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Abstract

Elsewhere we developed rules for the monotonicity pattern of the ratio f/g of
two functions on an interval of the real line based on the monotonicity pattern of
the ratio f'/¢' of the derivatives. These rules are applicable even more broadly
than the I'Hospital rules for limits, since we do not require that both f and ¢, or
either of them, tend to 0 or oo at an endpoint of the interval.

Here these rules are used to obtain monotonicity patterns of the ratios of the
pairwise distances between the vertices of the Lambert and Saccheri quadri-
laterals in the Poincaré model of hyperbolic geometry. Some of the results may
seem surprising. Apparently, the methods will work for other ratios of distances
in hyperbolic geometry and other Riemann geometries.

The presentation is mainly self-contained.

2000 Mathematics Subject Classification: Primary 53A35, 26A48; Secondary

51M25, 51F20, 51M15, 26A24.
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etry, Differential geometry.
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Let —0o0 < a < b < oo. Let f andg be differentiable functions defined on
the interval(a, b), and letr := f/g. It is assumed throughout thatand ¢’ do
not take on the zero value and do not change their respective sigastnin
[16], general “rules” for monotonicity patterns, resembling the usual I'Hospital
rules for limits, were given. In particular, according ic] Proposition 1.9], the
dependence of the monotonicity patternrafon (a, b)) on that ofp := f'/¢'
(and also on the sign afy’) is given by Tablel, where, for instance; \ ~
means that there is somec (a,b) such that- ™\, (that is,r is decreasing) on
(a,c) andr " on (c,b). Now suppose that one also knows whether” or

r \\ In a right neighborhood af and in a left neighborhood @f then Tablel
uniquely determines the monotonicity pattern-of

p | g9 r

>0 Sor orN,
N | >0 Sorx, or N
<0 orx, or M\,
N | <0 Sorx or\ A~

Table 1: Basic rules for monotonicity

Clearly, these I'Hospital-type rules for monotonicity patterns are helpful

wherever the I'Hospital rules for limits are so, and even beyond that, because

the monotonicity rules do not require that bgtlandg (or either of them) tend
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to 0 oroco at any point.

The proof of these rules is very easy if one additionally assumes that the

derivativesf’ andg’ are continuous and has only finitely many roots ifu, b)

(which will be the case if, for instance, is not a constant and and g are
real-analytic functions ofw, b]): Indeed, suppose that the assumptiens and
gg’ > 0 of the first line of Tablel hold. Then it suffices to show that(z)

may change sign only from to + asx increases fronu to b. To obtain a
contradiction, suppose the contrary, so that there is someurobt’ in (a,b)

such that in some right neighborho¢d, ¢) of the rootu one has’ < 0 and
hencer < r(u). Consider now the key identity

(1.1) gr'=(p-r)gd,

which is easy to check. Then the conditiofiéu) = 0 andr’ < 0 on (u,t)
imply, respectively, thap(u) = r(u) andp < r on (u,t). It follows that
p <r < r(u) = p(u)on (u,t), which contradicts the condition . The
other three lines of Tabl& can be treated similarly. A proof without using the
additional conditions (that the derivativgsand ¢’ are continuous and has
only finitely many roots) was given in.fj.

Based on Tablé, one can generally infer the monotonicity patterm given
that of p, however complicated the latter is. In particular, one has Table

In the special case when bofhand g vanish at an endpoint of the inter-
val (a,b), 'Hospital-type rules for monotonicity and their applications can be
found, in different forms and with different proofs, ia,[L1, 14, 8, 2, 3, 1,4, 5,

, 16,17, 18]

Thespecial-caseule can be stated as follows: Suppose ff{at+) = g(a+) =
0 or f(b—) = g(b—) = 0; suppose also thatis increasing or decreasing on the
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p | ad | r

SN >0 Sor or N or N o N
N | >0 ASorx or N ory or N
SN <0 Sorx or N orN, or N
N | <0 o or /N or\, 7 orN, N\

Table 2: Derived rules for monotonicity L'Hospital-Type Rules for
Monotonicity, and the Lambert
and Saccheri Quadrilaterals in

entire interval(a, b); then, respectively; is increasing or decreasing ¢, b). Hyperbolic Geometry
When the conditiorf (a+) = g(a+) = 0 or f(b—) = g(b—) = 0 does hold, the losif Pinelis
special-case rule may be more convenient, because then one does not have to
investigate the monotonicity pattern of ratimear the endpoints of the interval

