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Abstract

We give a reverse inequality to the most standard rearrangement inequality
for sequences and we emphasize the usefulness of matrix methods to study
classical inequalities.
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1. Reverse Rearrangement Inequalities
We have the following reverse inequality to the most basic rearrangement in-
equality. Down arrows mean nonincreasing rearrangements.

Theorem 1.1.Let{ai}n
i=1 and{bi}n

i=1 ben-tuples of positive numbers with

p ≥ ai

bi

≥ q, i = 1, . . . , n,

for somep, q > 0. Then,

n∑
i=1

a↓i b
↓
i ≤

p + q

2
√

pq

n∑
i=1

aibi.

The proof uses matrix arguments. Indeed, Theorem1.1 is a byproduct of
some matrix inequalities which are given in Section2.

For the convenience of readers we recall some facts about the trace norm.
Capital lettersA, B, . . . , Z, denoten-by-n matrices or operators on ann-
dimensional Hilbert spaceH. Let X = U |X| be the polar decomposition ofX,
soU is unitary and|X| = (X∗X)1/2. The trace norm ofX is ‖X‖1 = Tr |X|.
One may easily check that the trace norm is a norm: For anyX, Y , consider the
polar decompositionX + Y = U |X + Y |. Then,

(1.1) ‖X + Y ‖1 = Tr |X + Y | = Tr U∗(X + Y ) = Tr U∗X + Tr U∗Y.

On the other hand, for allA,

(1.2) |Tr A| ≤ Tr |A|,
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as it is shown by computing|Tr A| in a basis of eigenvectors of|A|. From (1.1)
and (1.2) we infer that‖ · ‖1 is a norm.

We need a simple fact: Given two diagonal positive matricesX = diag(xi),
Y = diag(yi) and a permutation matrixV acting on the canonical basis{ei} by
V ei = eσ(i), we have

(1.3) ‖XV Y ‖1 =
∑

xiyσ(i).

Indeed, since
|XV Y |2ei = Y V ∗X2V Y ei = (x2

σ(i)y
2
i )ei,

we obtain|XV Y |ei = (xσ(i)yi)ei so that (1.3) holds.

Proof of Theorem1.1. Introduce the diagonal matricesA = diag(ai) andB =
diag(bi). By the above discussion, we have

n∑
i=1

aibi = ‖AB‖1 and
n∑

i=1

a↓i b
↓
i = ‖AV B‖1

for some permutation matrixV . Hence we have to show that

‖AV B‖1 ≤
p + q

2
√

pq
‖AB‖1.

To this end consider the spectral representationV =
∑

i vihi ⊗ hi wherevi are
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the eigenvalues andhi the corresponding unit eigenvectors. We have

‖AV B‖1 ≤
n∑

i=1

‖A · vihi ⊗ hi ·B‖1

=
n∑

i=1

‖Ahi‖ ‖Bhi‖

≤ p + q

2
√

pq

n∑
i=1

〈Ahi, Bhi〉

=
p + q

2
√

pq

n∑
i=1

〈hi, ABhi〉

=
p + q

2
√

pq
‖AB‖1,

where we have used the triangle inequality for the trace norm and Lemma1.4
below.

The following example shows that equality can occur.

Example 1.1. Consider couplesa1 = 2, a2 = 1 and b1 = 1/2, b2 = 1; then
with p = 4, q = 1,

p + q

2
√

pq
=

5

4
=

a1b2 + a2b1

a1b1 + a2b2

.

From the above, one easily derives:
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Corollary 1.2. Let{ai}n
i=1 and{bi}n

i=1 ben-tuples of positive numbers with

bi ≤ ai ≤ pbi, i = 1, . . . , n,

for somep > 0. Then,

n∑
i=1

a↓i b
↓
i ≤

p + 1

2
√

p

n∑
i=1

aibi.

Moreover, for evenn and eachp, there aren-tuples for which equality occurs.

To obtain equality, consider ann-tuple {ai} for which the first half terms
equal

√
p and the second half ones equal1, and ann-tuple{bi} for which the

first half terms equal1 and the second half ones equal1/
√

p.
We turn to the lemmas necessary to complete the proof of Theorem1.1.

Given a subspaceE ⊂ H, denote byZE the compression ofZ ontoE, that is
the restriction ofEZ to E whereE is the orthoprojection ontoE .

Lemma 1.3. Let Z > 0 with extremal eigenvaluesa and b. Then, for every
norm one vectorh,

‖Zh‖ ≤ a + b

2
√

ab
〈h, Zh〉.

Proof. Let E be any subspace ofH and leta′ andb′ be the extremal eigenvalues
of ZE . Thena ≥ a′ ≥ b′ ≥ b and, settingt =

√
a/b, t′ =

√
a′/b′, we have

t ≥ t′ ≥ 1. Sincet −→ t + 1/t increases on[1,∞) and

a + b

2
√

ab
=

1

2

(
t +

1

t

)
,

a′ + b′

2
√

a′b′
=

1

2

(
t′ +

1

t′

)
,
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we infer
a + b

2
√

ab
≥ a′ + b′

2
√

a′b′
.

