estimates for|b3|, we consider

h(z) =

(
z

f(z)

)3

= (1− a2z − a3z
2 − · · · )−3 = 1 +

∞∑
k=1

C
(−3)
k zk.

By direct calculation or by takingp = −3, dk = −ak+1 in Lemma 2.1,we get,

(3.12) C
(−3)
1 = 3a2 and C

(−3)
2 = 3a3 + 2a2C

(−3)
1 = 3a3 + 6a2

2.

Substitutinga2 = (1−α)λ2

2δ(2−α)
anda3 = (1−α)λ3

3δ(3−α)
, (0 ≤ λ2, λ3 ≤ 1, λ2 + λ3 ≤ 1) in the equation

(3.12) we obtain

C
(−3)
2 =

3(1− α)

3δ(3− α)
λ3 +

6(1− α)2

22δ(2− α)2
λ2

2.

Equivalently

(3.13)
C

(−3)
2

3
= (1− α)

{
λ3

3δ(3− α)
+

2(1− α)λ2
2

22δ(2− α)2

}
.

In order to maximize the right hand side of(3.13), write

G(λ2, λ3) =
λ3

3δ(3− α)
+

2(1− α)λ2
2

22δ(2− α)2
; (0 ≤ λ2 ≤ 1, 0 ≤ λ3 ≤ 1, λ2 + λ3 ≤ 1).

The functionG(λ2, λ3) does not have a maximum in the interior of the square{(λ2, λ3) : 0 <
λ2 < 1, 0 < λ3 < 1}, sinceGλ2 6= 0, Gλ3 6= 0. Also if λ3 = 1 thenλ2 = 0 and if λ2 = 1 then
λ3 = 0. Therefore

max
λ3=1

G(λ2, λ3) =
1

3δ(3− α)
and max

λ2=1
G(λ2, λ3) =

2(1− α)

22δ(2− α)2
.
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Also

max
λ3=0

G(λ2, λ3) =
2(1− α)

22δ(2− α)2
and max

λ2=0
G(λ2, λ3) =

1

3δ(3− α)
.

We get

max
0≤λ2≤1
0≤λ3≤1

G(λ2, λ3) = max

{
1

3δ(3− α)
,

2(1− α)

22δ(2− α)2

}
.

Thus

C
(−2)
3

3
≤ (1− α) max

{
1

3δ(3− α)
,

2(1− α)

22δ(2− α)2

}
.

We now find the maximum of the above two terms. Note that the sign of the expression

1

3δ(3− α)
− 2(1− α)

22δ(2− α)2
=

−F (α)

22δ3δ(3− α)(2− α)2

depends on the sign of the quadratic polynomialF (α) = a(δ)α2 − 4a(δ)α + c(δ), where
a(δ) = 3δ · 2− 22δ andc(δ) = 2(3δ+1 − 22δ+1). Observe that

a(δ)

 ≥ 0 if δ ≤ δ∗0

< 0 if δ > δ∗0

;

(
δ∗0 =

log 2

log 4− log 3

)

c(δ)

 ≥ 0 if δ ≤ δ0

< 0 if δ > δ0

;

(
δ0 =

log 3− log 2

log 4− log 3

)
andδ0 ≤ δ∗0.

(b) (i) The case0 ≤ δ ≤ δ0: Suppose0 ≤ δ ≤ δ0 thenF (0) = c(δ) ≥ 0, F (1) = −22δ <
0 and sincea(δ) ≥ 0, F (α) is positive for large values ofα. ThereforeF (α) ≥ 0
if 0 ≤ α ≤ α0 andF (α) < 0 if α0 < α < 1 whereα0 is the unique root of equation
F (α) = 0 in the interval0 ≤ α < 1. Or equivalently−F (α) ≤ 0 for 0 < α ≤ α0

and−F (α) > 0 for α0 < α < 1. Consequently,

|b3| =
C

(−3)
2

3
≤


2(1−α)2

22δ(2−α)2
; (0 ≤ α ≤ α0);

(1−α)
3δ(3−α)

; (α0 ≤ α < 1).

