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Abstract

In this paper, we discuss the determinantal inequalities over arbitrary complex
matrices, and give some sufficient conditions for

d[A + B]t ≥ d[A]t + d[B]t,

where t ∈ R and t ≥ 2
n . If B is nonsingular and Re λ(B−1A) ≥ 0, the sufficient

and necessary condition is given for the above equality at t = 2
n . The famous

Minkowski inequality and many recent results about determinantal inequalities
are extended.

2000 Mathematics Subject Classification: 15A15, 15A57.
Key words: Minkowski inequality, Determinantal inequality, Positive definite matrix,

Eigenvalue.
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1. Preliminaries
We use conventional notions and notations, as in [2]. Let A ∈ Mn(C), d[A]
stands for the modulus ofdet(A) (or |A|), wheredet(A) is the determinant of
A. σ(A) is the spectrum ofA, namely the set of eigenvalues of matrixA. A
matrixX ∈ Mn(C) is called complex (semi-) positive definite ifRe(x∗Ax) > 0
(Re(x∗Ax) ≥ 0) for all nonzerox ∈ Cn or if 1

2
(X + X∗) is a complex (semi-

)positive definite matrix (see [4, 7, 8, 2]). Throughout this paper, we denote
C = B−1A for A, B ∈ Mn(C) andB is invertible.

The famous Minkowski inequality states:
If A, B ∈ Mn(R) are real positive definite symmetric matrices, then

(1.1) |A + B|
1
n ≥ |A|

1
n + |B|

1
n .

It is a very interesting work to generalize the Minkowski inequality. Obvi-
ously, (1.1) holds if A, B ∈ Mn(C) are positive definite Hermitian matrices.
Recently, (1.1) has been generalized forA, B ∈ Mn(C) positive definite matri-
ces (see [8], [9], [10], [3]).

In this paper, we discuss determinantal inequalities over arbitrary complex
matrices, and give some sufficient conditions for

(1.2) d[A + B]t ≥ d[A]t + d[B]t,

wheret ∈ R.
If B is nonsingular andRe λ(B−1A) ≥ 0, a sufficient and necessary con-

dition has been given for equality ast = 2
n

in (1.2). The famous Minkowski
inequality and many results about determinantal inequalities are extended.
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For c ∈ C, Re(c) denotes the real part ofc and|c| denotes the modulus ofc.
Let t > 0 be fixed, we have

Lemma 1.1. If A, B ∈ Mn(C) andB is invertible,σ(C) = {λ1, λ2, . . . , λn},
then inequality(1.2) is true if and only if

(1.3)
n∏

i=1

|λi + 1|t ≥
n∏

i=1

|λi|t + 1,

with equality holding in(1.2) if and only if it holds in(1.3).

Proof. Sinced[A+B]t = d[B]td[C + I]t andd[A]t +d[B]t = d[B]t(1+d[C]t),
formula (1.2) is equivalent to

(1.4) d[C + I]t ≥ 1 + d[C]t.

Noticeσ(C + I) = {λk + 1 : k = 1, 2, . . . , n},

d[C + I]t =
n∏

i=1

|λi + 1|t and d[C]t =
n∏

i=1

|λi|t,

we obtain that formula (1.4) is equivalent to (1.3). Similarly, it is easy to see
that the case of equality is true. Thus the lemma is proved.

Lemma 1.2 (see [6]). If xt, yt ≥ 0 (t = 1, 2, . . . , n), then
n∏

t=1

(xt + yt)
1
n ≥

n∏
t=1

x
1
n
t +

n∏
t=1

y
1
n

t ,

with equality if and only if there is linear dependence between(x1, x2, . . . , xn)
and(y1, y2, . . . , yn) or xt + yt = 0 for a certain numbert.

http://jipam.vu.edu.au/
mailto:shilinzhan@163.com
http://jipam.vu.edu.au/


On the Determinantal
Inequalities

Shilin Zhan

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 15

J. Ineq. Pure and Appl. Math. 6(4) Art. 105, 2005

http://jipam.vu.edu.au

Lemma 1.3 (Jensen’s inequality).If a1, a2,. . . , am are positive numbers, then(
n∑

i=1

as
i

) 1
s

≤

(
n∑

i=1

ar
i

) 1
r

for 0 < r ≤ s, n ≥ 2.

