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Abstract

Elsewhere we developed rules for the monotonicity pattern of the ratio f/g of
two functions on an interval of the real line based on the monotonicity pattern of
the ratio f ′/g′ of the derivatives. These rules are applicable even more broadly
than the l’Hospital rules for limits, since we do not require that both f and g, or
either of them, tend to 0 or ∞ at an endpoint of the interval.

Here these rules are used to obtain monotonicity patterns of the ratios of the
pairwise distances between the vertices of the Lambert and Saccheri quadri-
laterals in the Poincaré model of hyperbolic geometry. Some of the results may
seem surprising. Apparently, the methods will work for other ratios of distances
in hyperbolic geometry and other Riemann geometries.

The presentation is mainly self-contained.

2000 Mathematics Subject Classification: Primary 53A35, 26A48; Secondary
51M25, 51F20, 51M15, 26A24.
Key words: L’Hospital type rules for monotonicity, Hyperbolic geometry, Poincaré

model, Lambert quadrilaterals, Saccheri quadrilaterals, Riemann geom-
etry, Differential geometry.
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1. L’Hospital-Type Rules for Monotonicity
Let −∞ ≤ a < b ≤ ∞. Let f andg be differentiable functions defined on
the interval(a, b), and letr := f/g. It is assumed throughout thatg andg′ do
not take on the zero value and do not change their respective signs on(a, b). In
[16], general “rules” for monotonicity patterns, resembling the usual l’Hospital
rules for limits, were given. In particular, according to [16, Proposition 1.9], the
dependence of the monotonicity pattern ofr (on (a, b)) on that ofρ := f ′/g′

(and also on the sign ofgg′) is given by Table1, where, for instance,r ↘↗
means that there is somec ∈ (a, b) such thatr ↘ (that is,r is decreasing) on
(a, c) andr ↗ on (c, b). Now suppose that one also knows whetherr ↗ or
r ↘ in a right neighborhood ofa and in a left neighborhood ofb; then Table1
uniquely determines the monotonicity pattern ofr.

ρ gg′ r

↗ > 0 ↗ or↘ or↘↗
↘ > 0 ↗ or↘ or↗↘
↗ < 0 ↗ or↘ or↗↘
↘ < 0 ↗ or↘ or↘↗

Table 1: Basic rules for monotonicity

Clearly, these l’Hospital-type rules for monotonicity patterns are helpful
wherever the l’Hospital rules for limits are so, and even beyond that, because
the monotonicity rules do not require that bothf andg (or either of them) tend
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to 0 or∞ at any point.
The proof of these rules is very easy if one additionally assumes that the

derivativesf ′ andg′ are continuous andr′ has only finitely many roots in(a, b)
(which will be the case if, for instance,r is not a constant andf and g are
real-analytic functions on[a, b]): Indeed, suppose that the assumptionsρ↗ and
gg′ > 0 of the first line of Table1 hold. Then it suffices to show thatr′(x)
may change sign only from− to + asx increases froma to b. To obtain a
contradiction, suppose the contrary, so that there is some rootu of r′ in (a, b)
such that in some right neighborhood(u, t) of the rootu one hasr′ < 0 and
hencer < r(u). Consider now the key identity

(1.1) g2 r′ = (ρ− r) g g′,

which is easy to check. Then the conditionsr′(u) = 0 andr′ < 0 on (u, t)
imply, respectively, thatρ(u) = r(u) and ρ < r on (u, t). It follows that
ρ < r < r(u) = ρ(u) on (u, t), which contradicts the conditionρ ↗. The
other three lines of Table1 can be treated similarly. A proof without using the
additional conditions (that the derivativesf ′ andg′ are continuous andr′ has
only finitely many roots) was given in [16].

Based on Table1, one can generally infer the monotonicity pattern ofr given
that ofρ, however complicated the latter is. In particular, one has Table2.

In the special case when bothf andg vanish at an endpoint of the inter-
val (a, b), l’Hospital-type rules for monotonicity and their applications can be
found, in different forms and with different proofs, in [9, 11, 14, 8, 2, 3, 1, 4, 5,
15, 16, 17, 18].

Thespecial-caserule can be stated as follows: Suppose thatf(a+) = g(a+) =
0 or f(b−) = g(b−) = 0; suppose also thatρ is increasing or decreasing on the
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ρ gg′ r

↗↘ > 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘
↘↗ > 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↗↘ < 0 ↗ or↘ or↗↘ or↘↗ or↗↘↗
↘↗ < 0 ↗ or↘ or↗↘ or↘↗ or↘↗↘

Table 2: Derived rules for monotonicity

entire interval(a, b); then, respectively,r is increasing or decreasing on(a, b).
When the conditionf(a+) = g(a+) = 0 or f(b−) = g(b−) = 0 does hold, the
special-case rule may be more convenient, because then one does not have to
investigate the monotonicity pattern of ratior near the endpoints of the interval
(a, b).

