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1. Introduction and Main Results

For AABC, let a,b, ¢ denote the side-lengthsi, B, C' the angles,s the semi-
perimeter,R the circumradius andthe inradius, respectively.
In 1957, Kooistra (se€l]) built the following double inequality for any triangle:

A B 3
(1.1) 2<cos§+cos§+cos§<£

In 2000, Yang and Ying] considered a new bound of inequality. {) and posed
a problem as follows:

Probleml. Determine the best constamsuch that

3v3\" /sy ion A B C

. _— = < — — _

(1.2) < 5 ) <R> _cosz—l—cos.Q—l—cos2
holds for anyAABC.

In this short note, we solve the above problem and obtain the following result.

Theorem 1.1.Let
A> XN =1
and
2In (2 — v/2) +1n2

~ (0.7194 .
102 — 313 0.7194536993

P o =
Then the double inequality

(1.3) (%)H : (%)1_u < cosé + cosg + cos 5 < <3\2/_> <ﬁ) -
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holds for anyA ABC, while the constants, and ., are both the best constant for
inequality(1.3).

Remarkl. When)\, = 1, the right hand of inequalityl(3) is just the right hand of
inequality (L.1).

Remark?. It is not difficult to demonstrate that:

2] Double Inequality in a

HO _ 1 —
3v3 ()0 kX i 2 Jimmo Triangle
< 2 ) (R) <2 (0 < R < 2teo 3v/3 ) Yu-Dong Wu, Nu-Chun Hu

and Wei-Ping Kuang
3v3\"° s \1—Ho == 2 1ﬁgo s 33
< : ) . (_R) > 2| 21-+ro (—3\/5) <5<
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2. Preliminary Results

In order to establish our main theorem, we shall require the following lemmas.

Lemma 2.1 (see3, 4, 5)). If the inequalitys > (>) f(R, r) holds for any isosceles
triangle whose top-angle is greater than or equakitothen the inequality > (>
)f(R,r) holds for any triangle.

Lemma 2.2 (seel, 3]). The homogeneous inequality
(2.1) s> (>)f(R,7)

holds for any acute-angled triangle if and only if it holds for any acute isosceles

triangle whose top-anglel € [Z,Z) with 2r < R < (V2 + 1)r and any right-

angled triangle with? > (v/2 4 1)r.
For the convenience of our readers, we give below the proof by Chén3h [

Proof. Let (-) O denote the circumcircle o\ ABC. Necessity is obvious from
LemmaZ2.l. Thus we only need to prove the sufficiency. It is well known that
R > 2r for any acute-angled triangle. So we consider the following two cases:

(i) When2r < R < (v/2+1)r : Inthis case , we can construct an isosceles triangle
A, B1C, whose circumcircle is als@) O and the top-angle of\ A; B;C(see

Figurel) is
1 2r
A1:2arcsm§<1+ 1—5).

It is easy to see that (se¢, b)):

Ri=R, rm=r s <s and
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and
(2.4) 522> (>)f(2,1 - 2?) <\/§—1§x<1).

Proof. Since the inequality4.1) is homogeneous, we may assuiie= 2 without
losing generality.

(i) When2r < R < (v/2 4+ 1)r: By LemmaZ2.2, we only need to consider the

isosceles triangle whose top-anglec [7, 7). Let

A 1@)

t=sin— €

2 2 9

Then we have (sed]5])
(2.5) r=4t(1—t) and s=4(1+t)vV1—¢.
Letx = 2t — 1. Then the inequality4.1) is just the inequality%.3).
(i) WhenR > (v/2 + 1)r: We only need to consider a right-angled triangle. Let

r=%=4t(1—t)e(o,\/§—1> <§§t<1>.

Thus we have
(2.6) s=2R+r=4+4t(1 —1).
Letz = 2t — 1. Then the inequality4.1) is just the inequality%.4).
This completes the proof Lemna3. O
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Lemma 2.4 ([3, 4, 5]). The homogeneous inequality
(2.7) s < ()f(R,7)

holds for any triangle if and only if it holds for any isosceles triangle whose top-
angleA € (0, %], or the following inequality holds

(2.8) VI —2)(B3+2)3 < (<)f (2,1 —27)

Lemma 2.5 (see 2, 3]). The homogeneous inequali(y.”) holds for any acute-
angled triangle if and only if it holds for any isosceles triangle whose top-angle
A € (0, ], or the inequality(2.6) holds.

