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Abstract

The aim of this note is to establish new Ostrowski like inequalities by using a
fairly elementary analysis.
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1. Introduction
In an elegant note [5], A.M. Ostrowski proved the following interesting and
useful inequality (see also [3, p. 468]):

(1.1)

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤
[

1

4
+

(
x− a+b

2

)
2

(b− a)2

]
(b− a) ‖f ′‖∞ ,

for all x ∈ [a, b], wheref : [a, b] ⊆ R → R is continuous on[a, b] and differ-
entiable on(a, b), whose derivativef ′ : (a, b) → R is bounded on(a, b), i.e.,
‖f ′‖∞ = sup

x∈(a,b)

|f ′ (x)| < ∞.

In the last few years, the study of such inequalities has been the focus of
great attention to many researchers and a number of papers have appeared which
deal with various generalizations, extensions and variants, see [2, 3, 6] and the
references given therein. Inspired and motivated by the recent work going on
related to the inequality (1.1), in the present note , we establish new inequalities
of the type (1.1) involving two functions and their derivatives. An interesting
feature of our results is that they are presented in an elementary way and provide
new estimates on these types of inequalities.
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2. Main Results
Our main result is given in the following theorem.

Theorem 2.1.Letf, g : [a, b] → R be continuous functions on[a, b] and differ-
entiable on(a, b), whose derivativesf ′, g′ : (a, b) → R are bounded on(a, b) ,
i.e.,‖f ′‖∞ = sup

x∈(a,b)

|f ′ (x)| < ∞, ‖g′‖∞ = sup
x∈(a,b)

|g′ (x)| < ∞. Then

(2.1)

∣∣∣∣f (x) g (x)− 1

2 (b− a)

[
g (x)

∫ b

a

f (y) dy + f (x)

∫ b

a

g (y) dy

]∣∣∣∣
≤ 1

2
{|g (x)| ‖f ′‖∞ + |f (x)| ‖g′‖∞}

[
1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) ,

for all x ∈ [a, b] .

Proof. For anyx, y ∈ [a, b] we have the following identities:

(2.2) f (x)− f (y) =

∫ x

y

f ′ (t) dt

and

(2.3) g (x)− g (y) =

∫ x

y

g′ (t) dt.

Multiplying both sides of (2.2) and (2.3) by g(x) and f(x) respectively and
adding we get

(2.4) 2f (x) g (x)− [g (x) f (y) + f (x) g (y)]
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= g (x)

∫ x

y

f ′ (t) dt+f (x)

∫ x

y

g′ (t) dt.

Integrating both sides of (2.4) with respect toy over[a, b] and rewriting we have

(2.5) f (x) g (x)− 1

2 (b− a)

[
g (x)

∫ b

a

f (y) dy + f (x)

∫ b

a

g (y) dy

]
=

1

2 (b− a)

∫ b

a

{
g (x)

∫ x

y

f ′ (t) dt+f (x)

∫ x

y

g′ (t) dt

}
dy.

From (2.5) and using the properties of modulus we have∣∣∣∣f (x) g (x)− 1

2 (b− a)

[
g (x)

∫ b

a

f (y) dy+f (x)

∫ b

a

g (y) dy

]∣∣∣∣
≤ 1

2 (b− a)

∫ b

a

{|g (x)| ‖f ′‖∞ |x− y|+ |f (x)| ‖g′‖∞ |x− y|} dy

=
1

2 (b− a)
{|g (x)| ‖f ′‖∞ + |f (x)| ‖g′‖∞}

[
(x− a)2 + (b− x)2

2

]

=
1

2
{|g (x)| ‖f ′‖∞ + |f (x)| ‖g′‖∞}

[
1

4
+

(
x− a+b

2

)2

(b− a)2

]
(b− a) .

The proof is complete.