Title Page
(a,b).
The special-case rule is easy to prove. For instance, supposg(that = ContEns
g(a+) = 0. Theng andg’ must have the same sign ¢n b). By the mean-value <« Y
theorem, for every € (a,b) there is some& < (a,z) such that(z) = p(&). p >

Now the rule follows by identity1.1).
This latter proof is essentially borrowed from Lemma 2.2]. Another very Go Back
simple proof of the special-case rule was givenlifjthat proof remains valid

Close
under somewhat more general conditionsfandg. A unified treatment of the _
monotonicity rules, applicable whether or noandg vanish at an endpoint of Quit
(a,b), can be found in14]. Page 6 of 28

(L'Hospital’s rule for the limitr(b—) (say) wherny(b—) = oo does not have
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a “special-case” analogue for monotonicity, even if one alsojtias) = oc.
For example, considef(z) =z — 1 — e * andg(z) = x forx > 0. Thenr /
on (0, c0), even though ~\, on (0, 00) and f(co—) = g(co—) = c0.)
In view of what has been said here, it should not be surprising that a very
wide variety of applications of these I'Hospital-type rules for monotonicity pat-

terns were given: in areas of analytic inequalities, [1L6, 19, 5], approxima-
tion theory [L7], differential geometry §, 9, 11], information theory [5, 14],
(quasi)conformal mappings [ 2, 3, 4], statistics and probabilityl[, 16, 17,
], etc. L'Hospital-Type Rules for
Clearly, the stated rules for monotonicity could be helpful wiiear ¢’ can Bt A e
be expressed simpler thghor g, respectively. Such functions and g are Hyperbolic Geometry
essentially the same as the functions that could be taken to play the rola of losif Pinelis
the integration-by-parts formulau dv = uv — [ v du; this class of functions
includes polynomial, logarithmic, inverse trigonometric and inverse hyperbolic _
functions, and as well as non-elementary “anti-derivative” functions of the form Title Page
z— [T h(u)duorz — f; h(u) du. Contents
(“Discrete” analogues, fof andg defined oriZ, of the I'Hospital-type rules <« b
for monotonicity, are available as weli(].) ) R

In the present paper, we use the stated rules for monotonicity to obtain mono-
tonicity properties of the Lambert and Saccheri quadrilaterals in hyperbolic ge- Go Back
ometry. This case represents a perfect match between the two areas. Indeed, the

: : : : ) : |
distances in hyperbolic geometry are expressed in terms of inverse hyperbolic Close
functions, whose derivatives are algebraic. One can expect these rules to work Quit
for other Riemann geometries as well, since the geodesic distances there are Page 7 of 28

line integrals, too.
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2.1.1. Hyperbolic plane The Lambert and Saccheri quadrilaterals are quadri-
laterals in the Poincaré hyperbolic plafé.

The significance of the Poincaré model is that, by the Riemann mapping the-
orem, any simply connected analytic Riemann surface is conformally equivalent |.yoqpital-Type Rules for
to H%, C, orC U {oo} [7, Theorem 9.1]. Moreover, any analytic Riemann sur- Monotonicity, and the Lambert
face is conformally equivalent to the quotient surfat&s, whereR is H2, C, and if;‘;‘:e*}ig.fﬁ”és(’,'ﬁ;i:;"s "

or CU{oc}, andG is a group of Mobius transformations acting dlscontlnuously

on (the covering surface} [7, Proposition 9.2.3]. However, this comment will jositPinelis
not be used further in this paper.

To make this section mainly self-contained, let us fix the terminology and Title Page
basic facts concerning the Poincaré model of hyperbolic plane geometry. The Contents
set of points in this model is the upper half-plane

44 4 4
H?:={zeC: 1 > 0}.
{z mz > 0} % N
This set is endowed with the differential metric element
d ‘ Go Back
z
ds := ‘—, Close
Im 2z
so that the length of any rectifiable curveliff is obtained as the line integral Quit
of ds. Forz € R andr € R\ {0}, let us refer to the semicircles Page 8 of 28

[t —rz+7]):={z€ H* |z —z| = ||},
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centered at point and of radiugr|, and the vertical rays
[x,00] := {2z € H*: Rez = 1}

as the'lines” . It will be seen in a moment that these “lines” are precisely the
geodesics in this geometry, so that the geodesics are orthogonal to the real axis.