(—-1<z<0).
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with
(2.12) gi(z) :=(x—1)In(1—2)—=3(z+3)[In (34+2)—In3]+2(z+1) In (1+x).

Moreover, we know that

(2.13) gi)=In(1-2)-3InB+2z)+2In(1+2z)+3n3
ouble Inequality in a
and 0 ':'ria(r::glety
—81’ Yu-Dong Wu, Nu-Chun Hu
(214) gi’(x) = and Wei-Ping Kuang

(1—2?)(3+4x)
Now we show thatz; is decreasing ofi—1,v/2 — 1).
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ThenG, is increasing onv/2 — 1, 1), and
2In (2 — v/2) +1n2

) > —-1)=
(2.16) Go(r) 2 Go(V2 1) = =~
Proof. Let GG/, be the derivative of7,. It is easy to see that
S 4xgs ()
@170 G0 = G2 r 2 (I %) — 331 — )6 —2)
95(x) = —2xhs(z),
and
, B —16x _
(218) h2<x) - (1 _ ZEQ) (5 _ x?)’
where

g2(2) :=2(1—2°) In(1 — z)+In (1 + 2)42 (z* = 5) In (5 — 2°)+3 (5 — 2°) In 3,
and
(2.19) ho(z) = 21In (1 —91:2) —2In (5—.752) +31n3.

Thus it follows thath,(x) < 0 wheny/2 — 1 < = < 1, andh, is decreasing on
[vV2-1,1),and

27

TR TV A
Thereforegy(z) > 0, andgs is increasing o2 — 1, 1), and

ho(z) < he(vV/2 —1) =1
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3. The Proof of Theorem1.1

Proof. (i) The first inequality of {.3) is equivalent to

A B
(3.1) cos o + cos — + cos — > (3\/_> - (sin A + sin B 4 sin C)'#

2 2
with application to the well known identity
sin A+sin B +sinC = %

Taking
A—-nm—-2A, B—-m—-2B and C — rw—2C,

then inequality .1) is equivalent to

(3.2 sin A +sin B +sinC' > (3\/_) - (sin2A + sin 2B + sin 20)*#

for an acute-angled triangléBC'.
By the well known identities

sin 2A + sin 2B + sin 2C' = 4sin Asin Bsin C,
and

rs

S111 A S111 D S111 2R2,

the inequality 8.2) can be written as follows:

@ = (F) (7)) =@ (¥) )
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Furthermore, by Lemma.3, the inequality £.3) holds if and only if the following
two inequalities

(3.4) <\/(1_x>(3+x)3> 2<&§) (1—a?)"" (0§x<\/§—1)

2 2
and Double Inequality in a
H Yu-D gwa"“&'e Chun H
_ 2 17 u-bon u, Nu-Chun Ru
(35) <5 T ) 2 3\/§ (1 o x2)1_ﬂ <\/§ _ 1 S T < 1) and Wei-Ping Kuang
2 2 vol. 10, iss. 1, art. 29, 2009
hold. In other words,
Title Page
. < mi
(3.6) p < min G(z) ComiEns
where <« >
Gy(x 0<z<+v2-1 , < >
3.7) G(z) = @) )
Go(x) (\/§ —-1<z< 1) , Page 14 of 16
while G, (x) andGs(z) are defined by4.9) and @.15 respectively. Go Back
By LemmaZ2.6and Lemma&.7, it follows that Full Screen
min G(z) =G (\/§ — 1) . Close
0<z<1
. . . . . journal of inequalities
Thus the first inequality ofi(.3) holds, and the best constantor inequality (L.3) is in pure and applied
mathematics
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(i) By applying a similar method to (i), it follows that the second inequalitylof)
is equivalent to

A
S\ 3V3 o\
. —) <= (= :
@9 = (%) (%)
By LemmaZ2.5, the inequality £.8) holds if and only if the following inequality
holds:

A A
(3.9) (V““”Z)(E””)) s(ﬂ) - (c1<z<0),

2
or equivalently,

(3.10) A> sup Gi(z),

—1<z<0

whereG,(x) is given by ¢.9).

By LemmaZ.6, it follows that A > 1. Moreover, the second inequality of.¢)
holds when\, = 1. Thus the second inequality of.() holds and the best constant
A for inequality (L.3) is A\g = 1. The proof of Theoremni.lis hence completed. [J
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