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ABSTRACT. We apply the complex interpolation method to prove that, given two srﬂﬁ;ﬁ,so,

B;Z‘?b;sl of n-tuples of operators in thg-Schatten class of a Hilbert spaée endowed with
weighted norms associated to positive and invertible operatarglb of B(H) then, the curve
of interpolation(BI(,Z?a;so, Bl()??b;51)[t] of the pair is given by the space woftuples of operators in

the p;-Schatten class dff, with the weighted norm associated to the positive invertible element

Va b(t) — al/z(a—1/2ba—1/2)ta1/2.
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1. INTRODUCTION

In [€], J. Clarkson introduced the concept of uniform convexity in Banach spaces and ob-
tained that spaces, (or [,,) are uniformly convex fop > 1 throughout the following inequali-
ties
2 (715 + lgl2) < If = glls 4+ 11F + glls < 227 (A1 + gl

Let (B(H), || -||) denote the algebra of bounded operators acting on a complex and separable
Hilbert spaceH, GI(H) the group of invertible elements &(H) andGI(H)* the set of all
positive elements offi(H).

If X € B(H) is compact we denote bys;(X)} the sequence of singular values &f
(decreasingly ordered). FOr< p < oo, let

1X10, = (3 s5(x))"

B,(H)={X € B(H) : | X]|, < oo}

=

and the linear space
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2 CRISTIAN CONDE

For1 < p < oo, this space is called the-Schatten classf B(H) (to simplify notation we use
B,) and by conventiof| X || = ||.X ||, = s1(X). A reference for this subject is|[9].

C. McCarthy proved in[[14], among several other results, the following inequalities- for
Schatten norms of Hilbert space operators:

(1.1) 2([1A[l, + [1BII;) < [1A = Bll, + A + Bl
< 277 H([IAl + 11BI),
for2 < p < o0, and
(1.2) (AR + 1BIE) < IA = Bl + A+ Bl
< 2([|A[l, + [1B113);
forl <p<2.

These are non-commutative versions of Clarkson’s inequalities. These estimates have been
found to be very powerful tools in operator theory (in particular they imply the uniform con-
vexity of B, for 1 < p < oo) and in mathematical physics (seel[16]).

M. Klaus has remarked that there is a simple proof of the Clarkson-McCarthy inequalities
which results from mimicking the proof that Boas [4] gave of the Clarkson original inequalities
via the complex interpolation method.

In a previous workl[[7], motivated by [1], we studied the effect of the complex interpolation

method onB,(,") (this set will be defined below) fgr, s > 1 andn € N with a Finsler norm
associated withy € GI(H)™:

X s = lla™2X a2,
From now on, for the sake of simplicity, we denote with lower case letters the elements of
GI(H)*.
As a by-product, we obtain Clarkson type inequalities using the Klaus idea with the linear
operatorT,, : B — B{"™ given by

To(X) = (Tu(Xy, ..., X,) = (Z XY 00X,y ey—lxj) :
j=1 j=1 j=1

whered,, . .., 0, are then roots of unity.

Recently, Kissin in[[12], motivated by [3], obtained analogues of the Clarkson-McCarthy
inequalities forn-tuples of operators from Schatten ideals. In this work the author considers
H™, the orthogonal sum of copies of the Hilbert spacE, and each operatdt € B(H™) can
be represented as anx n block-matrix operato? = (R;;;) with R;;, € B(H), and the linear
operatorTy, : B — B is defined byI'z(4A) = RA. Finally we remark that the work5][3]
and [11] are generalizations of [10].

In these notes we obtain inequalities for the linear opergtdn the Finsler nornj-| ... as
by-products of the complex interpolation method and Kissin’s inequalities.

2. GEOMETRIC INTERPOLATION

We follow the notation used in_[2] and we refer the reader ta [13] and [5] for details on
the complex interpolation method. For completeness, we recall the classical Calderon-Lions
theorem.

Theorem 2.1.Let X and ) be two compatible couples. Assume tlhais a linear operator
from X; to ); bounded by\/;, j = 0, 1. Then fort € [0, 1]

Ty, .y, < MM,
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Here and subsequently, let< p < co,n € N, s > 1,a € GI(H)" and
B ={A=(Ai,....4,)" : A; € B,},
(where witht we denote the transpose of theéuple) endowed with the norm
[Allpass = (1All0 + - + 1 Anll5) ',
andC™ endowed with the norm
(a0, - - an-1)l, = (Jaol” + -+ + Jan])"/*.