The special-case rule is easy to prove. For instance, suppose thatf(a+) =
g(a+) = 0. Theng andg′ must have the same sign on(a, b). By the mean-value
theorem, for everyx ∈ (a, b) there is someξ ∈ (a, x) such thatr(x) = ρ(ξ).
Now the rule follows by identity (1.1).

This latter proof is essentially borrowed from [2, Lemma 2.2]. Another very
simple proof of the special-case rule was given in [15]; that proof remains valid
under somewhat more general conditions onf andg. A unified treatment of the
monotonicity rules, applicable whether or notf andg vanish at an endpoint of
(a, b), can be found in [16].

(L’Hospital’s rule for the limitr(b−) (say) wheng(b−) = ∞ does not have
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a “special-case” analogue for monotonicity, even if one also hasf(b−) = ∞.
For example, considerf(x) = x− 1− e−x andg(x) = x for x > 0. Thenr ↗
on (0,∞), even thoughρ↘ on (0,∞) andf(∞−) = g(∞−) = ∞.)

In view of what has been said here, it should not be surprising that a very
wide variety of applications of these l’Hospital-type rules for monotonicity pat-
terns were given: in areas of analytic inequalities [15, 16, 19, 5], approxima-
tion theory [17], differential geometry [8, 9, 11], information theory [15, 16],
(quasi)conformal mappings [1, 2, 3, 4], statistics and probability [14, 16, 17,
18], etc.

Clearly, the stated rules for monotonicity could be helpful whenf ′ or g′ can
be expressed simpler thanf or g, respectively. Such functionsf and g are
essentially the same as the functions that could be taken to play the role ofu in
the integration-by-parts formula

∫
u dv = uv −

∫
v du; this class of functions

includes polynomial, logarithmic, inverse trigonometric and inverse hyperbolic
functions, and as well as non-elementary “anti-derivative” functions of the form
x 7→

∫ x
a
h(u) du or x 7→

∫ b
x
h(u) du.

(“Discrete” analogues, forf andg defined onZ, of the l’Hospital-type rules
for monotonicity, are available as well [20].)

In the present paper, we use the stated rules for monotonicity to obtain mono-
tonicity properties of the Lambert and Saccheri quadrilaterals in hyperbolic ge-
ometry. This case represents a perfect match between the two areas. Indeed, the
distances in hyperbolic geometry are expressed in terms of inverse hyperbolic
functions, whose derivatives are algebraic. One can expect these rules to work
for other Riemann geometries as well, since the geodesic distances there are
line integrals, too.
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2. Monotonicity Properties of the Lambert and
Saccheri Quadrilaterals

2.1. Background

2.1.1. Hyperbolic plane The Lambert and Saccheri quadrilaterals are quadri-
laterals in the Poincaré hyperbolic planeH2.

The significance of the Poincaré model is that, by the Riemann mapping the-
orem, any simply connected analytic Riemann surface is conformally equivalent
toH2, C, or C ∪ {∞} [7, Theorem 9.1]. Moreover, any analytic Riemann sur-
face is conformally equivalent to the quotient surfaceR̃/G, whereR̃ isH2, C,
or C∪{∞}, andG is a group of Möbius transformations acting discontinuously
on (the covering surface)̃R [7, Proposition 9.2.3]. However, this comment will
not be used further in this paper.

To make this section mainly self-contained, let us fix the terminology and
basic facts concerning the Poincaré model of hyperbolic plane geometry. The
set of points in this model is the upper half-plane

H2 := {z ∈ C : Im z > 0}.

This set is endowed with the differential metric element

ds :=
|dz|
Im z

,

so that the length of any rectifiable curve inH2 is obtained as the line integral
of ds. Forx ∈ R andr ∈ R \ {0}, let us refer to the semicircles

[[x− r, x+ r]] := {z ∈ H2 : |z − x| = |r|},
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centered at pointx and of radius|r|, and the vertical rays

[[x,∞]] := {z ∈ H2 : Re z = x}

as the“lines” . It will be seen in a moment that these “lines” are precisely the
geodesics in this geometry, so that the geodesics are orthogonal to the real axis.

For x ∈ R and r ∈ R \ {0}, let ιx,r denote the reflection ofH2 in the
semicircle[[x− r, x+ r]], so that, forz ∈ H2,

ιx,r(z) := x+
r2

z − x
.

It is easy to see that this transformation is inverse to itself and preservesH2

as well as the metric elementds, and hence also the (absolute value of the)
angles. Indeed, ifw := ιx,r(z) for z ∈ H2, thenImw = r2 Im z/|z − x|2 and
dw = −r2 dz/(z − x)2, so thatImw > 0 and|dw|/ Imw = |dz|/ Im z.