Lemma 1.4. If P1, P2,. . . , Pm are positive numbers andT ≥ 1
m

, then

(1.5)
m∏

k=1

(Pk + 1)T ≥
m∏

k=1

P T
k + 1,

with equality if and only ifPk (k = 1, 2, . . . , n) is constant asT = 1
m

.

Proof. By Lemma1.2, we have

m∏
k=1

(Pk + 1)T =

[
m∏

k=1

(Pk + 1)
1
m

]mT

≥

[
m∏

k=1

(
P T

k

) 1
mT + 1

]mT

.

On noting that0 < 1
mT

≤ 1, by Lemma1.3, we obtain[
m∏

k=1

(
P T

k

) 1
mT + 1

]mT

≥
m∏

k=1

P T
k + 1,

and inequality (1.5) is demonstrated. By Lemma1.2, it is easy to see that equal-
ity holds if and only ifPk (k = 1, 2, . . . , n) is constant asT = 1

m
.

Remark 1. Apparently, Lemma1.3 is tenable forai ≥ 0 (i = 1, 2, . . . , n), and
Lemma1.4 is tenable forPi ≥ 0 (i = 1, 2, . . . , n).
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2. Main Results
Theorem 2.1. Let A, B ∈ Mn(C). If B is nonsingular andRe λk ≥ 0 (k =
1, 2, . . . , n), whereσ(C) = {λ1, λ2, . . . , λn}, then fort ≥ 2

n

(2.1) d[A + B]t ≥ d[A]t + d[B]t,

Proof. By Lemma1.1, we need to prove inequality (1.3). Note thatRe λk ≥ 0
(k = 1, 2, . . . , n) and|λk + 1|2 ≥ 1 + |λk|2,

n∏
k=1

|λk + 1|t =

(
n∏

k=1

|λk + 1|2
) t

2

≥
n∏

k=1

(
|λk|2 + 1

) t
2 .

Applying Lemma1.4, we can show that

n∏
k=1

(|λk|2 + 1)
t
2 ≥

n∏
k=1

|λk|t + 1 for t ≥ 2

n
,

with equality if and only if|λk|2 (k = 1, 2, . . . , n) is constant ast = 2
n
. The

above two inequalities imply formula (1.3).

Whent = 1, we have

Corollary 2.2. Let A, B ∈ Mn(C) (n ≥ 2). If B is invertible andRe λk ≥ 0
(k = 1, 2, . . . , n), whereσ(C) = {λ1, λ2, . . . , λn}, then

(2.2) d[A + B] ≥ d[A] + d[B].
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Corollary 2.3. Let A be ann-by-n complex positive definite matrix, andB be
ann-by-n positive definite Hermitian matrix(n ≥ 2). Then fort ≥ 2

n

(2.3) d[A + B]t ≥ d[A]t + [det(B)]t.

Proof. ObservingC = B−1A is similar toB− 1
2 AB− 1

2 andRe λ(B− 1
2 AB− 1

2 ) >

0, whereλ(B− 1
2 AB− 1

2 ) is an arbitrary eigenvalue ofB− 1
2 AB− 1

2 . Therefore,
Re λk ≥ 0 andσ(C) = {λ1, λ2, . . . , λn}. Hence, Theorem2.1yields Corollary
2.3.

Whent = 2
n
, inequality (2.3) gives Theorem 4 of [3]. Whent = 1, inequality

(2.3) gives Theorem 1 of [3]. To merit attention, Theorem 2 in [8] proves that
if A is real positive definite andB is real positive definite symmetric, then (2.3)

holds fort = 1
n
. It is untenable for example:A =

(
1 1
−1 1

)
, B =

(
1 0
0 1

)
.

Corollary2.7and Corollary2.8 in this paper have been given correction.

Theorem 2.4. Let A, B ∈ Mn(C). If B is nonsingular, andRe λk ≥ 0 (k =
1, 2, . . . , n), whereσ(C) = {λ1, λ2, . . . , λn}, thenn eigenvalues ofC are pure
imaginary complex numbers with the same modulus if and only if

(2.4) d[A + B]
2
n = d[A]

2
n + d[B]

2
n ,

Proof. If n eigenvalues ofC are±id (i =
√
−1, d > o, d ∈ R), then

n∏
i=1

|λi + 1|
2
n =

n∏
i=1

(
1 + d2

) 1
n = 1 + d2 =

n∏
i=1

|λi|
2
n + 1.
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Hence equality (2.4) holds by Lemma1.1.
Conversely, suppose (2.4) holds, then

n∏
i=1

|λi + 1|
2
n =

n∏
i=1

|λi|
2
n + 1.