From now on, we denote witB!"., the spaceB" endowed with the normi(-, ..., )|
From Calderén-Lions interpolation theory we get thatfgrp;, so, s1 € [1, 00)

p,a;s’

(n) (n) _ n)
(2-1) (Bpml;SO’ Bp171;81)[t] - Bpt71§5t’
where
1 1-—t¢ t 1 1—1¢ t
— = + — and — = —.
Pt Po P1 St 50 S1

Note that forp = 2, (1.1) and[(1.R) both reduce to tharallelogram law
2(IlAll; + 1B112) = |14 = Blly + | A+ Bll3,

while for the case® = 1,00 these inequalities follow from the triangle inequality B
and B(H) respectively. Then the inequalitigs (1.1) ahd(1.2) can be provech(fer 2 via

Theoren] 2.]1) by interpolation between the previous elementary cases with the linear operator
Ty: B — B Ty(A) = (A + Ay, A, — A;)" as observed by Klaus.

In this section, we generalize (2.1) for the Finsler nofftfis. .., -)||as. In [7], we have
obtained this extension for the particular case when p; = p andsy = s; = s. For sake of

completeness, we recall this result
Theorem 2.2([7, Th. 3.1]) Leta,b € GI(H)*,1 < p,s < oo,n € Nandt € (0,1). Then

(B(n) B™ _ g™

P,a;8) p7b;8>[ﬂ T TP Ya b (1);8?
wherey, ,(t) = a'/?(a/2ba=1/?)tal/2.

Remark 1. Note that whem andb commute the curve is given by, ,(t) = a'~'0'. The
previous corollary tells us that the interpolating spdgg,, , ;s can be regarded as a weighted
p-Schatten space with weight~'0' (see[2, Th. 5.5.3]).

We observe that the curvg, , looks formally equal to the geodesic (or shortest curve) be-
tween positive definitive matrices ([15]), positive invertible elements ©f algebra ([8]) and
positive invertible operators that are perturbations ofttchatten class by multiples of the
identity ([7]).

There is a natural action ¢fi{(H) on BY"”, defined by
(2.2) [:GI(H) x B — BM™,  1,(A) = (gAig", ..., 9Ang")".

Proposition 2.3([7, Prop. 3.1]) The norm inB,(,fZ);S Is invariant for the action of the group of
invertible elements. By this we mean that for eack B\, a € GI(H)* andg € GI(H), we

have B -
HAHp,a;s - HZQ(A)Hp,gag*;s ’

Now, we state the main result of this paper, the general tase,, pi, so, s1 < 00.
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Theorem 2.4.Leta,b € GI(H)',1 < pg, p1, S0, 51 < 00, n € Nandt € (0,1). Then

(n) (n) (n)
<Bpo,a;50’ Bp1,b;81> 1 T T peYa,p(t);se?
where
1 1—1t t 1 1—¢ t
— = + — and — = —
Dt Po P1 St S0 51

Proof. For the sake of simplicity, we will only consider the case- 2 and omit the transpose.
The proof below works for-tuples ¢ > 3) with obvious modifications.

By the previous proposition|( X1, X»)| 4 is equal to the norm af ~'/2( X1, X5)a~/? inter-
polated between the norm§:, -)||,,,.1.5, and|| (-, -)||,,.c:s,- CONsequently it is sufficient to prove
our statement for these two norms.

Lett € (0,1) and (X, X;) € BYY such that] (X1, X3)||,,.ct:s, = 1, and define

9(z) = (Ul Md)

= (91(2), 92(2)),

1—=2 z 11—z z
)\(Z)—pt( +_) St( +—>
Po P1 So S1

and X; = U;| X;| is the polar decomposition of; fori = 1, 2.
Then for each € S, g(z) € BY + B and

_ A(2)
z _t -t z z t
c2c 2X ¢ c2 , Us

c2c” 2ch 2¢

where

2

t /\(11/)
19(iy) 150150 = (Z U |c¥c 2 Xy e 2% )
k=1 Po
2 Y43
< cgc 2X c_%c%

IN

(Z 15115, ) =1

and
||g(]‘ +Zy pl Cci81 — (Z ||Xk Pty Ct) =

Sinceg(t) = (X1, Xz) andg = (g1,62) € F (Bl s Biteo ) - We havel (X1, Xz)]ly < 1.
Thus we have shown that

1K1, Xo) [y < [1(X0, Xo)

pe,ctisy

To prove the converse inequality, Ift= (f1, f2) € F (Bpo 1.sos Bpi csl) ; ft) = (X1, Xo)

andY;, Y, € Byo(H) (the set of finite-rank operators) witlY|,, < 1, whereg;, is the con-
jugate exponent fot < p; < oo (or a compact operator ad= oo if p = 1). Fork = 1,2,
let

ge(2) = ¢ 25,
Consider the function : S — (C2,(-,-)|,,).

h(z) = (tr(f1(2)g1(2)), tr(f2(2)g2(2))).
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Sincef(z) is analytic in% and bounded ir¥, thenh is analytic in§ and bounded ir¥, and
n) = (tr (X0 ) e (X 513) ) = ((0), (1)),