Let G be the group of transformations ofH2 generated by all such reflec-
tions. ThenG preserves the metric elementds. Note thatG contains all
the homothetiesz 7→ ηx,λ(z) := x + λ(z − x), horizontal parallel transla-
tions z 7→ σx(z) := z + x, and reflectionsz 7→ ιx,∞(z) := 2x − z in the
vertical rays[[x,∞]], wherex ∈ R andλ > 0; indeed,ηx,λ = ιx,

√
λ ◦ ιx,1,

ιx,∞ = ιx+r,2r ◦ ιx−r,2r ◦ ιx+r,2r, andσx = ιx/2,∞ ◦ ι0,∞.
It is easy to see that the geodesic connecting two pointsz1 andz2 on the same

vertical ray[[x,∞]] (x ∈ R) is the segment of that ray with the endpointsz1 and
z2, so that the geodesic distanced(z1, z2) between suchz1 andz2 is | ln(y1/y2)|,
whereyj := Im zj, j = 1, 2. Now it is seen that groupG acts transitively
on the set of all ordered pairs(z1, z2) of points on the vertical ray[[x,∞]] with
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a fixed value of the distanced(z1, z2) — in the sense that, for any two pairs
(z1, z2) and(w1, w2) of points on[[x,∞]] with d(z1, z2) = d(w1, w2), there is
some transformationg in G such thatg(zj) = wj, j = 1, 2; indeed, it suffices
to takeg to be a single reflectionιx,r or a single homothetyηx,λ, for somer > 0
or λ > 0.

Next, the reflectionιx+r,2r maps the semicircle[[x−r, x+r]] onto the vertical
ray [[x− r,∞]], and hence vice versa, for allx ∈ R andr ∈ R \ {0}. Moreover,
any two distinct points inH2 lie on exactly one “line”.

It follows now that indeed the “lines” are precisely the geodesics, and group
G acts transitively on the set of all ordered pairs(z1, z2) of points inH2 with
any fixed value of the geodesic distanced(z1, z2). Another corollary here is the
formula for the geodesic distance between any two pointsz1 andz2 of H2:

(2.1) d(z1, z2) = arcch

(
1 +

|z1 − z2|2

2 Im z1 Im z2

)
,

wherearcchx := ln
(
x+

√
x2 − 1

)
for x > 1; cf. [6, Theorem 7.2.1(ii)]. One

can now also easily derive Pythagoras’ theorem,

(2.2) ch c = ch a ch b,

for a right-angled (geodesic) triangleABC with sidec opposite to the right-
angle vertexC and two other sidesa and b; indeed, such a triangle isG-
congruent, for somek ∈ (0, 1) andθ ∈ (0, π/2), to the triangle with vertices
C∗ = i,A∗ = k i, andB∗ = eiθ; cf. [6, Theorem 7.11.1]. (Yet another corollary,
not to be used in this paper, is thatG is the group of all isometries ofH2.)
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2.1.2. Lambert’s and Saccheri’s quadrilaterals A Lambert quadrilateral
is a quadrilateral in the Poincaré hyperbolic plane with anglesπ/2, π/2, π/2,
andϕ, for someϕ; a Saccheri quadrilateral is a quadrilateral (also in the hyper-
bolic plane) with anglesπ/2, π/2, ψ andψ, for someψ [6, Section 7.17]. See
Figure1.

For a Saccheri quadrilateral, let us refer to (the length of) its side adjacent
to the right angles as thebase, its opposite side as thetop, and to either of the
other two (congruent to each other) sides simply as theside.

A Lambert quadrilateral has two sides each adjacent to two of the three right
angles. Let us arbitrarily choose one of these two sides and refer to it as the
base, and to the other one of the two as the(short) side. The side opposite to
the base will again be referred to as thetop, and the fourth side as thelong side.
It will be seen in the next subsection that indeed the long side is always longer
than the short one.

It follows from the discussion in Subsubsection2.1.1that the groupG acts
transitively on the set of all Saccheri quadrilaterals with any given values of the
base and the side, as well as on the set of all Lambert quadrilaterals with any
given values of the base and the short side. That is, all Saccheri quadrilaterals
with any given values of the base and the side areG-congruentto each other,
and so, they have the same geodesic distances between any two of their corre-
sponding vertices. The same holds for all Lambert quadrilaterals with any given
values of the base and the short side.
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LAMBERT’S AND SACCHERI’S QUADRILATERALS 5

2.1.2. Lambert’s and Saccheri’s quadrilaterals. A Lambert quadrilateral is a quadrilateral
in the Poincaré hyperbolic plane with angles π/2, π/2, π/2, and ϕ, for some ϕ; a Saccheri
quadrilateral is a quadrilateral (also in the hyperbolic plane) with angles π/2, π/2, ψ and
ψ, for some ψ [6, Section 7.17]. See Figure 2.1.