Forz € R andr € R\ {0}, let,, denote the reflection of/* in the
semicircle[z — r, z + 7], so that, forz € H?,

2 L'Hospital-Type Rules for
Monotonicity, and the Lambert
Z 1 and Saccheri Quadrilaterals in
Hyperbolic Geometry

Loy (2) =2+

It is easy to see that this transformation is inverse to itself and preséf¥ves
as well as the metric elemeds, and hence also the (absolute value of the)
angles. Indeed, ifv := ¢, .(2) for z € H? thenlImw = r? Im z/|z — z|* and
dw = —r?dz/(z — z)?, so thaim w > 0 and|dw|/Im w = |dz|/Im 2.

Let G be the group of transformations &f? generated by all such reflec- Contents
tions. ThenG preserves the metric elemedt. Note thatG contains all

losif Pinelis

Title Page

: : 44 44
the homotheties — 7,..(z) := = + A(z — z), horizontal parallel transla-
tions z — o0,(2) := z + z, and reflections: — ¢, «(z) := 2z — Z in the 4 >
vertical rays|z, oc], wherez € R and\ > 0; indeed,n, , = Ly /% © Lals Go Back
ly,co = ba4r2r O lg—r2r O ly+r 27, andax = lg/2,00 © L0,00-
Close

Itis easy to see that the geodesic connecting two pejrdadz; on the same
vertical ray[x, o] (z € R) is the segment of that ray with the endpointsand Quit
29, SO that the geodesic distanéfe, z,) between such; andzs is | In(y1 /y2)],
wherey; := Imz;, 7 = 1,2. Now it is seen that groug acts transitively
on the set of all ordered paifs;, z2) of points on the vertical rajz, co] with

Page 9 of 28
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a fixed value of the distanaé 21, z;) — in the sense that, for any two pairs
(21, 22) and (wy, wo) of points on[xz, co] with d(z1, z5) = d(wy,wy), there is
some transformation in G such thaty(z;) = w;, j = 1,2; indeed, it suffices
to takeg to be a single reflectior, , or a single homothety,, ,, for somer > 0
orA > 0.

Next, the reflection,..,. o, maps the semicirclee —r, x +r] onto the vertical
ray [z — r, oo], and hence vice versa, for alle R andr € R\ {0}. Moreover,
any two distinct points irf7? lie on exactly one “line”.

It follows now that indeed the “lines” are precisely the geodesics, and group
G acts transitively on the set of all ordered pdits, ;) of points in H? with
any fixed value of the geodesic distantte,, z;). Another corollary here is the
formula for the geodesic distance between any two paingdz, of H?:

d(z1,2) = arcch | 1+ M ’

wherearcchz := In (z + /2 — 1) for z > 1; cf. [6, Theorem 7.2.1(ii)]. One
can now also easily derive Pythagoras’ theorem,

(2.1)

(2.2) chc=cha chb,

for a right-angled (geodesic) triangieBC' with side ¢ opposite to the right-
angle vertexC' and two other sides and b; indeed, such a triangle i§-
congruent, for somé € (0,1) and# € (0,7/2), to the triangle with vertices
C, =1, A, = ki,andB, = ¢; cf. [6, Theorem 7.11.1]. (Yet another corollary,
not to be used in this paper, is th@ts the group of all isometries df2.)
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2.1.2. Lambert's and Saccheri’'s quadrilaterals A Lambert quadrilateral

is a quadrilateral in the Poincaré hyperbolic plane with angles 7/2, 7/2,
andyp, for somey; a Saccheri quadrilateral is a quadrilateral (also in the hyper-
bolic plane) with angles /2, 7/2, ¢» and, for somey [6, Section 7.17]. See
Figurel.

For a Saccheri quadrilateral, let us refer to (the length of) its side adjacent
to the right angles as tHgase its opposite side as thep, and to either of the
other two (congruent to each other) sides simply asitie

A Lambert quadrilateral has two sides each adjacent to two of the three right ~ LHospital-Type Rules for
angles. Let us arbitrarily choose one of these two sides and refer to it as the o Secuen ouadriatorale i
base and to the other one of the two as tfshort) side The side opposite to Hyperbolic Geometry
the base will again be referred to as thp, and the fourth side as theng side losif Pinelis
It will be seen in the next subsection that indeed the long side is always longer
than the short one.