By Hadamard's three line theorem applieditand the Banach spa¢€?, (-, )|, ), we have

h(t)],, < max {sup (i) or, sup | (1L + z'y)\st} |

yeR yeR
Forj =0,1,

2 st
sup [h(j +iy)ls, = sup | > [tr(fe(d +iv)ge(i + i)’ )

yER yER e

[y

yeR

=
—_

1

2

St
< sup
yeR

= sup ( ’tr(c*jﬂfk(j + z‘y)cj/zgk(z'y))!“> ’

1 +@y)||pcj>

k=1

< Hf”]:(Bz(oi)l_SO,Bz(le),c;sl) ’
then

[ X015 oo + X

prsct = sup {{h () + |h2 (D[ }
Y1 lq, <1,Y1€Boo (H)
IY2]lq, <1,Y2€Boo(H)
= sup < || fII* )
HY1||qt§17Y1€BOO(H)’ Ol < 111z F(BE 1o Bircisr)
IY2lq, <1,Y2€Boo (H)

Since the previous inequality is valid for eatke F ( o150 B}f?esl> with f(t) = (X1, Xs),
we have

(X0, Xo) [l etise < [( X1, Xo) |-

In the special case thay = p; = p andsy, = s; = s we obtain Theorern 2.2.

3. CLARKSON-KISSIN TYPE INEQUALITIES
Bhatia and KittaneHh |3] proved thatif < p < oo, then

2 n n 2 n
ne Y 405 < D IBl; <07 Y Al
j=1 j=1 j=1
nY AR <Y IBlE <Y 1AL
j=1 j=1 j=1
(for 0 < p < 2, these two inequalities are reversed) whBre= > _, QiAk, with 64, ...,6, the

n roots of unity.
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If we interpolate these inequalities we obtain that

nr (Z ||Aj||ff>
j=1

1 1 1

< <Z ||Bj\|f;t>
j=1

s

St

<n(173) (Z ||Aj|’ff> :
j=1

St
where

Dividing by n°¢, we obtain

11 & s
. (EZHAJ-H;)
j=1

1 1

st 1 n )
< (EZ”BJ'H;)
j=1
) (1x N
<nl (2340
j=1

This inequality can be rephrased as followsy i [2, p| then
11— u " 1 & i
=W KT I ey S 21
j=1 j=1
1-1 1 ¢
< nl7) (5 > ||Aj||,‘;>
‘7:

In each of the following statements € GIi(H™) and we denote by the linear operator

St

1

St

(|-

1
I

Tr: B — B"  Tr(A) = RA= (By,...,B,),

with B; = "), RjxAy anda = ||[R7Y||, 3 = ||R|| (we use the same symbol to denote the
norminB(H) andB(H")).
We observe that if the norm @f is at most)M when

Tr: (B;z()n)’ H(7 R ')HP,LS) - (Bz(nn)v H(? SR ')Hp,lﬂ“) )
then if we consider the operatdy; between the spaces
T : (BI()n)7 Gy ) pas) — (B[(,"), Gy M) s

its norm is at mos¥'(a, b) M with
min{|[b7]|||al], [|a*/2b~ a' 2| la~ || la]|} if a # b,
F(a,b) =
la= ]|l if a=0.

Remark 2. If a=1/2 € GI(H) commutes withk € B(H"), that is, ifa~'/2 commutes withR,;,
forall 1 < j,k <n, thenF is reduced to

mind 6=l a6~ a2} = a2~ a 2| if a b,
F(a,b) =
1 if a=0.
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In [12], Kissin proved the following Clarkson type inequalities for theuplesA Bz(,"). If
2<p<ooand\ pu€[2,p,orif0<p<2and\ u € [p,2], then

- - 1 n m 1 n X
(3.1) n“MIGEN&M)S<gZWWQ
i=1 i=1

1 — z
®3 <EZ||AJ-|IZ> ;
j=1

Remark 3. This result extends the results of Bhatia and Kittaneh proveg fer A = 2 or p
andR = (R,;) where

wheref(p) = ‘% - %‘

R (Z-%(j—l)(k—l))l
jk = € n .

We use the inequalities (3.1) and the interpolation method to obtain the following inequalities.