For a Saccheri quadrilateral, let us refer to (the length of) its side adjacent to the right
angles as the base, its opposite side as the top, and to either of the other two (congruent
to each other) sides simply as the side.

A Lambert quadrilateral has two sides each adjacent to two of the three right angles.
Let us arbitrarily choose one of these two sides and refer to it as the base, and to the other
one of the two as the (short) side. The side opposite to the base will again be referred
to as the top, and the fourth side as the long side. It will be seen in the next subsection
that indeed the long side is always longer than the short one.

AL

DL

ASDS
B C

Figure 2.1: Lambert’s (ALBCDL) and Saccheri’s (ASBCDS) quadrilaterals; ALB, ALDL, BC, and
CDL are respectively the base, short side, long side, and top of the Lambert quadrilateral; ASB, ASDS =
BC, and CDS are respectively the base, side, and top of the Saccheri quadrilateral; the angles at vertices
AS, B, AL, and DL are π/2.

It follows from the discussion in Subsubsection 2.1.1 that the group G acts transitively
on the set of all Saccheri quadrilaterals with any given values of the base and the side, as
well as on the set of all Lambert quadrilaterals with any given values of the base and the
short side. That is, all Saccheri quadrilaterals with any given values of the base and the
side are G-congruent to each other, and so, they have the same geodesic distances between
any two of their corresponding vertices. The same holds for all Lambert quadrilaterals
with any given values of the base and the short side.

2.2. Main results.

2.2.1. Lambert quadrilaterals. In view of the conclusions of Subsection 2.1, any Lambert
quadrilateral is G-congruent, for some

k ∈ (0, 1) and θ ∈ (0, π/2),

to the particular Lambert quadrilateral ABCD with vertices

A = k i, B = i, C = eiθ, D = k eiψ, where ψ := arccos
(
ch(ln k) cos θ

)

Figure 1: Lambert’s (ALBCDL) and Saccheri’s (ASBCDS) quadrilaterals;
ALB, ALDL, BC, andCDL are respectively the base, short side, long side,
and top of the Lambert quadrilateral;ASB,ASDS = BC, andCDS are respec-
tively the base, side, and top of the Saccheri quadrilateral; the angles at vertices
AS,B, AL, andDL areπ/2.

2.2. Main Results

2.2.1. Lambert quadrilaterals In view of the conclusions of Subsection
2.1, any Lambert quadrilateral isG-congruent, for some

k ∈ (0, 1) and θ ∈ (0, π/2),

to the particular Lambert quadrilateralABCD with vertices
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A = k i, B = i, C = eiθ, D = k eiψ, whereψ := arccos
(
ch(ln k) cos θ

)
(see Figure2), so that, by (2.1),

AB = ln
1

k
, BC = arcch c,

CD = arcch
1 + k2

q
, AD = arcch

2 c k

q
,

AC = arcch
c (1 + k2)

2 k
, BD = arcch

c (1 + k2)

q
,

(2.3)

whereq :=
√

(1 + k2)2 − c2 (1− k2)2 andc := 1/ sin θ.(2.4)

(One can verify, using (2.2) and (2.3), that indeed∠A = ∠B = ∠C = π/2.)
Then one may refer toAB as the base, of lengthln(1/k), and toBC as the
short side, of lengtharcch c. Note that, for the pointD to exist inH2, one must
havech(ln k) cos θ < 1, which is equivalent to

1 < c < ck, where ck :=
1 + k2

1− k2
.

Let us fix (the length of) the baseAB (so thatk ∈ (0, 1) is fixed) and letc
increase from1 to ck, so that the short sideBC = arcch c increases from0 to
arcch ck. The goal here is to determine the monotonicity patterns of

(
6
2

)
= 15

completely representative pairwise ratiosr = CD/AD, CD/BD, . . . , BC/AB
of the

(
4
2

)
= 6 (geodesic) distances between the four verticesA, B, C, D. For

each pair of such distances, it is enough to consider only one of the two mu-
tually reciprocal ratios; indeed, for example, the monotonicity pattern of the
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ratioCD/AD determines that ofAD/CD. All the ratiosr will be expressed
as functions ofc. (We do not distinguish in terminology or notation between a
segment of a geodesic and its length.)

