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Abstract

If « and b are compact operators acting on a complex separable Hilbert space,
and if p,q € (1, 00) satisfy 1% + 5 = 1, then there exists a partial isometry u such

that the initial space of u is (ker(|ab*|))* and

| 1
ulab®|u* < =lafP 4 =|b|%.
p q

Furthermore, if |ab*| is injective, then the operator « in the inequality above can
be taken as a unitary. In this paper, we discuss the case of equality of this
Young's inequality, and obtain a characterization for compact normal operators.

2000 Mathematics Subject Classification: 47A63, 15A60.
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Operator and matrix versions of classical inequalities are of considerable inter-
est, and there is an extensive body of literature treating this subject; see, for
example, 1] —[4], [6] = [1]]. In one direction, many of the operator inequali-
ties to have come under study are inequalities between the norms of operators.
However, a second line of research is concerned with inequalities arising from
the partial order on Hermitian operators acting on a Hilbert space. Itis in this
latter direction that this paper aims.

Young’s Inequality In Compact

A fundamental inequality between positive real numbers is the arithmetic- Operators — The Case Of
geometric mean inequality, which is of interest herein, as is its generalisation in Equality
the form of Young’s inequality. Renying Zeng

For the positive real numbeus b, the arithmetic-geometric mean inequality
says that 1 Title Page

ab < §(a +b). Contents
Replacinga, b by their squares, this could be written in the form < >
1
ab < 5(a* + 7). ¢ >
Go Back
R. Bhatia and F. Kittanel¥] extended the arithmetic-geometric mean inequality Close
to positive (semi-definite) matrices b in the following manner: for any: x n _
positive matrices, b, there is am x n unitary matrixu such that Quit
Page 3 of 21
*| % 1 2 2
ulab®|u* < i(a + b%).
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(The modulugy| is defined by
lyl = (y'y)*.

for anyn x n complex matrixy.) We note that the produeb of two positive
matricese andb is not necessarily positive.

Young’s inequality is a generalisation of the arithmetic-geometric mean in-
equality: for any positive real numbers b, and anyp,q € (1,00) with

1y 1 _1 .
p g Young's Inequality In Compact
1 1 Operators — The Case Of
ab < —aP + -0b9. Equality
p q

T. Ando [?] showed Young's inequality admits a matrix-valued version analo- RERYE AT

gous to the Bhatia—Kittaneh theoremzpifq € (1, c0) satisfy% + % =1, then

for any paira, b of n x n complex matrices, there is a unitary matrisuch that Title Page
1 1 Contents
ulab*|u* < —|al? + —b]9.
p q <4 >
Although finite-rank operators are norm-dense in the set of all compact oper- < >
ators acting on a fixed Hilbert space, the Ando—Bhatia—Kittaneh inequalities, P —
like most matrix inequalities, do not immediately carry over to compact opera-
tors via the usual approximation methods, and consequently only a few of the Close
fundamental matrix inequalities are known to hold in compact operators. Quit
J. Erlijman, D. R. Farenick, and the auth¢} fleveloped a technique through Page 4 of 21

which the Ando—Bhatia—Kittaneh results extend to compact operators, and es-
tablished the following version of Young's inequality.
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Theorem 1.1.If « andb are compact operators acting on a complex separable

Hilbert space, and ip, ¢ € (1,00) satisfy > + . = 1, then there is a partial
isometryu such that the initial space afis (ker(|ab  |))* and

1 1
ulab*|u* < —|al? + —b]9.
p q

Furthermore, if|ab*| is injective, then the operatar in the inequality above
can be taken to be a unitary.
Theoreml.lis made in a special case as a corollary below.

Corollary 1.2. If a andb are positive compact operators with trivial kernels,
and ift € [0, 1], then there is a unitary such that

ula'b' "t ut < ta+ (1 —t)b.

The proof of the following Theorer.3is very straightforward.