So
n∏

i=1

(1 + 2 Re λi + |λi|2)
1
n =

n∏
i=1

(|λi|2)
1
n + 1.

Obviously,Re λk = 0 (k = 1, 2, . . . , n), otherwise

n∏
i=1

(1 + 2 Re λi + |λi|2)
1
n >

n∏
i=1

(
1 + |λi|2

) 1
n ≥

n∏
i=1

(|λi|2)
1
n + 1,

with illogicality. Therefore

n∏
i=1

[
1 + (Im λi)

2
] 1

n =
n∏

i=1

[
(Im λi)

2
] 1

n + 1.

By Lemma1.2we obtain(Imλk)
2 = d2 andλk = ±id (k = 1, 2, . . . , n). This

completes the proof.

Corollary 2.5. If A,B ∈ Mn(C) with B is nonsingular andC = B−1A is
skew–Hermitian, then formula(2.4) holds if and only ifA = idBUEU∗, where
i2 = −1, d > 0, U is a unitary matrix,E = diag(e1, e2, . . . , en) with ei = ±1,
i = 1, 2, . . . , n.
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Proof. SinceC is skew–Hermitian and its real parts ofn eigenvalues are zero,
then Theorem2.4 implies that (2.4) holds if and only if

C = B−1A = U diag(±id,±id, . . . ,±id)U∗,

whereσ(C) = {±id,±id, . . . ,±id}, d > 0 andU is unitary. HenceA =
idBUEU∗, wherei2 = −1, d > 0, U is a unitary matrix,E = diag(e1, e2, . . . , en)
andei = ±1, i = 1, 2, . . . , n.

Theorem 2.6. SupposeA, B ∈ Mn(C) with B nonsingular andReλk ≥ 0
(k = 1, 2, . . . , n), whereσ(C) = {λ1, λ2, . . . , λn}. If the number of the real
eigenvalues ofC is r, and the non-real eigenvalues ofC are pair wise conjugate,
then inequality(1.2) holds fort ≥ 2

n+r
.

Proof. By Lemma1.1, we need to prove (1.3) for t ≥ 2
n+r

. Without loss of
generality, supposeλj ≥ 0 (j = 1, 2, . . . , r) are the real eigenvalues ofC and
λk, λk (k = r + 1, r + 2, . . . , r + s) ares pairs of non-real eigenvalues ofC,
wheren = r + 2s. Then the right-hand side of (1.3) becomes

(2.5)
r∏

i=1

λt
i

r+s∏
j=r+1

(
|λj|2

)
t + 1,

and the left-hand side of (1.3) is

(2.6)
r∏

i=1

(λi + 1)t

r+s∏
j=r+1

(
|1 + λj|2

)
t.
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GivenRe λk ≥ 0 (k = 1, 2, . . . , r + s), so|1 + λj|2 ≥ 1 + |λj|2, then

(2.7)
r∏

i=1

(1 + λi)
t

r+s∏
j=r+1

(
|1 + λj|2

)
t ≥

r∏
i=1

(1 + λi)
t

r+s∏
j=r+1

(
1 + |λj|2

)
t.

By Lemma1.2and (2.7), we obtain that

r∏
i=1

(λi + 1)t

r+s∏
j=r+1

(
|1 + λj|2

)
t ≥

r∏
i=1

λt
i

r+s∏
j=r+1

(
|λj|2

)
t + 1,

for
1

r + s
=

2

n + r
.

This completes the proof.

In the following, we present some generalizations of the Minkowski inequal-
ity. By Theorem2.6, it is easy to show:

Corollary 2.7. LetA, B ∈ Mn(C). If B is nonsingular andn eigenvalues ofC
are positive numbers, then fort ≥ 1

n

(2.8) d[A + B]
1
n ≥ d[A]

1
n + d[B]

1
n .