Remark 1. We note that, by takingg(x) = 1 and henceg′ (x) = 0 in Theorem
2.1, we recapture the well known Ostrowski’s inequality in (1.1).
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Integrating both sides of (2.5) with respect tox over [a, b], rewriting the
resulting identity and using the properties of modulus, we obtain the following
Grüss type inequality:

(2.6)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣
≤ 1

2 (b− a)2

∫ b

a

[∫ b

a

{|g (x)| ‖f ′‖∞ + |f (x)| ‖g′‖∞} |x− y| dy

]
dx.

For other inequalities of the type (2.6), see the book [3], where many other
references are given.

A slight variant of Theorem2.1 is embodied in the following theorem.

Theorem 2.2.Letf, g, f ′, g′ be as in Theorem2.1. Then

(2.7)

∣∣∣∣f (x) g (x)− 1

b− a

[
g (x)

∫ b

a

f (y) dy

+f (x)

∫ b

a

g (y) dy

]
+

1

b− a

∫ b

a

f (y) g (y) dy

∣∣∣∣
≤ 1

b− a
‖f ′‖∞ ‖g

′‖∞

[
(x− a)3 + (b− x)3

3

]
,

for all x ∈ [a, b].

Proof. From the hypotheses, the identities (2.2) and (2.3) hold. Multiplying the
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left and right sides of (2.2) and (2.3) we get

(2.8) f (x) g (x)− [g (x) f (y) + f (x) g (y)] + f (y) g (y)

=

{∫ x

y

f ′ (t) dt

} {∫ x

y

g′ (t) dt

}
.

Integrating both sides of (2.8) with respect toy over[a, b] and rewriting we have

(2.9) f (x) g (x)− 1

b− a

[
g (x)

∫ b

a

f (y) dy

+f (x)

∫ b

a

g (y) dy

]
+

1

b− a

∫ b

a

f (y) g (y) dy

=
1

b− a

∫ b

a

{∫ x

y

f ′ (t) dt

} {∫ x

y

g′ (t) dt

}
dy.

From (2.9) and using the properties of modulus we obtain∣∣∣∣f (x) g (x)− 1

b− a

[
g (x)

∫ b

a

f (y) dy

+f (x)

∫ b

a

g (y) dy

]
+

1

b− a

∫ b

a

f (y) g (y) dy

∣∣∣∣
≤ 1

b− a
‖f ′‖∞ ‖g

′‖∞
∫ b

a

|x− y|2 dy

=
1

b− a
‖f ′‖∞ ‖g

′‖∞

[
(x− a)3 + (b− x)3

3

]
.
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The proof is complete.

Remark 2. Integrating both sides of (2.9) with respect tox over [a, b], rewrit-
ing the resulting identity, using the properties of modulus and by elementary
calculations we get

(2.10)

∣∣∣∣ 1

b− a

∫ b

a

f (x) g (x) dx−
(

1

b− a

∫ b

a

f (x) dx

)(
1

b− a

∫ b

a

g (x) dx

)∣∣∣∣
≤ 1

12
(b− a)2 ‖f ′‖∞ ‖g

′‖∞ .

Here, it is to be noted that the inequality (2.10) is the well knownČebyšev
inequality (see [4, p. 297]).
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[4] D.S. MITRINOVIĆ, J.E. PĚCARIĆ AND A.M. FINK, Classical and New
Inequalities in Analysis, Kluwer Academic Publishers, Drodrecht, 1993.

[5] A.M. OSTROWSKI, Über die Absolutabweichung einer differentiebaren
Funktion von ihrem Integralmitelwert,Comment. Math. Helv., 10 (1938),
226–227.

[6] B.G. PACHPATTE, On a new generalization of Ostrowski’s inequality,J.
Inequal. Pure and Appl. Math., 5(2) (2004), Art. 36. [ONLINE:http:
//jipam.vu.edu.au/article.php?sid=378 ]

http://jipam.vu.edu.au/
mailto:bgpachpatte@hotmail.com
http://jipam.vu.edu.au/
http://jipam.vu.edu.au/article.php?sid=378
http://jipam.vu.edu.au/article.php?sid=378

	Introduction
	Main Results