Therefore, it suffices to prove the lemma forZE with E = span{h, Zh}. Hence,
we may assumedimH = 2, Z = ae1⊗e1+be2⊗e2 andh = xe1+(

√
1− x2)e2.

Settingx2 = y we have

||Zh||
〈h, Zh〉

=

√
a2y + b2(1− y)

ay + b(1− y)
.

The right hand side attains its maximum on[0, 1] aty = b/(a + b), and then

||Zh||
〈h, Zh〉

=
a + b

2
√

ab
,

proving the lemma.

Lemma 1.4. Let A, B > 0 with AB = BA andpI ≥ AB−1 ≥ qI for some
p, q > 0. Then, for every vectorh,

‖Ah‖ ‖Bh‖ ≤ p + q

2
√

pq
〈Ah,Bh〉.

Proof. Write h = B−1f and apply Lemma1.3.

Remark 1. Lemma1.3 is nothing but a rephrasing of a Kantorovich inequality
and Lemma1.4a rephrasing of Cassel’s Inequality:
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Cassel’s inequality. For nonnegativen-tuples{ai}n
i=1, {bi}n

i=1 and{wi}n
i=1 with

p ≥ ai

bi

≥ q, i = 1, . . . , n,

for somep, q > 0; it holds that(
n∑

i=1

wia
2
i

) 1
2
(

n∑
i=1

wib
2
i

) 1
2

≤ p + q

2
√

pq

n∑
i=1

wiaibi.

Of course it is a reverse inequality to the Cauchy-Schwarz inequality. To obtain
it from Lemma1.4, one simply takesA = diag(a1, . . . , an), B = diag(b1, . . . , bn)
andh = (

√
w1, . . . ,

√
wn). If one letsa = (a1, . . . , an) and b = (b1, . . . , bn)

then Cassel’s inequality can be written as

(1.4) ‖a‖ ‖b‖ ≤ p + q

2
√

pq
〈a, b〉

for a suitable inner product〈·, ·〉. It is then natural to search for conditions on
a, b ensuring that the above inequality remains valid withUa, Ub for all orthog-
onal matricesU . This motivates a remarkable extension of Cassel’s inequality:

tDragomir’s inequality. For real vectorsa, b such that〈a− qb, pb− a〉 ≥ 0
for some scalarsp, q with pq > 0, inequality (1.4) holds. For this inequality
and its complex version see [4], [ 5], [ 6].

Taking squares in Cassel’s inequality and using the convexity oft2 we obtain:

n∑
i=1

wiai

n∑
i=1

wibi ≤
(
√

p +
√

q)2

4
√

pq

n∑
i=1

wiaibi
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for all nonnegativen-tuples{ai}n
i=1, {bi}n

i=1 and{wi}n
i=1 with

∑n
i=1 wi = 1

andp ≥ ai/bi ≥ q for somep, q > 0. Though weaker than Cassel’s inequality,
this is also a sharp inequality: Takingbi = 1/ai we get the (sharp) Kantorovich
inequality: Ifp ≥ ai ≥ q > 0 and

∑n
i=1 wi = 1, then

n∑
i=1

wiai

n∑
i=1

wia
−1
i ≤ (p + q)2

4pq
.

Let (Ω, P ) be a probability space. The above discussions shows a sharp
result:

Proposition 1.5. Let f(ω) and g(ω) be measurable functions onΩ such that
p ≥ f(ω)/g(ω) ≥ q for somep, q > 0. Then,∫

Ω

f(ω) dP

∫
Ω

g(ω) dP ≤
(
√

p +
√

q)2

4
√

pq

∫
Ω

fg(ω) dP.
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2. Related Matrix Inequalities and Comments
We dicovered the statements of Theorem1.1 and its corollaries while investi-
gating some matrix inequalities. Among those are inequalities for symmetric
norms. Such a norm‖ · ‖ is characterized by the property that‖A‖ = ‖UAV ‖
for all A and all unitariesU , V . The most basic inequality for symmetric norms
is

‖AB‖ ≤ ‖BA‖,

whenever the productAB is normal. In [1] (see also [2]) we established:

Theorem 2.1. Let A, B such thatAB ≥ 0 and letZ > 0 with extremal eigen-
valuesa andb. Then, for every symmetric norm, the following sharp inequality
holds

‖ZAB‖ ≤ a + b

2
√

ab
‖BZA‖.