We get the estimate(3.4).
(ii) The caseδ0 < δ: We show below that ifδ0 < δ ≤ δ∗0 or δ∗0 < δ thenF (α) < 0.

Supposeδ0 < δ ≤ δ∗0, thena(δ) ≥ 0. Consequently,F (α) > 0 for large positive
and negative values ofα. Also F (0) = c(δ) < 0 andF (1) = −22δ < 0. Therefore
F (α) < 0 for everyα in the real interval0 ≤ α < 1. Similarly, if δ∗0 < δ, then
a(δ) < 0. ThusF ′(α) = 2a(δ)(α− 2) > 0; (0 ≤ α < 1). Or equivalentlyF (α) is
an increasing function in0 ≤ α < 1. Also F (1) = −22δ < 0. ThereforeF (α) < 0
in 0 ≤ α < 1.
Since−F (α) > 0 we have

|b3| =
C

(−3)
2

3
≤ (1− α)

3δ(3− α)
(0 ≤ α < 1; δ > δ0).
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This is precisely the estimate(3.6). We note that for the functionf2(z) defined by
(3.11) (

z

f2(z)

)3

=

(
1− (1− α)

2δ(2− α)
z

)−3

= 1 +
3(1− α)

2δ(2− α)
z +

6(1− α)2

22δ(2− α)2
z2 + · · · .

Therefore

|b3| =
C

(−3)
2

3
=

2(1− α)2

22δ(2− α)2
.

We get sharpness in(3.4) with 0 ≤ α < α0. Similarly for the functionf3(z)
defined by

(3.14) f3(z) = z − (1− α)

3δ(3− α)
z3; (z ∈ U , 0 ≤ α < 1, 0 ≤ δ < ∞),

we have(
z

f3(z)

)3

=

(
1− (1− α)

3δ(3− α)
z2

)−3

= 1 +
3(1− α)

3δ(3− α)
z2 + · · ·

|b3| =
C

(−3)
2

3
=

(1− α)

3δ(3− α)
.

This establishes the sharpness of(3.4) with α0 ≤ α < 1 and (3.6). The proof of
(b) is complete.

In order to find sharp estimates for|b4|, we consider the function

h(z) =

(
z

f(z)

)4

=

(
1−

∞∑
k=2

akz
k−1

)−4

= 1 +
∞∑

k=1

C
(−4)
k zk.

Takingp = −4 anddk = −ak+1 in Lemma 2.1, we get

C
(−4)
1 = 4a2; C

(−4)
2 = 4a3 + 10a2

2; C
(−4)
3 = 4a4 + 20a2a3 + 20a3

2.

Taking a2 = (1−α)
2δ(2−α)

λ2, a3 = (1−α)
3δ(3−α)

λ3 anda4 = (1−α)
4δ(4−α)

λ4, where0 ≤ λ2, λ3, λ4 ≤ 1 and
λ2 + λ3 + λ4 ≤ 1 we get

|b4| =
C

(−4)
3

4

= (1− α)

{
λ4

4δ(4− α)
+

5(1− α)λ2λ3

2δ3δ(2− α)(3− α)
+

5(1− α)2λ3
2

23δ(2− α)3

}
= (1− α)L(λ2, λ3, λ4) (say).