It follows from the discussion in Subsubsectidri.1that the groug> acts Tite Page
transitively on the set of all Saccheri quadrilaterals with any given values of the Contents
base and the side, as well as on the set of all Lambert quadrilaterals with any « NS
given values of the base and the short side. That is, all Saccheri quadrilaterals
with any given values of the base and the side@reongruentto each other, 4 >
and so, they have the same geodesic distances between any two of their corre- Go Back
sponding vertices. The same holds for all Lambert quadrilaterals with any given
values of the base and the short side. Close

Quit

Page 11 of 28
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Dg o . C L'Hospital-Type Rules for
’ B . Monotonicity, and the Lambert
S : g : : . L and Saccheri Quadrilaterals in
vy Y Y Y Y Y vy Hyperbolic Geometry
losif Pinelis
Figure 1: Lambert’'s 4, BCDy) and Saccheri's {sBC Dg) quadrilaterals;
ArLB, A.Dy, BC, andCD,, are respectively the base, short side, long side, Title Page
and top of the Lambert quadrilateraly B, AsDs = BC', andC Dg are respec- Contents
tively the base, side, and top of the Saccheri quadrilateral; the angles at vertices
Ag, B, A, andD,, arer /2. A 4
< >
Go Back
2.2.1. Lambert quadrilaterals In view of the conclusions of Subsection Close
2.1, any Lambert quadrilateral i5-congruent, for some
Quit

ke (0,1) and 0 € (0,7/2),

to the particular Lambert quadrilaterdalBC D with vertices

Page 12 of 28
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A=Fki, B=1i, C=¢Y D =ke", wherey := arccos (ch(ln k) cos 6’)

(see Figure?), so that, by 2.1),

AB = ln%, BC = arcche,

1 2 2
(2.3) CD = arcch tk ,  AD = arcch Lk,
q q
1+ k2 1+ k2
AC = arcch %, BD = arcch M,
q

(2.4) whereq := /(1 + k2)2 — ¢2 (1 — k2)2 andc := 1/ sin#.

(One can verify, usingZ.2) and @.3), that indeed/A = /B = ZC = 7/2.)
Then one may refer tel B as the base, of lengtl(1/%), and toBC' as the
short side, of lengthrcch c. Note that, for the poinD to exist in 2, one must
havech(In k) cos # < 1, which is equivalent to

1+ k2

l<e<e where ¢ = )
ks k 11— 12

Let us fix (the length of) the baséB (so thatk € (0,1) is fixed) and let
increase from to ¢, so that the short sidBC' = arcch ¢ increases fron) to
arcch ¢,. The goal here is to determine the monotonicity pattern@))f: 15
completely representative pairwise ratics CD/AD, CD/BD,..., BC/AB
of the (3) = 6 (geodesic) distances between the four vertide®, C', D. For
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each pair of such distances, it is enough to consider only one of the two mu-
tually reciprocal ratios; indeed, for example, the monotonicity pattern of the
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ratio CD/AD determines that oD /CD. All the ratiosr will be expressed
as functions of. (We do not distinguish in terminology or notation between a
segment of a geodesic and its length.)
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Title Page
Contents
¥ % % Y YY Y
44 44
< >
Figure 2: A Lambert quadrilateral A = /B = ZC = /2 Go Back
Close

Theorem 2.1. The monotonicity patterns of the 15 representative rati@s _
are given by Tabl&, wherek, := v/2 — 1. Quit

. . . Page 14 of 28
One simple corollary here is that, of the two sid8s{andAD) of the Lam- a9 220

bert quadrilateral BC' is indeed always the shorter one (this is obvious from
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Figure2 as well). Also, of the two diagonalsi(C' and B D) of the quadrilateral,
AC' is always the shorter one.

What is perhaps surprising is that the monotonicity patterns of two ratios,
CD/AC (top-to-short-diagonal and CD/AD (top-to-long-sidg, turn out to
depend on (the fixed length of) the bad®& = In(1/k) of the quadrilateral.
When the basel B is smaller tharnn(1/k,) = In(1 + v/2), these two ratios are
not monotonic.

Three other ratios €' D/BC (top-to-short-sid@, CD/BD (top-to-long-
diagona), and BD/BC' (long-diagonaito-short-sidg@ — are not monotonic
for any given base; however, this should not be surprising, since for each of
these three ratiosone has'(1+) = r(cx—).

In particular, it follows that of all the 5 ratios of tliep to the other lengths,
only the trivial one, the ratia’' D /A B of thetopto the fixed base, is monotonic
for every given base.

