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Abstract

We give a reverse inequality to the most standard rearrangement inequality
for sequences and we emphasize the usefulness of matrix methods to study
classical inequalities.
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We have the following reverse inequality to the most basic rearrangement in-
equality. Down arrows mean nonincreasing rearrangements.

Theorem 1.1.Let{a;} , and{b;}! , ben-tuples of positive numbers with

@

p=

i .
IZq, 1=1,...,n,

7

S

for somep, ¢ > 0. Then,

The proof uses matrix arguments. Indeed, Theofeins a byproduct of
some matrix inequalities which are given in Sectibn
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For the convenience of readers we recall some facts about the trace norm.

Capital lettersA, B,...,Z, denoten-by-n matrices or operators on amn
dimensional Hilbert spack. Let X = U|X| be the polar decomposition of,
soU is unitary and X | = (X*X)%/2. The trace norm o is || X|; = Tr|X]|.
One may easily check that the trace norm is a norm: Forany, consider the
polar decompositioX + Y = U|X + Y|. Then,

11 | X+Yh=Tr|X4+Y|=TcU(X+Y)=TeU'X 4+ TrU*Y.
On the other hand, for aM,

1.2) |Tr A] < Tr|A],
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as itis shown by computingr A| in a basis of eigenvectors pf|. From (1.1)
and (L.2) we infer that|| - ||; is @ norm.

We need a simple fact: Given two diagonal positive matri€es diag(x;),
Y = diag(y;) and a permutation matriX acting on the canonical basis;} by
Ve; = eq(), We have

(1.3) IXVY [l = 2o

Indeed, since
[ XVY Pe; = YV X?VYe; = (22y7)ei,

we obtain| XVY|e; = (z,()y:)e; 0O that (.3) holds.

Proof of Theoreni.1 Introduce the diagonal matrices = diag(a;) andB =
diag(b;). By the above discussion, we have

> aib;=|AB|l,  and Zaibi — ||[AV B,
for some permutation matriX. Hence we have to show that

pPtq
[AVB|: < 5—= N IAB]:.

To this end consider the spectral representaltior ), v;h; ® h; wherey; are
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the eigenvalues and the corresponding unit eigenvectors. We have

IAVBy <> (|4 vihi ® hi - By

i=1

i=1

< P79 NS A, By

"2
P+a <
=N (h;, ABh;)
2VPe =
_pPTgq +q
= I14B].
Nz
where we have used the triangle inequality for the trace norm and Lemina
below. O

The following example shows that equality can occur.

Example 1.1. Consider couples; = 2, a; = 1 andb; = 1/2, b, = 1; then
withp =4, ¢ =1,
p+q - ) - a1by + asby

2« /Pq N 4 N albl "—ngg.

From the above, one easily derives:
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Corollary 1.2. Let{a;} , and{b;}"_, ben-tuples of positive numbers with
bzgazgpbw izla"'anv

for somep > 0. Then,

Sal <550 Y

=1
Moreover, for evem and eaclyp, there aren-tuples for which equality occurs.

To obtain equality, consider amtuple {a;} for which the first half terms
equal,/p and the second half ones equaland ann-tuple {b;} for which the
first half terms equal and the second half ones equal /p.

We turn to the lemmas necessary to complete the proof of Thear&m
Given a subspacé C H, denote byZ. the compression of onto £, that is
the restriction of£ Z to £ whereF is the orthoprojection onté.