SinceLλ2 6= 0, Lλ3 6= 0 andLλ4 6= 0, the functionL cannot have a local maximum in the
interior of cube0 < λ2 < 1, 0 < λ3 < 1, 0 < λ4 < 1. Therefore the constraintλ2+λ3+λ4 ≤ 1
becomesλ2 + λ3 + λ4 = 1. Hence puttingλ4 = 1− λ2 − λ3 we get

|b4| =
C

(−4)
3

4

= (1− α)

{
1− λ2 − λ3

4δ(4− α)
+

5(1− α)λ2λ3

2δ3δ(2− α)(3− α)
+

5(1− α)2λ3
2

23δ(2− α)3

}
= (1− α)H(λ2, λ3) (say).
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Thus we need to maximizeH(λ2, λ3) in the closed square0 ≤ λ2 ≤ 1, 0 ≤ λ3 ≤ 1. Since

Hλ2λ2 ·Hλ3λ3 − (Hλ2λ3)
2 = −

(
5(1− α)

2δ3δ(2− α)(3− α)

)2

< 0

the functionH cannot have a local maximum in the interior of the square0 ≤ λ2 ≤ 1, 0 ≤
λ3 ≤ 1. Further, ifλ2 = 1 thenλ3 = 0 and ifλ3 = 1 thenλ2 = 0. Therefore

max
λ2=1

H(λ2, λ3) = H(1, 0) =
5(1− α)2

23δ(2− α)3
,

max
λ3=1

H(λ2, λ3) = H(0, 1) = 0,

max
0<λ2<1

H(λ2, 0) = max

{
1− λ2

4δ(4− α)
+

5(1− α)2λ3
2

23δ(2− α)3

}
= max

{
1

4δ(4− α)
,

5(1− α)2

23δ(2− α)3

}
and

max
0≤λ3≤1

H(0, λ3) = max
0≤λ3≤1

1− λ3

4δ(4− α)
=

1

4δ(4− α)
.

Thus

max
0≤λ2≤1
0≤λ3≤1

H(λ2, λ3) = max

{
1

4δ(4− α)
,

5(1− α)2

23δ(2− α)3

}
.

The maximum of the above two terms can be found as in the case for|b3|. We see that the sign
of the expression

5(1− α)2

23δ(2− α)3
− 1

4δ(4− α)

is same as the sign of the cubic polynomialP (α) = a(δ)α3− 6a(δ)α2− 3b(δ)α +4c(δ), where
a(δ) = 23δ − 5 · 4δ, b(δ) = 15 · 4δ − 4 · 23δ andc(δ) = 5 · 4δ − 2 · 23δ. We observe that

c(δ)

 ≥ 0 if δ ≤ δ1

< 0 if δ > δ1

;

(
δ1 =

log 5

log 2
− 1

)
,

b(δ)

 ≥ 0 if δ ≤ δ2

< 0 if δ > δ2

;

(
δ2 = δ1 +

log 3

log 2
− 1

)
and

a(δ)

 ≤ 0 if δ ≤ δ3

> 0 if δ > δ3

;

(
δ3 =

log 5

log 2

)
.

Moreover,δ1 < δ2 < δ3. Also the quadratic polynomialP ′(α) = 3
(
a(δ)α2 − 4a(δ)α − b(δ)

)
has roots at2±

√
4 + b

a
.

(c) (i) The case0 ≤ δ ≤ δ1: In this casec(δ) ≥ 0, b(δ) ≥ 0 anda(δ) ≤ 0. Note that
both the roots ofP ′(α) are complex numbers andP ′(0) = −3b(δ) ≤ 0. Therefore
P ′(α) < 0 for every real number and consequently,P ′(α) is a decreasing function.
SinceP (0) = 4c(δ) ≥ 0 andP (1) = −23δ < 0, the functionP (α) has a unique

J. Inequal. Pure and Appl. Math., 7(3) Art. 94, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 A.K. MISHRA AND P. GOCHHAYAT

root α1 in the interval0 < α < 1. Or equivalently,P (α) ≥ 0 for 0 < α ≤ α1 and
P (α) < 0 if α1 < α < 1. Thus

|b4| ≤


5(1−α)3

23δ(2−α)3
; (0 ≤ α ≤ α1),

(1−α)
4δ(4−α)

; (α1 ≤ α < 1).