Theorem 3.1.Leta, b € GI(H )+ AeB{" 1<p<ooandte[0,1], then

(3.2) k(Z HAjHZ,a) (Z | B; IIpmm) <K <Z||Aj||§,a>
j=1 j=1

where

~ 1_1 ’ 1_1

k=k(p,a,b,t) = F(a,a) " F(b,a)"'n> i~
and ~ ~ 1 1 1 1
K = K(p,a,b,t) = F(a,a)' " Fla,b)n3 i h3lg,
if2<pand\ pe€2,plorifl <p<2and\ u€ [p,2]
Proof. We will denote byy(t) = v,,(t), when no confusion can arise.
Consider the spacB,(,”) with the norm:
[ Allpas = (1AL + -+ [ Aall5 ),
wherea € GI(H)™.
By ), the norm ofl; is at mostF (a, a)n§*i+|5*%|ﬂ when

e (BE G ) lpa) — (BEC-- pan) -
and the norm o‘TR is at mostF'(a, b)n%‘iﬂi‘%‘ﬁ when

R (B NG Mpas) — (B C ) o) -
Therefore, using the complex mterpolation, we obtain the following diagram of interpolation
fort € [0, 1]

(BI(?n)> H(’ sy ')Hp,a;)\)
Tr
n TR n
(B, lpase) —= (B C-- ) o)
X
(BN Coe oy p)-
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By Theoren 217, satisfies
(3.3) ITa(@) e < Fla, @)~ F(a, b)ns =i 1525l
Now applying the Complex method to

(B NGy )l

Th—1

n Tgp—1 n
(BS NGy Moo — (BSCe e pasn)

Tp-1

(B Co ) o)
one obtains
(3.4) 1T (D)l < Fla, ) F (b, a)'ne 3172l Al
Replacing in[(34M1 by RA we obtain
(3.5) 1Al < Fla,a)' " F(b,a)ni= 3573l RA, 00,

or equivalently

1 1

(3.6) Fla,a) " F(b,0)n 520 [ Al < I Th(A)lprion
Finally, the inequalitieq (3]3) anf (3.6) complete the proof. O

We remark that the previous statement is a generalization of Th. 4.1 in [7] WhereTx
with R = (e(in) .y anda~'/2 commutes withR for all a € GI(H)*.

On the other hand, it islﬁéﬁrﬁnown thataf, . . ., z,, are non-negative numbersec R and
we denoteM(z) = (£ >0, xf)l/s then for0 < s < s/, M4(T) < My (T).

If we denote||B|| = (||Billp,---,||Bxll,) and we considet < p < 2, then it holds for
te0,1]and} = Lt + L that

1
P

M (IB) < M(IBI) < ro'gin7 (Z HAM;) ,
j=1

or equivalently

1
(3.7) (Z \|Bj||;:> < v fanc (Z IIA]-I|£)
j=1 J=1

Analogously, for2 < p < oo we get

1 1
- ! L2 o2 11 [ .
(38) <ZHAJ||£) Spl prxrNnd st (Z HB]Hpt)
=1

J=1

o«
L=

wherel = =t 4 L
Now we c(éln uge the interpolation method with the inequalifies (3.7)[and (3.1) (br (3.8) and
@.2).
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If we consider the following diagram of interpolation with< p < 2 andt € [0, 1],

(BI(?n)a ||(7 ceey ')HPJ;P)

TR

Tr

(BY NGy o) —= B Cs Mlptise)
TR
B G-
By Theorem 2.1 and (3.1) satisfies

2\t —
(39) 1Tl < (07 P8) (757 87) Al
Finally, from the inequalitie{(_?].?) and (B.9) we obtain

1
St n P
(z I3 n&f) < min {51 g 10 g1, 00 (z |rAjH£>
i=1

We can summarize the previous facts in the following statement.

Theorem 3.2.Let A € BY" and B = RA, whereR = (R;;) is invertible. Let = max || R,
p = max ||(R!);x]| andq be the conjugate exponent;afThen, fort € [0, 1] we get

1
n P
(Z ||Aj||g) < min {pl pain%i n/® )tat+(1_t) (=5)01-1) } (Z 1B ||5t>
=1

i 1L _ 1=t ¢t
|f2§pand;_ T 0r

1
n e
(ZHBJ-H?) < min {ri 7 gini 0 p/ W00 g GG }(ZHA H”) ,
j=1

i 11t t
|f1<p§2and5— PERETE

st

Finally using the Finsler normi(-, . .., -)||,..:s» Calderén’s method and the previous inequal-
ities we obtain:

Corollary 3.3. Leta,b € GI(H)", A € B{” and B = RA, whereR = (R;;) is invertible.
Letr = max||R; (R7),x|l and ¢ be the conjugate exponent pf Then, for
t,u € [0, 1] we get

(ZIMyHZ,a) < F(a,a) ™" F(b,a)" (Z”B ||mab<u>> ’
j=1

if2§p,sl—f:%+%and

My = Mi(R, p,t) = min {plfga%néfi,nf(p)tat“l*t)%p(k%)(lﬂ‘/)}

or

St

(ZHB Hp%b(ﬂ) < F(a,a)™"F(a,b)" (ZHA IIP) :
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i 1 1=t ¢t
|f1<p§2,§_ > +qand
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