Another small-base peculiarity shows up for two rati6d)/BC' (top-to-
short-sid@ and BC'/AB (short-sideto-basg; namely, these ratios take on val-
ues to both sides dfiff the base is small enough — smaller tian/3 in the case
of CD/BC and smaller thaim(1/k,) = In(1 + v/2) in the case oBC/AB.

Proof of Theoren2.1. From .3, itis clear that the 5 ratios a8C, CD, AD,
AC,andBD to the fixedA B are increasing (in), and the inequalityBC'/AB >

1 can be rewritten ash BC' > ch AB, which is equivalent td: > k.. The
monotonicity pattern foAC'/AD = (AC/BD)(BD/AD) obviously follows
from those forAC/BD andBD/AD. It remains to consider the other 9 of the
15 ratios.
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In terms of the expressiap defined by 2.4), and the expressions

(2.5) ¢ o=/(2 -1+ k2)2 (1—£k2)2, q:=Vc2—1,
(2.6) g3 = \/2(c? L+ kY + (1 - k%)%,

one computes the ratiog, of the derivatives of the distances with respeat:to

€Dy _(1-k)a (CD) _(1-Fk)g (CD) _ (1-k)gs
/ 2 ) / ) r 2)2
(AC) q (AD) 2k (BD) (1 +k ) L’Hospit_al-Type Rules for
(ACY _ (1+K)a  (AC) _  da (BD) _ (1+F)*g) e Sasher Quadiers i
(BC’)/ 0 ’ (BD)/ ( + k2) (AD)/ 2k g3 ’ Hyperbolic Geometry
(AD)  2k(14+k* (CD) (CDY (AC) (BD)  (BD) (ADY losif Pinelis
(BCy ¢ 7 (BCY (ACY (BC)” (BCY  (ADy (BC)"
Title Page
Of these 9 ratios, it is now clear that 8 ratios (except')'/(BD)') are
Contents

increasing (inc). Hence, by the first line of Tablg each of the corresponding

8 ratios,r, of distancesC' D/AC, ..., AD/BC (except forAC/BD), has one <« D

of these three patterns”, \, or ™\, . (It can be shown thatAC)'/(BD)" is p >

\\ or "\, depending on whether the bagg3, is large enough; however, this

fact will not be used in this paper.) Go Back
Now let us consider each of the 8 “unexceptional” ratios separately, after

which the “exceptional” raticAC/ B D, will be considered.

Close

Quit

1. r(c) = CD/AC: Here itis obvious that(1+) = 1 andr(cy—) = oc. =
. L e age 16 of 28

This excludes the pattern™,. To discriminate between the possibilities

r N\, andr \_ 7, it suffices to determine whether there exists seme
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(1, ¢) such thatr(c) = 1 or, equivalentlych CD = ch AC. Now it is
easy to complete the proof of Theoréni for the ratior(c) = CD/AC.

.7(c) = CD/AD: Here it is obvious that(1+) = oo. By I'Hospital’s

rule for limits, r(c,—) = p(cx,—) = 1. This excludes the pattern .
Moreover, it is easy to see, as in the previous case, that there exists some
c € (1,¢;) such that(c) = 1iff k > k..

.r(c) = CD/BC: Herer(1+) = r(c,—) = co. Hence,r /. More-
over, it is easy to see that there exists seme(1, ¢;) such that(c¢) = 1 L'Hospital-Type Rules for
iff & 2 1/\/3 Monotonicity, and the Lambert

and Saccheri Quadrilaterals in
Hyperbolic Geometry

.r(c) = CD/BD: Herer(1+) = 1. By I'Hospital’s rule for limits,

r(cg—) = p(cp—) = 1. Hencey N\ . losif Pinelis
.r(c) = AC/BC: Here, withy := 2k (1+k%) andv := /1 + 14k* + &8,
one has the following at= ¢, — : Title Page
) 9% v BO?2 BC Contents
TTa—wac Mac VTRV «“ S
since, in view of £.3), BC' < AC. Butu? — 12 = —(1—k?)* < 0. Hence, < >
' (cr,—) < 0, so that~ \ in a left neighborhood of;. Thus,r \.. Go Back
.r(c) = BD/AD: Herer(l4+) = oo. By I'Hospital's rule for limits, Close

r(cg—) = p(c,—) = 1. Inview of (2.3), herer > 1 on (1, ¢;). Hencey is
decreasing ofil, ¢;) from oo to 1.