Theorem 1.3.If A is a commutative_*-algebra with multiplicative identity,
and ifp, g € (1,00) satisfy! + 1 =1, then

1 1
|ab™| < =fa]” + ~b]*
p q

forall a,b € A. Furthermore, if the equality holds, then

b = [af""".
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We give an example here for convenience.
We illustrate that, in general, we do not have

1 1
jab™| < ~lal” + ~[b]*.
p q

But, for this example, there exists a unitarguch that

1
ulab’fu” < S (lal” + [b]7).
2 0 11 .
Example 2.1.1f a = 01 andb = ( 11 ) thena and b are (semi-
definite) positive and
Yaary= (3}
2 13 )
and
V10 V10
®| _ 2 2
|ab|—|ab|—<@@).
2 2
However,

o o

V10
1, o 3 1 — %=
c=—-(a"+b*) —|ab| = (
2 1— 3 — Y10
is not a (semi-definite) positive matrix, i.e= 1 (a? + b%) — |ab| > 0 does not
hold. (In fact, the determinant ofsatisfies thatlet(c) < 0). So, we do not have

1
jabl < (@ +2).
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But the spectrum dfib| is
o(lab]) = { v10,0},

the spectrum of} (a? + b?) is

- (%(aQ—l—bz)) _ {51}

Therefore, there exists a unitary matebxsuch that

ulablu* < =(a® + b?).

DN | —

We compute the unitary matrixas follows.

Taking unitary matrices

and

we then have
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and

w|ablw* =

Therefore

/N

oﬁ
o

)

1
wlablw® <wv (§(a2 + b2)) v*.

By taking a unitary matrix

1

u=v'ww=—

10

we get

ulablu*

<

N | —

-3 -1
-1 3

(a® + b?).

)
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In this section, we discuss the cases of equality in Young’s inequality.

Assume that{ denotes a complex, separable Hilbert space of finite or infi-

nite dimension. The inner product of vect@rs) € H is denoted by, ), and
the norm of¢ € H is denoted by|¢||.

If x: H — H is alinear transformation, thenis called an operator (oH)
if = is also continuous with respect to the norm-topologyfonThe complex
algebra of all operators of is denoted byB(H ), which is aC*-algebra. We
usezx* to denote the adjoint of € B(H).

An operatorr on H is said to be Hermitian it* = =. A Hermitian operator
z is positive ifo(z) C Ry, wheres(z) is the spectrum of, andR is the
set of non-negative numbers. Equivalenttyc B(H) is positive if and only
if (z£,§) > 0forallé € H. If a,b € B(H) are Hermitian, them < b shall
henceforth denote that— « is positive.

Lemma 3.1.If a,b € B(H) are normal and commuting, whei@(H) is the
complex algebra of all continuous linear operators Gnthen

|al|b] = [bl]al,
and|a||b| is positive.

Proof. We obviously have
a*b* =b*a”.
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And by the Fuglede theorem][we get
a*b =ba*, ab* =b%a.
On the other hand, if, d € B(H) with ¢,d positive and commuting, then

2gN2 L 202 2002 L2002 — g

Hence
(Cd)l/Q — 2412,
Therefore
|a|[b] = (a” a)”z(b* )2
= (a*ab*b)*/?
= (b"0)"*(a*a)"?
= |bl[al.

Which implies thata||b| is positive and
lallbl = (lal[b])" = [bl|al.

(In fact, |a||b| is the positive square root of the positive operatarh*b). ]

Lemma 3.2. If a,b € B(H)are normal operators such that = ba, then the
following statements are equivalent:

(i) the kernel ofab*| : ker(|ab*|) = {0};
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(i) a andb are injective and have dense range.

Proof. (i) — (ii). Let b = w|b| be the polar decomposition bf By observation
we have
[lal[bl] = ([ol]al*[6)"2.