We get the estimate(3.7).
(ii) The caseδ > δ1: We shall show below, separately, that ifδ1 < δ ≤ δ2 or δ2 < δ ≤

δ3 or δ3 < δ thenP (α) < 0 in 0 ≤ α < 1.
First suppose thatδ1 < δ ≤ δ2. Thenc(δ) < 0, b(δ) ≥ 0 anda(δ) < 0. Thus,
as in case of (c)(i),P ′(α) has only complex roots andP ′(0) < 0. ThereforeP (α)
is a monotonic decreasing function in0 ≤ α < 1. SinceP (0) < 0, we get that
P (α) < 0 for 0 ≤ α < 1.
Next if δ2 < δ ≤ δ3, thenc(δ) < 0, b(δ) < 0 anda(δ) < 0. Therefore,P ′(α)
has two real roots: one is negative and the other is greater than2. The condition
P ′(0) > 0 gives thatP ′(α) > 0 in 0 ≤ α < 1. ThereforeP (α) is a monotonic
increasing function in0 ≤ α < 1. SinceP (1) = −23δ < 0, we get thatP (α) < 0
in 0 ≤ α < 1.
Lastly, if δ > δ3 thenc(δ) < 0, b(δ) < 0 anda(δ) > 0. HenceP ′(α) has only
complex roots and the conditionP ′(0) = −3b(δ) > 0 givesP ′(α) > 0 for every
realα. ConsequentlyP (α) is a monotonic increasing function. SinceP (1) < 0,
we get thatP (α) < 0 in 0 ≤ α < 1.
SinceP (α) < 0 for 0 ≤ α < 1, we have

|b4| ≤
(1− α)

4δ(4− α)
; (0 ≤ α < 1).

This is precisely the estimate(3.9). We note that for the functionf2(z) defined by
(3.11)(

z

f2(z)

)4

= 1 +
4(1− α)

2δ(2− α)
z +

20(1− α)2

2.22δ(2− α)2
z2 +

20(1− α)3

23δ(2− α)3
z3 + · · · .

Therefore

|b4| =
C

(−4)
3

4
=

5(1− α)3

23δ(2− α)3
.

This shows sharpness of the estimate(3.7) with 0 ≤ α ≤ α1. Similarly, for the
functionf4(z) defined by

(3.15) f4(z) = z − (1− α)

4δ(4− α)
z4; (z ∈ U , 0 ≤ α < 1, 0 ≤ δ < ∞)

we have

|b4| =
C

(−4)
3

4
=

(1− α)

4δ(4− α)

We get sharpness in(3.7) with α1 ≤ α < 1 and in(3.9). The proof of Theorem 3.1
is complete.

�
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Theorem 3.2. Let the functionf , given by(1.1), be inSδ(α) (0 ≤ α < 1, δ > 0) andf−1(w)
be given by(3.1). Then for eachn there exist positive numbersεn, δn andtn such that

(3.16) |bn| ≤


2

n2(n−1)δ

(
2n−3
n−2

) (
1−α
2−α

)n−1
; (0 ≤ α ≤ εn, 0 ≤ δ ≤ δn)

1−α
nδ(n−α)

; (1− tn ≤ α < 1, δ > 0).

The estimate (3.16) is sharp.

Proof. We follow the lines of the proof of Theorem 3.1. Write

h(z) =

(
z

f(z)

)n

= (1− a2z − a3z
2 − · · · )−n (an ≥ 0, n = 2, 3, . . . )

= 1 +
∞∑

k=1

C
(−n)
k zk

and observe thatbn =
C

(−n)
n−1

n
. Now takingp = −n anddk = −ak+1 in Lemma 2.1, we get

C
(−n)
k+1 =

k∑
j=0

[
n +

(1− n)j

k + 1

]
ak+2−jC

(−n)
j .

Sincef ∈ Sδ(α), we get

(3.17) an =
(1− α)

nδ(n− α)
λn;

(
0 ≤ λn ≤ 1,

∞∑
n=2

λn ≤ 1

)
.