.1(c)=BD/BC: Herer(14) = r(c,—) = oo. Hencey N\ on(1, c).
Also, in view of 2.3), one has here > 1 on (1, ¢x).

Quit
Page 17 of 28
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8. r(c) = AD/BC: Here, by the special-case rule for monotonicity,”.
By I'Hospital’s rule, r(1+) = p(1+) = (1 + k%)/(2k) > 1. Also, itis
obvious that(c,—) = oc.

It remains to consider the 9th ratio,

§ r(c) = AC/BD: Here, as was stated(c) := (AC)'/(BD)" is non-
monotonic inc for k in a left neighborhhood of. This makes it more difficult

to act as in the cases considered above, since the afdhe equation’(c) =

0 depends ork. However, what helps here is that the monotonicity pattern
of r turns out to be simple, as will be proved in a momentX,. One can
use the following lemma, whose proof is based on the special-case rule for

monotonicity stated in Sectiah
Lemma 2.2. For x > 1, let

Va2 — 1 arcchz 2 —1 2 —1
/\(l’) = $3 s O[(ZL’) = $3 s ﬁ(.fl?) = T

Then for allu andv in (1, o)

o) (a<v> 6(v)> |
(u)
Proof of Lemm&.2. Obviously,\/3 = arcch . Hence A) <

TA(u S ﬁ(
v < u. ltremains to consider the case whea © < v. Note that

>~

(arcch z)’
(Va2 —1)

1
x
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is decreasing in > 1. Hence, by the special-case rule for monotonicity,

A(x)  arcchz
a(x) 2 —1
is decreasing i > 1. Hence,igzg < 38 if 1 <u<ow. O

Let us now return to the consideration of the ratio) = AC/BD. It suf-
fices to show that’(c) < 0 forall k € (0,1) andc € (1,¢;). One has the
identity

2BD*kvu? —1vv2—1  Av)

O e aw
where
u::M o c(1+ k?) K — 1+k? 2
2k 7 \/(1+/€2)2—62(1—/€2)27 ( 2k )

Therefore and in view of Lemma 2, it suffices to show that the expressions

(20 ) AR
P’(@w) K><> ey
w)

o Bv 2_ 2 u266(1+k72)6
Qf(@w) K)ﬁu—ajﬁy

are negative for alk € (0,1) andc € (1, ¢;). But this can be done in a com-
pletely algorithmic manner, since and( are polynomials irk andc, andcy
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is a rational function oft [21, 12, 1(]. With Mathematica, one can use the

commandReduce[P>=0 && l<c<ck && 0<k<l] (whereck stands for

cx), Which outputg-alse , meaning that indee® < 0 for all £ € (0,1) and

c € (1,c¢); similarly, for @ in place ofP.
Theorem?2.1is proved. ]

2.2.2. Saccheriquadrilaterals Let ABCD be a Saccheri quadrilateral. Here

one may assume that

A=ki, B=i, C=¢® D=ke",

where agai) < £ < 1 and0 < 6 < 7/2, so that the angles at verticels
and B are right, andBC = AD, so thatBD = AC. Let us refer here to
AB = In(1/k) as the base and tBC' = AD = arcchc as the side, where
againc := 1/sin §. Herec varies froml to cc.

Again, let us fix the basd B = In(1/k) (so thatk € (0, 1) is fixed); also, let
cincrease from to oo, so that the sid8C = AD = arcch cincreases from to
oo. Here, taking into account the equalitiBs’ = AD andBD = AC, we have
to determine the monotonicity patterns @1) = 6 completely representative
pairwise ratios.

Theorem 2.3. The monotonicity patterns of the 6 ratio§) are given by Ta-
ble 4.

Thus, the diagonalC' = BD always exceeds both the badés and the
sideAD = BC. Also, the topC D always exceeds the base.

