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ABSTRACT. In this paper, we discuss the determinantal inequalities over arbitrary complex ma-
trices, and give some sufficient conditions for

d[A+ B]' > d[A]' + d|B)",
wheret € R andt > 2. If B is nonsingular andke A(B~'A) > 0, the sufficient and necessary

condition is given for the above equalitytat % The famous Minkowski inequality and many
recent results about determinantal inequalities are extended.
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1. PRELIMINARIES

We use conventional notions and notations, aslin [2]. Aet M, (C), d[A] stands for the
modulus ofdet(A) (or | A|), wheredet(A) is the determinant ofl.. o(A) is the spectrum of,
namely the set of eigenvalues of matrx A matrix X € M, (C) is called complex (semi-)
positive definite ifRe(z*Az) > 0 (Re(z*Az) > 0) for all nonzeroz € C™ orif (X + X*) is
a complex (semi-)positive definite matrix (seéll4, 7,18, 2]). Throughout this paper, we denote
C = B 'Afor A, B € M,(C) andB is invertible.

The famous Minkowski inequality states:

If A, B € M,(R) are real positive definite symmetric matrices, then

(1.1) |A+ Bl > |A]" +|B|" .

It is a very interesting work to generalize the Minkowski inequality. ObviouEly] (1.1) holds
if A, B € M,(C) are positive definite Hermitian matrices. Recenfly,|(1.1) has been generalized
for A, B € M, (C) positive definite matrices (see [8], [9], [10]/ [3]).
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2 SHILIN ZHAN

In this paper, we discuss determinantal inequalities over arbitrary complex matrices, and give
some sufficient conditions for

(1.2) d[A+ B]' > d[A]" + d[BY',
wheret € R.

If B is nonsingular andke \(B~'A) > 0, a sufficient and necessary condition has been
given for equality ag = % in ). The famous Minkowski inequality and many results about
determinantal inequalities are extended.

Forc € C, Re(c) denotes the real part efand|c| denotes the modulus of Lett > 0 be
fixed, we have

Lemma 1.1.If A, B € M,(C) and B is invertible,o (C) = {\1, A2, ..., A, }, then inequality
(1.2) is true if and only if

(1.3) [T+ =TLIn+1,
=1 =1

with equality holding in[L.2) if and only if it holds in(L.3).

Proof. Sinced[A + B]' = d[B]'d|C + I]' andd[A]' + d[B]" = d[B]*(1 + d[C]"), formula [1.2)
is equivalent to

(1.4) djC + 1" > 1+ d[C]".

Noticeo(C' + 1) ={ A\ +1:k=1,2,...,n},

d[C + I HM +1" and d[C) = [N
=1

we obtain that formulg (1]4) is equwalent fo (1.3). Similarly, it is easy to see that the case of
equality is true. Thus the lemma is proved. O

Lemma 1.2(seel[6]) If z;, 4, >0 (t=1,2,...,n), then

n

Hﬁt"i‘yti” H "‘f‘Hyt"a
t=1 =

with equality if and only if there is linear dependence betV\(eenxQ, e ) and(yr, ye, - Yn)
or x; + y; = 0 for a certain numbet.

Lemma 1.3(Jensen’s inequality)if a4, as,. .., a,, are positive numbers, then

1
<Zaf) < (Zaf) for 0<r<s,n>2.
i=1 i=1

Lemmal.4.If P, P,,..., P, are positive numbers arifl > l , then

sl-

(1.5) [[@+1) >HPk +1,
k=1

with equality if and only ifP, (k =1,2,...,n)isconstantag’ = —
Proof. By Lemmg 1.2, we have

H (P, +1)T
k=1

mT mT

m m

(P + 1)
k=1

(PT)™T 41

k=1
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m

On noting thab < -1 < 1, by Lemm4 1., we obtain
mT
1™ +1

> [P+,
k=1 k=1

and inequality[(1)5) is demonstrated. By Lermmd 1.2, it is easy to see that equality holds if and
onlyif P, (k=1,2,...,n)is constantag’ = =. O

Remark 1.5. Apparently, Lemma 1|3 is tenable for > 0 (i = 1,2,...,n), and Lemma 114 is
tenable forP, > 0 (: = 1,2,...,n).
2. MAIN RESULTS

Theorem 2.1.Let A4, B € M,(C). If Bis nonsingular andRe A, > 0 (k = 1,2,...,n), where
o(C) = {A1, Aay ..., A}, then fort > 2

(2.1) d[A+ B]' > d[A]" + d[BY',

Proof. By Lemm' we need to prove inequalfty {1.3). Note thad,, > 0 (k =1,2,...,n)
and|\; + 17 > 1+ [\]%

ﬁ|>‘k+1|t: (ﬁ\)\k—i-ll?) ﬁ ’)\k| +1)7.
k=1 k=1 km1

Applying Lemmg 1.1, we can show that

o~

n

- . 2

TP +102 =TIl +1 for £ > =,

k=1 k=1 n
with equality if and only if|\,|* (k = 1,2,...,n) is constant ag = 2. The above two
inequalities imply formula[ (1]3). O

Whent = 1, we have

Corollary 2.2. LetA, B € M,,(C) (n > 2). If Bisinvertible andRe A\, > 0 (k =1,2,...,n),
wheres (C) = {\1, Ao, ..., A\, }, then
(2.2) d[A+ B] > d[A] + d[B].