By sharpness, we mean that we can findA andB such that equality occurs.
Note that lettingA = B be a rank one projectionh ⊗ h we recapture Lemma
1.3 which is the starting point of Theorem1.1. From this theorem we derived
several known Kantorovich type inequalities and also a sharp operator inequal-
ity:

Corollary 2.2. Let 0 ≤ A ≤ I and letZ > 0 with extremal eigenvaluesa and
b. Then,

AZA ≤ (a + b)2

4ab
Z.

Next, let us note that an immediate consequence of Theorem1.1 is:

http://jipam.vu.edu.au/
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Corollary 2.3. LetZ ≥ 0 and letA, B > 0 withAB = BA andpI ≥ AB−1 ≥
qI for somep, q > 0. Then, for all symmetric norms,

‖AZB‖ ≤ p + q

2
√

pq
‖ZAB‖.

Proof. From Theorem2.1we get

‖AZB‖ = ‖AB−1(BZ ·B)‖ ≤ p + q

2
√

pq
‖ABZ‖ =

p + q

2
√

pq
‖ZAB‖.

by the simple fact that‖ST‖ = ‖TS‖ for all HermitiansS, T , since‖X‖ =
‖X∗‖ for all X.

The previous theorem cannot be extended to normal operatorsZ, except in
the case of the trace norm:

Theorem 2.4. Let A, B > 0 with AB = BA andpI ≥ AB−1 ≥ qI for some
p, q > 0 and letZ be normal. Then,

‖AZB‖1 ≤
p + q

2
√

pq
‖ZAB‖1.

The proof is quite similar to that of Theorem1.1. Clearly Theorem1.1 is a
corollary of Theorem2.4.
Some comments. One aim of the paper is to place stress on the power of
matrix methods in dealing with classical inequalities. This is apparent in the
quite natural statement and proof of Cassel’s inequality via Lemma1.4. We
also note that from the matrix inequality of Theorem2.4 we infer our reverse

http://jipam.vu.edu.au/
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rearrangement inequality stated in Theorem1.1. Having now at our disposal
the good statement, it remains to find a direct proof without matrix arguments
(in particular without using complex numbers via the spectral decomposition).
A first immediate simplification consists in noting that we can assume that

a1, . . . , an = a↓1, . . . , a
↓
n and b1, . . . , bn = b↓σ(1), . . . , b

↓
σ(n)

for a permutationσ. By decomposingσ in cycles we may assume thatσ is a
cycle. Equivalently we may assume that

a1, . . . , an = a↓σ(1), . . . , a
↓
σ(n) and b1, . . . , bn = b↓σ(2), . . . , b

↓
σ(n), b

↓
σ(1)

for a permutationσ. However, does it really simplify the problem ?
It is tempting to try to reduce the problem to the casen = 2. We have no idea

of how to proceed. The casen = 2 can be easily solved by elementary methods
as it is shown in the next proposition. The proof shows that the inequality of
Theorem1.1 is sharp (and equality can occur whenn is even).

Proposition 2.5. Leta∗ ≥ a∗ > 0 andb∗ ≥ b∗ > 0 with

p ≥ a∗

b∗
and

a∗
b∗
≥ q

for somep, q > 0. Then,

a∗b∗ + a∗b∗
a∗b∗ + a∗b∗

≤ p + q

2
√

pq
.

http://jipam.vu.edu.au/
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Proof. First, fix a∗, a∗ and renamedb∗, b∗ by x, y respectively. We want to
maximize

f(x, y) =
a∗x + a∗y

a∗y + a∗x

on the domain

∆ =

{
(x, y) : x ≥ y, q ≤ a∗

x
≤ p, q ≤ a∗

y
≤ p

}
that is,

∆ =

{
(x, y) : x ≥ y,

a∗
p
≤ x ≤ a∗

q
,

a∗

p
≤ y ≤ a∗

q

}
.

Thus∆ is a triangle (more precisely a half-square) with vertices

(a∗/p, a∗/p) (a∗/q, a∗/q) (a∗/q, a
∗/p).

On∆ we have∂f/∂x > 0 and∂f/∂y < 0. This shows thatf takes its maximun
in ∆ at (a∗/q, a∗/p). The value is then

a∗a∗
q

+ a∗a∗
p

a∗a∗

p
+ a∗a∗

q

.

Next, observe that in our inequality we can takea∗ = 1. Hence, lettinga∗ = t,
we have to check that

max
t∈[0,1]

(1
p

+ 1
q
)t

1
p

+ t2

q

=
p + q

2
√

pq
.

Considering the derivative, we see that the maximum is attained att =
√

q/p
and we obtain the expected value.
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We close with two open problems:

Problem 1. Find a direct proof of Theorem1.1.

Problem 2. Let {ai}n
i=1 and {bi}n

i=1 be n-tuples of positive numbers. Find a
suitable bound for the difference

n∑
i=1

a↓i b
↓
i −

n∑
i=1

aibi.

In the research/survey paper [3] we consider matrix proofs and several ex-
tensions of some classical inequalities of Chebyshev, Grüss and Kantorovich
type.
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