Thus, because the closures of the ranges of a positive operator and its square

root are equal, the closures of the range$b|*|b|and||a||b|| are the same.
Moreover, asv*w||al|b|| = ||a||b]|, we have that

(3.1) Fwlblla*[blw*) = wf([bllal*[b])w",

for all polynomialsf. Choosed > 0 so thato(|b||a|?|b]) C [0,6]. By the
Weierstrass approximation theorem, there is a sequence of polyngingish
that f,,(t) — v/t(n — oo) uniformly on[0, 6]. Thus, from 8.1) and functional
calculus,

(wlbllal*blw)" = w(|bl|al*[o])/*w* = wl|al|b]Jw".

Let a = v|a| be the polar decomposition aef Then the left-hand term in the
equalities above expands as follows:

(wlbllaf*[blw*)" = w(|bl|alv*v]allb])/*w* = (ba*ab®)'/* = |ab"|.

Thus,

|ab”| = wl[a][b]w".
Because: andb are commuting normal, from Lemntal |a||b| = |b||a| and
la||b| is positive. This implies that

lab*| = wlal|b|w™.
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If ¢ € ker(w*), then¢ € ker(Jab*|). Henceker(w*) = {0}, which means
that the range ofan(w) = H. Hence,w is unitary. By the theorem on polar
decompositionf, p. 75],b is injective and has dense range.

Leta = v|a| be the polar decomposition af We know thazb = ba implies
thatab* = b*a (again, by Fuglede theorem). Therefore, we can interchange the
role ofa andb in the previous paragraph to obtairi:is injective and has dense
range. Thusg is injective and has dense range.

(i) — (i). From the hypothesis we have polar decompositions v|a|, b =
wlb|, wherev andw are unitary p, p. 75]. Thereforeker(|a|) = ker(|b|) =
{0}. Because

lab*| = wlal[b|w*

andw is unitary, we have
ker(ab*) = {0}.

]

Lemma 3.3. If z € B(H) is positive, compact, and injective, andrif< u*zu
for some unitary, thenu is diagonalisable and commutes with

Proof. Becauser is injective, the Hilbert spacéf is the direct sum of the
eigenspaces of:

®
H= Z/\e%(w) ker(z — A1).

Let
op(®) = {1, Az, .},
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where\; > A\, > -+ > 0 are the (distinct) eigenvalues of listed in descend-

ing order. Our first goal is to prove thkér(z — A;1) is invariant under and
u* for every positive integey; we shall do so by induction.

Start with \;; note that\; = ||z||.

If £ € ker(z — A\11) is a unit vector, then

/\1 - )‘1 <€7 §>
= <>‘1€7 £>

Thus,
(zug, u§) = A = max{(zn,n) : [|n|| = 1}.

Which means that¢ is an eigenvector of corresponding to the eigenvalie.
Then,

ué € ker(z — A\1).

Becauséer(z — A1) is finite-dimensional and is unitary, we have that
u : ker(x — A1) — ker(x — A1)
is an isomorphism. Furthermor€|y...—»,1) is diagonalisable because

dim(ker(x — A\1)) < o0,
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whereU |ier(z—x,1) iS the restriction olU in the subspacker(x — A;1). Hence,
ker(z— A1) is invariant under.* (becauséer(z— A1) has a finite orthonormal
basis of eigenvectors af), which means that if

n € ker(z — A1),

then
un € ker(x — A\ 1).

Now choose\,, and pick up a unit vectaf € ker(z — A21).
Note that

Ao = max{(xn,n) : [|n]| = 1,1 € ker(z — A\ 1)*}.
Using the arguments of the previous paragraph,

(Because: is a unit vector orthogonal tker(x — A;1)). Hence, by the mini-
mum maximum principle,

ué € ker(z — Aa1).