LAMBERT’S AND SACCHERI’S QUADRILATERALS 6

(see Figure 2.2), so that, by (2.1),

AB = ln
1

k
, BC = arcch c, CD = arcch

1 + k2

q
, ,

AD = arcch
2 c k

q
, AC = arcch

c (1 + k2)

2 k
, BD = arcch

c (1 + k2)

q
,

(2.3)

where q :=
√

(1 + k2)2 − c2 (1− k2)2 and c := 1/ sin θ.(2.4)

(One can verify, using (2.2) and (2.3), that indeed ∠A = ∠B = ∠C = π/2.) Then one
may refer to AB as the base, of length ln(1/k), and to BC as the short side, of length
arcch c. Note that, for the point D to exist in H2, one must have ch(ln k) cos θ < 1, which
is equivalent to

1 < c < ck, where ck :=
1 + k2

1− k2
.

Let us fix (the length of) the base AB (so that k ∈ (0, 1) is fixed) and let c increase from
1 to ck, so that the short side BC = arcch c increases from 0 to arcch ck. The goal here
is to determine the monotonicity patterns of

(
6
2

)
= 15 completely representative pairwise

ratios r = CD/AD, CD/BD, . . . , BC/AB of the
(
4
2

)
= 6 (geodesic) distances between

the four vertices A, B, C, D. For each pair of such distances, it is enough to consider only
one of the two mutually reciprocal ratios; indeed, for example, the monotonicity pattern
of the ratio CD/AD determines that of AD/CD. All the ratios r will be expressed as
functions of c. (We do not distinguish in terminology or notation between a segment of
geodesics and its length.)

to
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Figure 2.2: A Lambert quadrilateral: ∠A = ∠B = ∠C = π/2

Theorem 2.1. The monotonicity patterns of the 15 representative ratios r(c) are given
by Table 2.1, where k∗ :=

√
2− 1.

One simple corollary here is that, of the two sides (BC and AD) of the Lambert
quadrilateral, BC is indeed always the shorter one (this is obvious from Figure 2.2 as
well). Also, of the two diagonals (AC and BD) of the quadrilateral, AC is always the
shorter one.

What is perhaps surprising is that the monotonicity patterns of two ratios, CD/AC
(top-to-short-diagonal) and CD/AD top-to-long-side), turn out to depend on (the fixed

Figure 2: A Lambert quadrilateral:∠A = ∠B = ∠C = π/2

Theorem 2.1. The monotonicity patterns of the 15 representative ratiosr(c)
are given by Table3, wherek∗ :=

√
2− 1.

One simple corollary here is that, of the two sides (BC andAD) of the Lam-
bert quadrilateral,BC is indeed always the shorter one (this is obvious from
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Figure2 as well). Also, of the two diagonals (AC andBD) of the quadrilateral,
AC is always the shorter one.

What is perhaps surprising is that the monotonicity patterns of two ratios,
CD/AC (top-to-short-diagonal) andCD/AD (top-to-long-side), turn out to
depend on (the fixed length of) the baseAB = ln(1/k) of the quadrilateral.
When the baseAB is smaller thanln(1/k∗) = ln(1 +

√
2), these two ratios are

not monotonic.
Three other ratios —CD/BC (top-to-short-side), CD/BD (top-to-long-

diagonal), andBD/BC (long-diagonal-to-short-side) — are not monotonic
for any given base; however, this should not be surprising, since for each of
these three ratiosr one hasr(1+) = r(ck−).

In particular, it follows that of all the 5 ratios of thetop to the other lengths,
only the trivial one, the ratioCD/AB of thetop to the fixed base, is monotonic
for every given base.

Another small-base peculiarity shows up for two ratios,CD/BC (top-to-
short-side) andBC/AB (short-side-to-base); namely, these ratios take on val-
ues to both sides of1 iff the base is small enough – smaller thanln

√
3 in the case

of CD/BC and smaller thanln(1/k∗) = ln(1 +
√

2) in the case ofBC/AB.

Proof of Theorem2.1. From (2.3), it is clear that the 5 ratios ofBC, CD, AD,
AC, andBD to the fixedAB are increasing (inc), and the inequalityBC/AB >
1 can be rewritten aschBC > chAB, which is equivalent tok > k∗. The
monotonicity pattern forAC/AD = (AC/BD)(BD/AD) obviously follows
from those forAC/BD andBD/AD. It remains to consider the other 9 of the
15 ratios.
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In terms of the expressionq, defined by (2.4), and the expressions

q1 :=
√

(c2 − 1)(1 + k2)2 + (1− k2)2, q2 :=
√
c2 − 1,(2.5)

q3 :=
√

2(c2 − 1)(1 + k4) + (1− k2)2,(2.6)

one computes the ratios,ρ, of the derivatives of the distances with respect toc:

(CD)′

(AC)′
=

(1− k2) q1
q2

,
(CD)′

(AD)′
=

(1− k2) q2
2 k

,
(CD)′

(BD)′
=

(1− k2) q3
(1 + k2)2

,

(AC)′

(BC)′
=

(1 + k2) q2
q1

,
(AC)′

(BD)′
=

q2 q3
(1 + k2)2 q1

,
(BD)′

(AD)′
=

(1 + k2)2 q2
2 k q3

,

(AD)′

(BC)′
=

2 k (1 + k2)

q2
,

(CD)′

(BC)′
=

(CD)′

(AC)′
(AC)′

(BC)′
,

(BD)′

(BC)′
=

(BD)′

(AD)′
(AD)′

(BC)′
.