Lemma 1.3. Let Z > 0 with extremal eigenvalues and b. Then, for every

norm one vectoh,
a+b

2v/ab

Proof. Let £ be any subspace &f and leta’ andd’ be the extremal eigenvalues
of Z¢. Thena > o > V' > b and, setting = \/ /b, t' = \/a'/l/, we have
t >t > 1. Sincet — t + 1/t increases ofil, co) and

a+b 1 t—l—l a+b’_1
wab 2 t)’ Va2 ’

1Zh]] < (h, Zh).
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we infer

a-+b S a +b
2ab — 2Va'b

Therefore, it suffices to prove the lemma far with £ = span{h, Zh}. Hence,
we may assuméim H = 2, 7 = ae; Qe +bea®es andh = ze+ (V1 — 22)es.
Settingz? = y we have

170l _ @y PO —y)

(h, Zh) ay +b(1 —y)

The right hand side attains its maximum[on1] aty = b/(a + b), and then

| Zh||  a+b
(h,Zh)  2/ab’
proving the lemma. O]

Lemma 1.4.Let A, B > 0 with AB = BA andpl > AB~! > ¢I for some
p,q > 0. Then, for every vectar,

p+q
AR IBR| < 224 (Ah, Bh).
AR ] !\_2@< )

Proof. Write h = B~ f and apply Lemma4..3. O

Remark 1. Lemmal.3is nothing but a rephrasing of a Kantorovich inequality

and Lemmal.4 a rephrasing of Cassel’'s Inequality:
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Cassel's inequality. For nonnegatiwetuples{a;}_,, {b;}, and{w; }_, with

pr—an i:17"'7n7

for somep, ¢ > 0; it holds that

(So) (Br) =i

i=1

L. . . . . . Reverse Rearrangement
Of course it is a reverse inequality to the Cauchy-Schwarz inequality. To obtain  inequalities Via Matrix Technics

it from Lemmal..4, one simply taked = diag(ay,...,a,), B = diag(by, ..., b,)
andh = (yJwi,...,\/w,). Ifoneletsa = (ai,...,a,) andb = (by,...,b,)
then Cassel’'s inequality can be written as

Jean-Christophe Bourin

Title Page
p+q
(1.4) b|| < a,b
|| || || || \/m< > Contents
44 »»

for a suitable inner product:, -). It is then natural to search for conditions on
a, b ensuring that the above inequality remains valid witta, Ub for all orthog- < >
onal matriced/. This motivates a remarkable extension of Cassel’s inequality:

tDragomir’s inequality. For real vectors, b such that(a — ¢b, pb — a) > 0 E IS
for some scalarg, ¢ with pg > 0, inequality (L.4) holds. For this inequality Close
and its complex version se€][[ 5], [ 6]. "

Taking squares in Cassel's inequality and using the convexifiwé obtain: Page 8 of 15
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for all nonnegativen-tuples{a;}?,, {b;}1-, and{w;}, with >°"  w; =1
andp > a;/b; > ¢ for somep, g > 0. Though weaker than Cassel’s inequality,
this is also a sharp inequality: Takihg= 1/a; we get the (sharp) Kantorovich
inequality: Ifp > a; > ¢ > 0and)_; , w; = 1, then

W; A4 w;a, ! < (p—
Let (2, P) be a probability space. The above discussions shows a sharp

result:

Proposition 1.5. Let f(w) and g(w) be measurable functions di such that
p > f(w)/g(w) > ¢ for somep, ¢ > 0. Then,

/Qf(w)dP/Q W) dP < f+f /f
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We dicovered the statements of Theor&rhand its corollaries while investi-
gating some matrix inequalities. Among those are inequalities for symmetric
norms. Such a norm- || is characterized by the property thet|| = [[UAV||

for all A and all unitarieg/, V. The most basic inequality for symmetric norms

is

IAB|| < |BA],

whenever the product B is normal. In ['] (see alsof]) we established: Reverse Rearrangement
Inequalities Via Matrix Technics

Theorem 2.1.Let A, B such thatAB > 0 and letZ > 0 with extremal eigen-
valuesa andb. Then, for every symmetric norm, the following sharp inequality

Jean-Christophe Bourin

holds b
2\/% Contents

By sharpness, we mean that we can fihdnd B such that equality occurs. «« b
Note that lettingd = B be a rank one projectioh ® h we recapture Lemma
1.3which is the starting point of Theorefinl. From this theorem we derived < 4
several known Kantorovich type inequalities and also a sharp operator inequal-