So
u: ker(z — Ag1) — ker(x — Ap1)
is an isomorphismker(z — A21) has an orthonormal basis of eigenvectors .of
And if n € ker(z — A1) @ ker(z — A1), then

un € ker(x — A1) @ ker(x — Aq1).
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Inductively, assume that leavesker(xz — A;1) invariant for alll < j < k, and
look at )\, 1. By the arguments above,

(Zijgk ker(z — )\jl)> -

is also invariant undex. Hence, if¢ € ker(z — Ar411) is a unit vector, then

Ae1 = (2, )
< {aug, ug)
€
< { o) il = 1 € (307 derte = Am) )
— Moot

By the minimum-maximum principley§ is an eigenvector of corresponding
to \;.1. Hence,
ker(z — Agi11)

is invariant under: andwv*. This completes the induction process.
What these arguments show is tifathas an orthonormal bas{}32, of
eigenvectors of both andu; hence

TUD; = UTP;,
for each positive integer. Consequently,

rué = uzé, V€ € H.
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meaning that
ITU = Ux.

Below is a major result of this paper

Theorem 3.4. Assume that, b € B(H) are commuting compact normal oper-

ators, each being injective and having dense ranges. If there exists a unitary

such that: ) .
ulab®|u* = —[al” + —[b|,
p q
for somep, ¢ € (1,00) with | + . = 1, then
o] = |aP~".

Proof. By the hypothesis, ib = w|b| is the polar decomposition df, then
ker(|ab*|) = {0}, (Lemma3.2) andw is unitary ([, p. 75]). Moreover,

|ab”| = wal[blw®,

asa andb are commuting normals (noting thit|b| is positive from Lemma
3.D. Thusu|ab*|u* = Jlal’ + ;|b|” becomes

1 1
(3.2) uw|al|b|lw*u* = —|a|” + —|b|%.
p q
By Theoreml.3 and becausk||b| = |b||a| (Lemma3.2), we get

1 1
~[al” + ~[b]* = |al[b].
p q
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Hence from 8.2

1 1
(3.3) uwla||[blw*u® = —|al? + —|b|* > |al|b].

p q
Becauseuw is unitary (sincew is unitary from the proof of Lemma.2), and
becauseu||b| is positive, Lemma.3yields

la||b| = uw|a||blw*u*.

Hence, 8.2 becomes

1 1
(3.4) lal[b] = —la[” + ~[b]*.
p q

Let
A(lal) = Aq(lal) > - >0

and
A([b]) = Ao(]0]) > --- >0

be the eigenvalues ¢f| and|b|. Becauséa| and|b| belong to a commutative
C*-algebra, the spectra fff b and; |a[*+|b|* are determined from the spectra
of |a| and|b|, i.e., for each positive integér,

Ae(lal[b]) = Ax(lal) A (]b]),

and 1 1 1 1
A —ap+—bq):—>\ al)? + = (|b])9.
k(p| P+ 210) = Shudlal? + an(o)
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Therefore, the equatio® (4) implies that for every:
1 p 1 q
Ae(lal)Ax([b]) = 5&(!@\) + 5>\k(|b’) -

This is equality in the (scalar) Young’s inequality, and hence for ekery
Ai([0]) = Ae(lal)!
which yields (note that andb are normal operators)

bl = [al”".

From Theoren8.4we immediately have

Corollary 3.5. If a andb are positive commuting compact operators such that
|abl is injective, and if there is an isometrye B(H ) for which

ula'b "t u* = ta + (1 —t)b

for somef € [0, 1], then
b=a"t.

Theorem 3.6. Assume that, b € B(H) are commuting compact normal oper-
ators, each being injective and having dense range. If

bl = lal",
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then there exists a unitary such that:

1 1
ulab®|u® = ~laf” + =],
p q

forp,q € (1,00) with 1 + 1 = 1.
Proof. By the hypothesis, it is easy to get

1 1
|allbl = —laf” + ~[b[*,
p q

we note thata||b| is positive here.
If b = wlb| is the polar decomposition &f thenker(|ab*|) = {0} (Lemma
3.2), w is unitary (b, p. 75]), and

|ab™| = w|al|blw*.
Letu = w*. Then ) .
ulab*|u* = —|al? + —|b]9.
D q
O

Corollary 3.7. If a andb are positive commuting compact operators such that
ab is injective, and if there existse [0, 1] such that

b=a'""
then there is an isometry € B(H ) for which

ula'b' "t u* = ta + (1 —t)b.
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