Corollary 2.3. Let A be ann-by-n complex positive definite matrix, aitbe ann-by-n positive
definite Hermitian matrixn > 2). Then fort > 2

(2.3) d[A + B]' > d[A]" + [det(B)]".

Proof. ObservingC' = B~'A is similar to B~2AB~2 andRe A\(B"2AB~2) > 0, where
A(B"2AB~z) is an arbitrary eigenvalue a8~z AB~z. Therefore,Re\, > 0 ando(C) =
{A1, A2, ..., A\ ). Hence, Theorein 2.1 yields Corollgry 2.3. O

Whent = 2, inequality [2.B) gives Theorem 4 ofl[3]. When= 1, inequality [2.3) gives
Theorem 1 of([3]. To merit attention, Theorem 2in [8] proves that i real positive definite
andB is real positive definite symmetric, th =mr .3) holdstfer % Itis untenable for example:

A= ( 1_1 1 ) ,B = ( (1) (1) ) Corollary|2.7 and Corollar.8 in this paper have been

given correction.
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Theorem 2.4.Let A, B € M, (C). If Bisnonsingular,an®Re A\, > 0 (k =1,2,...,n), where
o(C) = {\, A,..., \u}, thenn eigenvalues of' are pure imaginary complex numbers with
the same modulus if and only if

:\l\?

(2.4) d[A + B]" = d[A]" + d[B]x,
Proof. If n eigenvalues of" are+tid (i = v/—1,d > o,d € R), then

1

1£[|A,-+1|3:f[(Hd2 T=14d = H|A|n+1
i=1

Hence equality[ (2]4) holds by Lemmall.1.
Conversely, supposg (2.4) holds, then

ﬁ N+ 1|7 = ﬁ Al ™+ 1.
=1 =1

So

H (1+2Re\; + \)\i|2)% = H (‘)\i|2)i" +1
i—1 i—1

Obviously,Re A\, =0 (k= 1,2,...,n), otherwise

n n n
1

[T +2Rex + N > [+ 1MF)" Hm
=1

i=1 el

with illogicality. Therefore

1

ﬁ 14+ (Im ) 7 ﬁ Im ;) + 1.
i=1

i=1
By Lemma[ 1.2 we obtaiillm);)? = ¢*> and )\, = +id (k = 1,2,...,n). This completes the
proof. O

Corollary 2.5. If A,B € M, (C) with B is nonsingular and” = B~ A is skew—Hermitian,
then formula(2.4)) holds if and only ifA = idBUEU*, wherei> = —1, d > 0, U is a unitary
matrix, F = diag(eq, es,...,e,) Withe; = +1,i=1,2,...,n

Proof. SinceC' is skew—Hermitian and its real parts ofeigenvalues are zero, then Theorem
[2.4 implies that[(2}4) holds if and only if

C = B™'A = U diag(+id, +id, . . ., +id)U*,

whereo (C) = {£id,+id, ..., +id}, d > 0 andU is unitary. Henced = idBUEU*, where
i? = —1,d > 0, U is a unitary matrix,F = diag(ey, es,...,¢,) ande; = +1,i =1,2,...,n
0

Theorem 2.6. Supposed, B € M, (C) with B nonsingular andRe), > 0 (k = 1,2,...,n),
whereo(C) = {1, A2, ..., A\, }. If the number of the real eigenvalues®fis r, and the non-
real eigenvalues of' are pair wise conjugate, then inequal' holds fort > n%r

Proof. By Lemma._ we need to pI’O\.. e (IL.3) for —2-. Without loss of generality, suppose
A >0(=1,2,...,r) arethe real elgenvaluesﬁfand/\k, M (k=r+1,r+2,...,745)
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ares pairs of non-real eigenvalues 6f, wheren = r + 2s. Then the right-hand side df (1.3)
becomes

r+s

(2.5) HM IT (xP)

=1 j=r+1
and the left-hand side df (1.3) is
T r+s
(2.6) [T+ I (r+0%)"
=1 j=r+1
GivenRe A, > 0 (k=1,2,...,7 +5), 0|1 + \;|* > 1+ |\, then
r r+s r+s
(2.7) [Ta+x)" I] (r+x0) >H @+ T @+ 1P
i=1 j=r+1 j=r+1
By Lemmd 1.2 and (2] 7), we obtain that
fToe o T e T B L
(N + 1) (IL+N5) > (INP)E+ 1, fort > = .
i=1 j=rt1 i=1  j=r+1 r+s n+r
This completes the proof. O

In the following, we present some generalizations of the Minkowski inequality. By Theorem
[2.6, itis easy to show:

Corollary 2.7. Let A, B € M, (C). If B is nonsingular and: eigenvalues o are positive
numbers, then fot > 1

(2.8) d[A+ B]» > d[A]» + d[B]".