Therefore

(3.18) C
(−n)
k+1 =

k∑
j=0

[
n +

(1− n)j

k + 1

]
(1− α)λk+2−j

(k + 2− j)δ(k + 2− j − α)
C

(−n)
j .

In order to establish(3.16), we wish to show that for eachn = 2, 3, . . . there exist positive real
numbersεn andδn such thatC(−n)

n−1 is maximized whenλ2 = 1 for 0 ≤ α ≤ εn and0 ≤ δ ≤ δn.
Using(3.18) we get

C
(−n)
1 =

n(1− α)

2δ(2− α)
λ2C

(−n)
0 =

n(1− α)

2δ(2− α)
λ2

so that

(3.19) C
(−n)
1 ≤ n(1− α)

2δ(2− α)
= d

(−n)
1 (say).

ThusC
(−n)
1 is maximized whenλ2 = 1. Write

d
(−n)
j = max

f∈Sδ(α)
C

(−n)
j (1 ≤ j ≤ n− 1).

Assume thatC(−n)
j (1 ≤ j ≤ n− 2) is maximized forλ2 = 1 whenα > 0 andδ > 0 are

sufficiently small. It follows from(3.17) thatλ2 = 1 impliesλj = 0 for everyj ≥ 3. Therefore
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using(3.18) and (3.19) we get

C
(−n)
2 ≤

(
n + 1

2

)
(1− α)

2δ(2− α)
d

(−n)
1

=

(
n + 2− 1

2

)
1

22δ

(
1− α

2− α

)2

= d
(−n)
2 (say).

Assume that

(3.20) d
(−n)
j =

(
n + j − 1

j

)
1

2jδ

(
1− α

2− α

)j

(0 ≤ j ≤ n− 2).

Again, using(3.18), we get

d
(−n)
n−1 = max

f∈Sδ(α)
C

(−n)
n−1(3.21)

= max
f∈Sδ(α)

(
n−2∑
j=0

(n− j)
(1− α)λn−j

(n− j)δ(n− j − α)
C

(−n)
j

)

≤ max
0≤j≤n−2

{
(n− j)(1− α)

(n− j)δ(n− j − α)
C

(−n)
j

}(n−2∑
j=0

λn−j

)

≤ max
0≤j≤n−2

{
(n− j)(1− α)

(n− j)δ(n− j − α)
d

(−n)
j

}
.

Write

Aj(α, δ) =
(n− j)(1− α)

(n− j)δ(n− j − α)
d

(−n)
j ; (j = 0, 1, 2, . . . , (n− 2)).

Substitutingd(−n)
0 = 1 and the value ofd(−n)

1 from (3.19), we get

A0(α, δ) =
n(1− α)

nδ(n− α)
and A1(α, δ) =

n(n− 1)(1− α)2

2δ(n− 1)δ(n− 1− α)(2− α)
.

Now A0(α, δ) < A1(α, δ) (n ≥ 2 and0 ≤ δ ≤ 2) if and only if

(3.22)
1

nδ(n− 1)(n− α)(1− α)
<

1

2δ(n− 1)δ(n− 1− α)(2− α)
.

The above inequality(3.22) is true, because(n − 1 − α) < (n − α), (1 − α) < (2 − α) and
the maximum value of

(
n
2

)δ
(n− 1)1−δ is equal to1 (n ≥ 2, 0 ≤ δ ≤ 2). Also by Lemma 2.3,

there exist positive real numbersεn andδn such thatAj(α, δ) < Ak(α, δ) (0 ≤ α ≤ εn, 0 ≤
δ ≤ δn, 1 ≤ j < k ≤ n− 2). Therefore it follows from(3.21) that the maximumC(−n)

n−1 occurs

at j = n− 2. Substituting the value ofd(−n)
n−2 , from (3.20) in (3.21) we get

d
(−n)
n−1 =

2(1− α)

2δ(2− α)
d

(−n)
n−2 =

2

2(n−1)δ

(
2n− 3

n− 2

)(
1− α

2− α

)n−1

(0 ≤ α ≤ εn, 0 ≤ δ ≤ δn, n = 2, 3, . . . ).