Go Back
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_ ) Close
Corollary 2.2. Let0 < A < I and letZ > 0 with extremal eigenvaluesand _
b. Then, Quit

AZA < (a+b)2Z Page 10 of 15
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Corollary 2.3. LetZ > 0and letA, B > 0with AB = BAandpl > AB~! >
ql for somep, ¢ > 0. Then, for all symmetric norms,

p +4q
IAZB|| < HZABH
Proof. From Theoren?.1we get
- ptq rtq
IAZB|| = |AB~Y(BZ - B)|| < 5—— IIABZII = IIZABII
\/ \/ Reverse Rearrangement
Inequalities Via Matrix Technics
by the simple fact thaST'|| = ||7°S|| for all HermitianssS, 7', since|| X || = T .
| X*|| for all X. O
The previous theorem cannot be extended to normal oper&iascept in Title Page
the case of the trace norm:
Contents
Theorem 2.4.Let A, B > 0 with AB = BA andpl > AB~! > ¢I for some
p, ¢ > 0 and letZ be normal. Then, 14 dd
Ptyq 4 g
||AZB||1 < 2 HZABH1 Go Back
The proof is quite similar to that of Theoreinl. Clearly Theoreni.lis a Close
corollary of Theoren?.4. Quit
Some comments. One aim of the paper is to place stress on the power of Page 11 of 15
matrix methods in dealing with classical inequalities. This is apparent in the
quite natural statement and proof of Cassel’s inequality via Lerhmia We T TS e N ) o 8 P
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rearrangement inequality stated in Theorérh Having now at our disposal
the good statement, it remains to find a direct proof without matrix arguments
(in particular without using complex numbers via the spectral decomposition).
A first immediate simplification consists in noting that we can assume that

al,...,an:a%,...,al and bl,...7bn:bi(l),...,bi(n)

n

for a permutations. By decomposingr in cycles we may assume thatis a
cycle. Equivalently we may assume that

Reverse Rearrangement
Inequalities Via Matrix Technics

15y O = gy s Gy and bl,...,bn:bim,...,bi(n),bi(l)

Jean-Christophe Bourin

for a permutatiorr. However, does it really simplify the problem ?
It is tempting to try to reduce the problem to the case 2. We have no idea Title Page
of how to proceed. The case= 2 can be easily solved by elementary methods

as it is shown in the next proposition. The proof shows that the inequality of Contents
Theoreml.1is sharp (and equality can occur whers even). <44 >
Proposition 2.5. Leta* > a, > 0 andb* > b, > 0 with < >
- a* and a, - Go Back
b= b b* — q Close
for somep, ¢ > 0. Then, Quit

a*b*—{—a*b* - p+q Page 12 of 15
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Proof. First, fix a*, a, and renamead*, b, by x, y respectively. We want to
maximize

on the domain

that is,
A:{(a:,y) >y S<p<™ a—éyéa—}
p q p q
ThusA is a triangle (more precisely a half-square) with vertices

(a*/p,a*/p)  (as/q,as/q)  (as/q,a”/p).

OnAwehave)f/0x > 0anddf/dy < 0. This shows thaf takes its maximun
in A at(a./q,a*/p). The value is then

a*ax + a*ax

q p
a*a* Qs Qs
p + q

Next, observe that in our inequality we can take= 1. Hence, letting:, = t,
we have to check that L
1 2 )
t€[0,1] > + 7 2\/pq

Considering the derivative, we see that the maximum is attained-at/q/p
and we obtain the expected value. H
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We close with two open problems:
Problem 1. Find a direct proof of Theorerh.1.

Problem 2. Let {a;}, and {b;}_, be n-tuples of positive numbers. Find a
suitable bound for the difference

Zaibl Zazbl

=1

. . Reverse Rearrangement
In the research/survey papei] ive consider matrix proofs and several ex- Inequalities Via Matrix Technics

tensions of some classical inequalities of Chebyshev, Gruss and Kantorovich ;.. cprisiophe Bourin
type.
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