Of these 9 ratios, it is now clear that 8 ratios (except(AC)′/(BD)′) are
increasing (inc). Hence, by the first line of Table1, each of the corresponding
8 ratios,r, of distances,CD/AC, . . . , AD/BC (except forAC/BD), has one
of these three patterns:↗, ↘, or↘↗. (It can be shown that(AC)′/(BD)′ is
↘ or↗↘, depending on whether the base,AB, is large enough; however, this
fact will not be used in this paper.)

Now let us consider each of the 8 “unexceptional” ratios separately, after
which the “exceptional” ratio,AC/BD, will be considered.

1. r(c) = CD/AC: Here it is obvious thatr(1+) = 1 andr(ck−) = ∞.
This excludes the patternr ↘. To discriminate between the possibilities
r ↘ andr ↘↗, it suffices to determine whether there exists somec ∈
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(1, ck) such thatr(c) = 1 or, equivalently,chCD = chAC. Now it is
easy to complete the proof of Theorem2.1for the ratior(c) = CD/AC.

2. r(c) = CD/AD: Here it is obvious thatr(1+) = ∞. By l’Hospital’s
rule for limits, r(ck−) = ρ(ck−) = 1. This excludes the patternr ↗.
Moreover, it is easy to see, as in the previous case, that there exists some
c ∈ (1, ck) such thatr(c) = 1 iff k > k∗.

3. r(c) = CD/BC: Herer(1+) = r(ck−) = ∞. Hence,r ↘↗. More-
over, it is easy to see that there exists somec ∈ (1, ck) such thatr(c) = 1
iff k > 1/

√
3.

4. r(c) = CD/BD: Here r(1+) = 1. By l’Hospital’s rule for limits,
r(ck−) = ρ(ck−) = 1. Hence,r ↘↗.

5. r(c) = AC/BC: Here, withµ := 2k (1+k2) andν :=
√

1 + 14k4 + k8,
one has the following atc = ck− :

r′ · 2k ν BC2

(1− k2)AC
= µ

BC

AC
− ν < µ− ν,

since, in view of (2.3),BC < AC. Butµ2−ν2 = −(1−k2)4 < 0. Hence,
r′(ck−) < 0, so thatr ↘ in a left neighborhood ofck. Thus,r ↘.

6. r(c) = BD/AD: Here r(1+) = ∞. By l’Hospital’s rule for limits,
r(ck−) = ρ(ck−) = 1. In view of (2.3), herer > 1 on (1, ck). Hence,r is
decreasing on(1, ck) from∞ to 1.

7. r(c) = BD/BC: Herer(1+) = r(ck−) = ∞. Hence,r ↘↗ on(1, ck).
Also, in view of (2.3), one has herer > 1 on (1, ck).
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8. r(c) = AD/BC: Here, by the special-case rule for monotonicity,r ↗.
By l’Hospital’s rule, r(1+) = ρ(1+) = (1 + k2)/(2k) > 1. Also, it is
obvious thatr(ck−) = ∞.

It remains to consider the 9th ratio,
¶ r(c) = AC/BD: Here, as was stated,ρ(c) := (AC)′/(BD)′ is non-

monotonic inc for k in a left neighborhhood of1. This makes it more difficult
to act as in the cases considered above, since the rootc of the equationρ′(c) =
0 depends onk. However, what helps here is that the monotonicity pattern
of r turns out to be simple, as will be proved in a moment:r ↘. One can
use the following lemma, whose proof is based on the special-case rule for
monotonicity stated in Section1.

Lemma 2.2. For x > 1, let

λ(x) :=

√
x2 − 1 arcch x

x3
, α(x) :=

x2 − 1

x3
, β(x) :=

√
x2 − 1

x3
.

Then for allu andv in (1,∞)

λ(v)

λ(u)
6 max

(
α(v)

α(u)
,
β(v)

β(u)

)
.

Proof of Lemma2.2. Obviously,λ/β = arcch ↗. Hence,λ(v)
λ(u)

6 β(v)
β(u)

if 1 <
v 6 u. It remains to consider the case when1 < u < v. Note that

(arcch x)′(√
x2 − 1

)′ =
1

x
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is decreasing inx > 1. Hence, by the special-case rule for monotonicity,

λ(x)

α(x)
=

arcchx√
x2 − 1

is decreasing inx > 1. Hence,λ(v)
λ(u)

< α(v)
α(u)

if 1 < u < v.