Therefore

|bn| =
C

(−n)
n−1

n
≤ 2

n2(n−1)δ

(
2n− 3

n− 2

)(
1− α

2− α

)n−1

;

(0 ≤ α ≤ εn, 0 ≤ δ ≤ δn, n = 2, 3, . . . ).
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The above is precisely the first assertion of(3.16). In order to prove the other case of(3.16),
we first observe that in the degenerate caseα = 1 we haveSδ(α) = {z}.ThereforeC(−n)

j → 0
asα → 1− for everyj = 1, 2, 3, . . . . Hence there exists a positive real numbertn (0 ≤ tn ≤ 1)
such that

n

nδ(n− α)
≥ (n− j)

(n− j)δ(n− j − α)
C

(−n)
j (j = 1, 2, . . . , 1− tn ≤ α < 1).

Thus the maximum of(3.21) occurs atj = 0 and we getd(−n)
n−1 = n(1−α)

nδ(n−α)
or equivalently

|bn| ≤
C

(−n)
n−1

n
=

(1− α)

nδ(n− α)
.

This last estimate is precisely the assertion of(3.16) with (1− tn ≤ α < 1, δ > 0).

We observe that the(n− 1)th coefficient of the function
(

z
f2(z)

)n

, wheref2(z) is defined by

(3.11), is equal to

2

2(n−1)δ

(
2n− 3

n− 2

)(
1− α

2− α

)n−1

.

Similarly, the(n− 1)th coefficient of the function
(

z
fn(z)

)n

, wherefn(z) is defined by

z − (1− α)

nδ(n− α)
zn, (z ∈ U , 0 ≤ α < 1, 0 ≤ δ < 1)

is equal to
n(1− α)

nδ(n− α)
.

Therefore the estimate (3.16) is sharp. The proof of Theorem 3.2 is complete. �

Theorem 3.3. Let the functionf given by(1.1), be inSδ(α) (0 ≤ α < 1, δ > 0) andf−1(w)
be given by(3.2). For fixedα andδ (0 ≤ α < 1, δ > 0) let Bn(α, δ) = maxf∈Sδ(α) |bn|. Then

(3.23) Bn(α, δ) ≤ 1

n
· 2nδ(2− α)n

[2δ(2− α)− (1− α)]n
.

Proof. Sincef ∈ Sδ(α), by Definition 1.1 we have
∑∞

n=2
nδ(n−α)
(1−α)

|an| ≤ 1.

Therefore2δ(2−α)
(1−α)

∑∞
n=2 |an| ≤ 1 or equivalently

∞∑
n=2

|an| ≤
(1− α)

2δ(2− α)
.

This gives

|f(z)| =

∣∣∣∣∣z +
∞∑

n=2

anz
n

∣∣∣∣∣(3.24)

≥ |z| − |z2|

(
∞∑

n=2

|an|

)

≥ r − r2 (1− α)

2δ(2− α)
, (|z| = r).
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Now using the above estimate(3.24) we have

|bn| =
∣∣∣∣ 1

2inπ

∫
|z|=r

1

(f(z))n
dz

∣∣∣∣
≤ 1

2nπ

∫
|z|=r

1

|f(z)|n
|dz|

≤ 1

n

(
1

r − r2(1−α)
2δ(2−α)

)n

.

We observe that the functionF (r) where

F (r) =

(
1

r − r2(1−α)
2δ(2−α)

)n

is an increasing function ofr (0 ≤ α < 1, δ > 0) in the interval0 ≤ r < 1. Therefore

|bn| ≤
1

n

(
1

1− (1−α)
2δ(2−α)

)n

.

Consequently,

Bn(α, δ) ≤ 1

n

2nδ(2− α)n

[2δ(2− α)− (1− α)]n
.

The proof of Theorem 3.3 is complete. �
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