Recently it was observed by Pambuccian][that the ratioCD/BD =
CD/AC of the top of a Saccheri quadrilateral to its diagonal may be less than or
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v vy Vw W
Title Page
Figure 3: A Saccheri quadrilateratA = /B = 7/2 andZC = ZD, whence GOz
AD = BC andAC = BD <4 »»
< >

greater than or equal io The second line of Tabkeprovides more information
in that respect. In particular, one can see now thatap¢o-diagonalratio can Go Back
be less thari only if the baseAB is smaller tharin(2 + v/3). On the other

hand, this ratio is always less than Close
Similarly to the case of the Lambert quadrilateral, the monotonicity patterns Quit
of two ratios,C'D/AD (top-to-side andCD/BD (top-to-diagona), turn out Page 21 of 28
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smaller than the threshold vallg(1/%.. ), these two ratios are not monotonic.
However, in contrast with Lambert quadrilaterals, here the threshold values for
these two ratios are different from each other. Yet, for Saccheri quadrilaterals
as well, it is the small base values that may result in non-monotonic patterns.

Proof of Theoren2.3. In view of (2.1), here one has

2.7
1 2(1—k)* +2k
AB=In—-, AD = BC = arcche, C'D = arcch & ( )+ ,
k (1 4 /Cg) 2k L'Hospital-Type Rules for
C M tonicity, and the Lambert
AC = BD = arcch T ar?c? g::éﬂe)?i %nuadr(ielatgglsei;
Hyperbolic Geometry
From these expressions, the statements of The@r@ooncerning the three losif Pinelis
ratios of the top(' D), side AD = AC), and diagonaldC' = BD) to the fixed
base (AB) are obvious. It remains to consider the other three ratios. Title Page
9§ r(c) = CD/AD: This case follows immediately from the case of the
top-to-long-sideratio for the Lambert quadrilateral, which latter is a “half’ of Contents
a Saccheri one; see Figute Indeed, if the side of a Saccheri quadrilateral pp >
equals the long side of a Lambert quadrilateral and the base of the Saccheri R

guadrilateral is twice the base of the Lambert quadrilateral, then the top of the
Saccheri quadrilateral is twice the top of the Lambert quadrilateral. Go Back

¥ r(c)=CD/BD: Here (recall2.5) p(c) =2(1—k)q / ((1+k?) qq),

|
whereq, := /(2 — 1)(1 — k)2 + (1 + k)2 Hence,p /, and soy / orr Close
orr /\.. Obviously,r(1+) = 1. By I'Hospital’s rule,r(co—) = p(co—) = 2. Quit
Moreover, it is easy to see that ¢ > 1 r(c) = 1) iff 2 — /3 < k < 1. This Page 22 of 28

proves the second line of Table
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¥ r(c) = AD/BD: Herep(c) = ¢/ ((1 + k?) q2), S0 thatp . Obvi-
ously,7(14+) = 0. By I'Hospital’s rule,r(co—) = p(co—) = 1. Also, (2.7)
impliesr < 1. It follows thatr .

Theorem2.3is proved. O

It seems quite likely that one could similarly examine the monotonicity patterns

of these ratios for the Lambert and Saccheri quadrilaterals under conditions
other than that of a fixed base. Likewise, one could examine the monotonicity
patterns of other ratios of distances, in this or other Riemann geometries.
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Pattern for eack in

r r(14+) | r(cx—) Comments
0,1) | (0,k] | (ki 1)
CD/AC 2N 1 00
CD/AD NN 1
(3c € (1,cx)
CD/BC || \,/ 00 00 r(c) =1)
— k>1/V3
CD/BD | \~ 1 1
CD/AB /! 1 00
AC/AD |\, 00 0
AC/BC ||\ 0 > 1
AC/BD ||\ 1 0
AC/AB | 1 > 1
BD/AD [\ 00 1
VE € (0,1) Ve €
BD/BC || N\, 00 00 (1,e) () > 1
BD/AB | 1 00
AD/BC ||/ >1 00
AD/AB |/ 0 0
BCJAB | 0 | r(ex—) Zf‘;’f—k) - =

Table 3: Monotonicity patterns for the ratios in the Lambert quadrilateral
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. Pattern for eacl in r(14) | r(co—) ko
(0, 1) ‘ (O, k**] (k**, 1) L'Hospital-Type Rules for
M tonicity, and the Lambert
CDJAD Y= 2 kK2 =3-2/2 e e e
CD/BD / \/ 1 9 9 _ \/g Hyperbolic Geometry
CD/AB /! 1 00 losif Pinelis
AD/BD /! 0 1 _
AD/AB % 0 o Title Page
BD/AB H % ‘ ‘ H 1 ‘ 0 ‘ Contents
<44 44
- . . . < >
Table 4: Monotonicity patterns for the ratios in the Saccheri quadrilateral
Go Back
Close
Quit
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