If Ais ann-by-n complex positive definite matrix anl is ann-by-n positive definite Her-
mitian matrix, withn eigenvalues o' being real numbers, thenC) = a(B%(JB—%), and
B:CB~: = B :AB": is positive definite, so any eigenvalue ©fhas a positive real part.
Thusn eigenvalues o€’ are positive numbers. By Corollgry 2.7 we have

Corollary 2.8. Supposed, B € M, (C), whereA is a complex positive definite matrix argl
is a positive definite Hermitian matrix. #f eigenvalues of' are real numbers, then inequality
(2.8) holds for¢ > <.

Corollary 2.9 (Minkowski inequality) Supposed, B € M, (C) are positive definite Hermitian
matrices, then inequalit§l.1)) holds.

Proof. Note thatC' = B~'A is similar to a real diagonal matrix, and its eigenvalues are real
numbers, using Corollafy 2.8 and letting- 1, the proof is completed. O

Corollary 2.10. Supposed, B € M, (C), whereA is a complex positive definite matrix aft
is a positive definite Hermitian matrix. If the non-real eigenvalue§' afre m pairs conjugate
complex numbers, then inequal holds fort > —L

Proof. ObviouslyRe A\, > 0 (k = 1,2,...,n), wherea(C) = {A\1, A2, ..., A\, }. Applying
Theorenj 2.6 completes the proof. O

LetA=H + K € M,(C), wherell = 1(A+ A*),andK = (A — A*), then we have
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Theorem 2.11.Let A = H + K be ann-by-n complex positive definite matrix, then fop %

(2.9) d[A]' > d[H]" + d[K]",

with equality if and only ifK” = idHQ*EQ ast = 2, wherei* = —1, d > 0, Q is a unitary

matrix,El = diag(ey, ea,...,e,) Withe; = +1,i =1,2,...,n.

Proof. SinceH 2 K H2 is a skew-Hermitian matrix and is similar 6 &', Re \(H ' K) =

ReA(H :KH 2) = 0. By Theore and Corolla.5, we get the desired result. [
Lett = 1, we have the following interesting result.

Corollary 2.12. If A = H + K is ann-by-n complex positive definite matrix > 2), then
(2.10) d[A] > d[H] + d[K].

Corollary 2.13 (Ostrowski-Taussky Inequality)f A = H + K is ann-by-n positive definite
matrix (n > 2), thendet H < d[A] with equality if and only ifA is Hermitian.

Theorem 2.14.Let A, B be twon-by-n complex positive definite matrices, aneigenvalues
of B be real numbers. Supposk B are simultaneously upper triangularizable, namely, there
exists a nonsingular matri¥, such thatP~' AP and P~! BP are upper triangular matrices,

then inequalit holds for anyt > 2.
Proof. If P~1AP andP~!BP are upper triangular matrices, then
P 'B7'AP = (P 'BP) (P 'AP)
is an upper triangular matrix, with the product of the eigenvalugsdfand A on its diagonal.
We denote the eigenvalue of by \(X). Notice that positive definiteness af and B!,

Re)(A) and\(B') are positive numbers by hypothesis, it is easy to seeRbatB ' A) > 0.
By Theorenj 2.1, we get the desired result. O

Corollary 2.15. Let A, B be twon-by-n complex positive definite matrices, and all the eigen-
values ofB be real numbers. If([A, B]) < 1, then inequality(L.2) holds fort > 2, where
[A, Bl = AB — BA, r(|A, B]) is the rank of A, B].

Proof. It is easy to see thas ! is a complex positive definite matrix amdeigenvalues o1
are real numbers. By the hypothesis afB~!, A] = r[A, B], we haver([B~!, A]) < 1. By
the Laffey-Choi Theorem (segl[5],/[1]), there exists a non-singular m&trsuch that”—* AP
and P~' BP are upper triangular matrices. The result holds by Therenj 2.14. O

Corollary 2.16. Let A, B be twon-by-n complex positive definite matricés > 2). Suppose
AB = BA andn eigenvalues oB are real numbers, then inequalify.2) holds fort > 2.

Proof. Follows from Corollary 2.15 and the fact thaf A, B]) = 0. O
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