Let us now return to the consideration of the ratior(c) = AC/BD. It suf-
fices to show thatr′(c) < 0 for all k ∈ (0, 1) andc ∈ (1, ck). One has the
identity

r′(c)
2BD2 k

√
u2 − 1

√
v2 − 1

(1 + k2)λ(u) v3
=
λ(v)

λ(u)
−K,

where

u :=
c (1 + k2)

2 k
, v :=

c (1 + k2)√
(1 + k2)2 − c2 (1− k2)2

, K :=

(
1 + k2

2 k

)
2.

Therefore and in view of Lemma2.2, it suffices to show that the expressions

P :=

((
α(v)

α(u)

)2

−K2

)
α(u)2 4 c6 k2 (1 + k2)

6

(1− k2)2 and

Q :=

((
β(v)

β(u)

)2

−K2

)
β(u)2 c

6 (1 + k2)
6

(1− k2)2

are negative for allk ∈ (0, 1) andc ∈ (1, ck). But this can be done in a com-
pletely algorithmic manner, sinceP andQ are polynomials ink andc, andck
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is a rational function ofk [21, 12, 10]. With Mathematica, one can use the
commandReduce[P>=0 && 1<c<ck && 0<k<1] (whereck stands for
ck), which outputsFalse , meaning that indeedP < 0 for all k ∈ (0, 1) and
c ∈ (1, ck); similarly, forQ in place ofP .

Theorem2.1 is proved.

2.2.2. Saccheri quadrilaterals LetABCD be a Saccheri quadrilateral. Here
one may assume that

A = k i, B = i, C = eiθ, D = k eiθ,

where again0 < k < 1 and0 < θ < π/2, so that the angles at verticesA
andB are right, andBC = AD, so thatBD = AC. Let us refer here to
AB = ln(1/k) as the base and toBC = AD = arcch c as the side, where
againc := 1/ sin θ. Herec varies from1 to∞.

Again, let us fix the baseAB = ln(1/k) (so thatk ∈ (0, 1) is fixed); also, let
c increase from1 to∞, so that the sideBC = AD = arcch c increases from0 to
∞. Here, taking into account the equalitiesBC = AD andBD = AC, we have
to determine the monotonicity patterns of

(
4
2

)
= 6 completely representative

pairwise ratios.

Theorem 2.3. The monotonicity patterns of the 6 ratiosr(c) are given by Ta-
ble4.

Thus, the diagonalAC = BD always exceeds both the baseAB and the
sideAD = BC. Also, the topCD always exceeds the base.

Recently it was observed by Pambuccian [13] that the ratioCD/BD =
CD/AC of the top of a Saccheri quadrilateral to its diagonal may be less than or
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LAMBERT’S AND SACCHERI’S QUADRILATERALS 10

2.2.2. Saccheri quadrilaterals. Let ABCD be a Saccheri quadrilateral. Here one may
assume that

A = k i, B = i, C = eiθ, D = k eiθ,

where again 0 < k < 1 and 0 < θ < π/2, so that the angles at vertices A and B are right,
and BC = AD, so that BD = AC. Let us refer here to AB = ln(1/k) as the base and to
BC = AD = arcch c as the side, where again c := 1/ sin θ. Here c varies from 1 to ∞.

top

side

side

b
as

e

A

B

C
D

Figure 2.3: A Saccheri quadrilateral: ∠A = ∠B = π/2 and ∠C = ∠D, whence AD = BC and AC = BD

Again, let us fix the base AB = ln(1/k) (so that k ∈ (0, 1) is fixed); also, let c increase
from 1 to∞, so that the side BC = AD = arcch c increases from 0 to∞. Here, taking into
account the equalities BC = AD and BD = AC, we have to determine the monotonicity
patterns of

(
4
2

)
= 6 completely representative pairwise ratios.

Theorem 2.3. The monotonicity patterns of the 6 ratios r(c) are given by Table 2.2.

r Pattern for each k in r(1+) r(∞−) k∗∗
(0, 1) (0, k∗∗] (k∗∗, 1)

CD/AD ↘ ↘↗ ∞ 2 k2
∗ = 3− 2

√
2

CD/BD ↗ ↘↗ 1 2 2−√3

CD/AB ↗ 1 ∞
AD/BD ↗ 0 1

AD/AB ↗ 0 ∞
BD/AB ↗ 1 ∞

Table 2.2: Monotonicity patterns for the ratios in the Saccheri quadrilateral

Thus, the diagonal AC = BD always exceeds both the base AB and the side AD = BC.
Also, the top CD always exceeds the base.