If A is ann-by-n complex positive definite matrix andB is ann-by-n posi-
tive definite Hermitian matrix, withn eigenvalues ofC being real numbers, then
σ(C) = σ(B

1
2 CB− 1

2 ), andB
1
2 CB− 1

2 = B− 1
2 AB− 1

2 is positive definite, so any
eigenvalue ofC has a positive real part. Thusn eigenvalues ofC are positive
numbers. By Corollary2.7we have
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Corollary 2.8. SupposeA, B ∈ Mn(C), whereA is a complex positive definite
matrix andB is a positive definite Hermitian matrix. Ifn eigenvalues ofC are
real numbers, then inequality(2.8) holds fort ≥ 1

n
.

Corollary 2.9 (Minkowski inequality). SupposeA, B ∈ Mn(C) are positive
definite Hermitian matrices, then inequality(1.1) holds.

Proof. Note thatC = B−1A is similar to a real diagonal matrix, and its eigen-
values are real numbers, using Corollary2.8 and lettingt = 1, the proof is
completed.

Corollary 2.10. SupposeA, B ∈ Mn(C), whereA is a complex positive definite
matrix andB is a positive definite Hermitian matrix. If the non-real eigenvalues
of C are m pairs conjugate complex numbers, then inequality(1.2) holds for
t ≥ 1

n−m
.

Proof. ObviouslyRe λk ≥ 0 (k = 1, 2, . . . , n), whereσ(C) = {λ1, λ2, . . . , λn}.
Applying Theorem2.6completes the proof.

Let A = H + K ∈ Mn(C), whereH = 1
2
(A + A∗), andK = 1

2
(A − A∗),

then we have

Theorem 2.11.LetA = H + K be ann-by-n complex positive definite matrix,
then fort ≥ 2

n

(2.9) d[A]t ≥ d[H]t + d[K]t,

with equality if and only ifK = idHQ∗EQ ast = 2
n
, wherei2 = −1, d > 0, Q

is a unitary matrix,E = diag(e1, e2, . . . , en) with ei = ±1, i = 1, 2, . . . , n.
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Proof. SinceH− 1
2 KH− 1

2 is a skew-Hermitian matrix and is similar toH−1K,
Re λ(H−1K) = Re λ(H− 1

2 KH− 1
2 ) = 0. By Theorem2.1 and Corollary2.5,

we get the desired result.

Let t = 1, we have the following interesting result.

Corollary 2.12. If A = H + K is ann-by-n complex positive definite matrix
(n ≥ 2), then

(2.10) d[A] ≥ d[H] + d[K].

Corollary 2.13 (Ostrowski-Taussky Inequality). If A = H + K is ann-by-n
positive definite matrix(n ≥ 2), thendet H ≤ d[A] with equality if and only if
A is Hermitian.

Theorem 2.14.LetA, B be twon-by-n complex positive definite matrices, and
n eigenvalues ofB be real numbers. SupposeA, B are simultaneously upper
triangularizable, namely, there exists a nonsingular matrixP , such thatP−1AP
andP−1BP are upper triangular matrices, then inequality(1.2) holds for any
t ≥ 2

n
.

Proof. If P−1AP andP−1BP are upper triangular matrices, then

P−1B−1AP = (P−1BP )−1(P−1AP )

is an upper triangular matrix, with the product of the eigenvalues ofB−1 and
A on its diagonal. We denote the eigenvalue ofX by λ(X). Notice that pos-
itive definiteness ofA andB−1, Reλ(A) andλ(B−1) are positive numbers by
hypothesis, it is easy to see thatRe λ(B−1A) ≥ 0. By Theorem2.1, we get the
desired result.
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Corollary 2.15. LetA, B be twon-by-n complex positive definite matrices, and
all the eigenvalues ofB be real numbers. Ifr([A, B]) ≤ 1, then inequality(1.2)
holds fort ≥ 2

n
, where[A, B] = AB −BA, r([A, B]) is the rank of[A, B].

Proof. It is easy to see thatB−1 is a complex positive definite matrix andn
eigenvalues ofB−1 are real numbers. By the hypothesis andr[B−1, A] =
r[A, B], we haver([B−1, A]) ≤ 1. By the Laffey-Choi Theorem (see [5], [1]),
there exists a non-singular matrixP , such thatP−1AP andP−1BP are upper
triangular matrices. The result holds by Theorem2.14.

Corollary 2.16. Let A, B be twon-by-n complex positive definite matrices
(n ≥ 2). SupposeAB = BA andn eigenvalues ofB are real numbers, then
inequality(1.2) holds fort ≥ 2

n
.

Proof. Follows from Corollary2.15and the fact thatr([A, B]) = 0.
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