Recently it was observed by Pambuccian [13] that the ratio CD/BD = CD/AC of the
top of a Saccheri quadrilateral to its diagonal may be less than or greater than or equal to

Figure 3: A Saccheri quadrilateral:∠A = ∠B = π/2 and∠C = ∠D, whence
AD = BC andAC = BD

greater than or equal to1. The second line of Table4 provides more information
in that respect. In particular, one can see now that thetop-to-diagonalratio can
be less than1 only if the baseAB is smaller thanln(2 +

√
3). On the other

hand, this ratio is always less than2.
Similarly to the case of the Lambert quadrilateral, the monotonicity patterns

of two ratios,CD/AD (top-to-side) andCD/BD (top-to-diagonal), turn out
to depend on the baseAB = ln(1/k) of the quadrilateral. When the base is
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smaller than the threshold valueln(1/k∗∗), these two ratios are not monotonic.
However, in contrast with Lambert quadrilaterals, here the threshold values for
these two ratios are different from each other. Yet, for Saccheri quadrilaterals
as well, it is the small base values that may result in non-monotonic patterns.

Proof of Theorem2.3. In view of (2.1), here one has
(2.7)

AB = ln
1

k
, AD = BC = arcch c, CD = arcch

c2 (1− k)2 + 2 k

2 k
,

AC = BD = arcch
c (1 + k2)

2 k
.

From these expressions, the statements of Theorem2.3concerning the three
ratios of the top (CD), side (AD = AC), and diagonal (AC = BD) to the fixed
base (AB) are obvious. It remains to consider the other three ratios.
¶ r(c) = CD/AD: This case follows immediately from the case of the

top-to-long-sideratio for the Lambert quadrilateral, which latter is a “half” of
a Saccheri one; see Figure1. Indeed, if the side of a Saccheri quadrilateral
equals the long side of a Lambert quadrilateral and the base of the Saccheri
quadrilateral is twice the base of the Lambert quadrilateral, then the top of the
Saccheri quadrilateral is twice the top of the Lambert quadrilateral.
¶ r(c) = CD/BD: Here (recall (2.5)) ρ(c) = 2 (1−k) q1 / ((1+k2) q4),

whereq4 :=
√

(c2 − 1)(1− k)2 + (1 + k)2. Hence,ρ ↗, and so,r ↗ or r ↘
or r ↗↘. Obviously,r(1+) = 1. By l’Hospital’s rule,r(∞−) = ρ(∞−) = 2.
Moreover, it is easy to see that (∃ c > 1 r(c) = 1) iff 2 −

√
3 < k < 1. This

proves the second line of Table4.
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¶ r(c) = AD/BD: Hereρ(c) = q1 / ((1 + k2) q2), so thatρ ↘. Obvi-
ously, r(1+) = 0. By l’Hospital’s rule,r(∞−) = ρ(∞−) = 1. Also, (2.7)
impliesr < 1. It follows thatr ↗.

Theorem2.3 is proved.

2.3. Conclusion

It seems quite likely that one could similarly examine the monotonicity patterns
of these ratios for the Lambert and Saccheri quadrilaterals under conditions
other than that of a fixed base. Likewise, one could examine the monotonicity
patterns of other ratios of distances, in this or other Riemann geometries.
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r
Pattern for eachk in

r(1+) r(ck−) Comments
(0, 1) (0, k∗] (k∗, 1)

CD/AC ↗ ↘↗ 1 ∞
CD/AD ↘ ↘↗ ∞ 1

CD/BC ↘↗ ∞ ∞

(
∃c ∈ (1, ck)
r(c) = 1

)
⇐⇒ k > 1/

√
3

CD/BD ↘↗ 1 1

CD/AB ↗ 1 ∞

AC/AD ↘ ∞ 0

AC/BC ↘ ∞ > 1

AC/BD ↘ 1 0

AC/AB ↗ 1 > 1

BD/AD ↘ ∞ 1

BD/BC ↘↗ ∞ ∞
∀k ∈ (0, 1) ∀c ∈
(1, ck) r(c) > 1

BD/AB ↗ 1 ∞

AD/BC ↗ > 1 ∞
AD/AB ↗ 0 ∞

BC/AB ↗ 0 r(ck−)
r(ck−) > 1 ⇐⇒
k > k∗

Table 3: Monotonicity patterns for the ratios in the Lambert quadrilateral
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r
Pattern for eachk in

r(1+) r(∞−) k∗∗
(0, 1) (0, k∗∗] (k∗∗, 1)

CD/AD ↘ ↘↗ ∞ 2 k2
∗ = 3− 2

√
2

CD/BD ↗ ↘↗ 1 2 2−
√

3

CD/AB ↗ 1 ∞
AD/BD ↗ 0 1

AD/AB ↗ 0 ∞
BD/AB ↗ 1 ∞

Table 4: Monotonicity patterns for the ratios in the Saccheri quadrilateral
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