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ABSTRACT. Let A be a complexm × n matrix. We find simple and good lower bounds for its
spectral norm‖A‖ = max{ ‖Ax‖ | x ∈ Cn, ‖x‖ = 1 } by choosingx smartly. Here‖ · ‖
applied to a vector denotes the Euclidean norm.
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1. I NTRODUCTION

Throughout this paper,A denotes a complexm × n matrix (m, n ≥ 2). We denote by‖A‖
its spectral norm or largest singular value.

The singular values ofA are square roots of the eigenvalues ofA∗A. Since much is known
about bounds for eigenvalues of Hermitian matrices, we may apply this knowledge toA∗A to
find bounds for singular values, but the bounds so obtained are very complicated in general.
However, as we will see, we can find simple and good lower bounds for‖A‖ by choosingx
smartly in the variational characterization of the largest eigenvalue ofA∗A,

(1.1) ‖A‖ = max
{

(x∗A∗Ax)1/2
∣∣ x ∈ Cn, x∗x = 1

}
,

or, equivalently, in the definition

(1.1′) ‖A‖ = max
{
‖Ax‖

∣∣ x ∈ Cn, ‖x‖ = 1
}

,

where‖ · ‖ applied to a vector denotes the Euclidean norm.
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2 JORMA K. M ERIKOSKI AND RAVINDER KUMAR

Our earlier papers [3] and [4] are based on somewhat similar ideas to find lower bounds for
the spread and numerical radius ofA.

2. SIMPLE BOUNDS

Consider the partitionA = (a1 . . . an) of A into columns. ForH ⊆ N = {1, . . . , n}, denote
by AH the block of the columnsah with h ∈ H. We accept also the empty blockA∅.

Throughout this paper, we letI (6= ∅), K, andL be disjoint subsets ofN satisfyingN =
I ∪ K ∪ L. Since multiplication by permutation matrices does not change singular values, we
can reorder the columns, and so we are allowed to assume that

A =
(

AI AK AL

)
.

Then

A∗A =

 A∗
IAI A∗

IAK A∗
IAL

A∗
KAI A∗

KAK A∗
KAL

A∗
LAI A∗

LAK A∗
LAL

 .

We denoteeH =
∑

h∈H eh, whereeh is theh’th standard basis vector ofCn.
We choosex = eI

/√
|I| in (1.1), where| · | stands for the number of the elements. Then

(2.1) ‖A‖ ≥
(

suA∗
IAI

|I|

)1
2

,

wheresu denotes the sum of the entries. Hence

(2.2) ‖A‖ ≥ max
I 6=∅

(
suA∗

IAI

|I|

)1
2

= max
I 6=∅

1√
|I|

∥∥∥∥∥∑
i∈I

ai

∥∥∥∥∥ ,

and, restricting toI = {1}, . . . , {n},

(2.3) ‖A‖ ≥ max
i
‖ai‖ = max

i

(∑
j

|aji|2
)1

2

,

and also, restricting toI = N ,

(2.4) ‖A‖ ≥
(

suA∗
IAI

n

)1
2

=

(
|r1|2 + · · ·+ |rn|2

n

)1
2

,

wherer1, . . . ,rn are the row sums ofA.

3. I MPROVED BOUNDS

To improve (2.2), choose

x =
eI + zeK√
|I|+ |K|

,

wherez ∈ C satisfies|z| = 1. Then

‖A‖ ≥ 1√
|I|+ |K|

[
su

(
A∗

IAI zA∗
IAK

zA∗
KAI A∗

KAK

)]1
2

=
1√

|I|+ |K|

∥∥∥∥∥∑
i∈I

ai

∥∥∥∥∥
2

+

∥∥∥∥∥∑
k∈K

ak

∥∥∥∥∥
2

+ 2 Re

(
z
∑
i∈I

∑
k∈K

a∗i ak

)
1
2

,
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which, forz = w/|w| if w =
∑

i∈I

∑
k∈K a∗i ak 6= 0, andz arbitrary ifw = 0, implies

(3.1) ‖A‖ ≥ 1√
|I|+ |K|

∥∥∥∥∥∑
i∈I

ai

∥∥∥∥∥
2

+

∥∥∥∥∥∑
k∈K

ak

∥∥∥∥∥
2

+ 2

∣∣∣∣∣∑
i∈I

∑
k∈K

a∗i ak

∣∣∣∣∣


1
2

.

Hence

(3.2) ‖A‖ ≥ max
I 6=∅, I∩K=∅

1√
|I|+ |K|

∥∥∥∥∥∑
i∈I

ai

∥∥∥∥∥
2

+

∥∥∥∥∥∑
k∈K

ak

∥∥∥∥∥
2

+ 2

∣∣∣∣∣∑
i∈I

∑
k∈K

a∗i ak

∣∣∣∣∣


1
2

,

and, restricting toI, K = {1}, . . . , {n},

(3.3) ‖A‖ ≥ 1√
2

max
i6=k

(
‖ai‖2 + ‖ak‖2 + 2|a∗i ak|

) 1
2 .

It is well-known that the largest eigenvalue of a principal submatrix of a Hermitian matrix is
less or equal to that of the original matrix. So, computing the largest eigenvalue of(

a∗i ai a∗i ak

a∗kai a∗kak

)
improves (3.3) to

(3.4) ‖A‖ ≥ 1√
2

max
i6=k

{
‖ai‖2 + ‖ak‖2 +

[(
‖ai‖2 − ‖ak‖2

)2
+ 4|a∗i ak|2

]1
2

}1
2

.

4. FURTHER IMPROVEMENTS

Let B be a Hermitiann× n matrix with largest eigenvalueλ. If 0 6= x ∈ Cn, then

(4.1) λ ≥ x∗Bx

x∗x
.

We replacex with Bx (assumed nonzero) and ask whether the bound so obtained,

(4.2) λ ≥ x∗B3x

x∗B2x
,

is better. In other words, is
x∗B3x

x∗B2x
≥ x∗Bx

x∗x
generally valid? The answer is yes ifB is nonnegative definite (andBx 6= 0). In fact, the
function

f(p) =
x∗Bp+1x

x∗Bpx
(p ≥ 0)

is then increasing. We omit the easy proof but note that several interesting questions arise
if we instead of nonnegative definiteness assume symmetry and nonnegativity, see [2] and its
references.

If B = A∗A, then (4.1) implies

(4.1′) ‖A‖ ≥ ‖Ax‖
‖x‖

,

and (4.2) implies a better bound

(4.2′) ‖A‖ ≥ ‖AA∗Ax‖
‖A∗Ax‖

.
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Since (2.2) is obtained by choosing in (4.1′) x = eI and maximizing overI, we get a better
bound by applying (4.2′) instead. Because

A∗AeI = A∗
∑
i∈I

ai =

(
a∗1
∑
i∈I

ai . . . a∗n
∑
i∈I

ai

)T

and

AA∗AeI =

(∑
j

aja
∗
j

)∑
i∈I

ai,

we have

(4.3) ‖A‖

≥max


∥∥∥∥∥
(∑

j

aja
∗
j

)∑
i∈I

ai

∥∥∥∥∥
/∥∥∥∥∥∥

(
a∗1
∑
i∈I

ai . . . a∗n
∑
i∈I

ai

)T
∥∥∥∥∥∥
∣∣∣∣∣∣ I 6= ∅,

∑
i∈I

ai 6= 0

 .

Hence, restricting toI = {1}, . . . , {n} and assuming all theai’s nonzero,

(4.4) ‖A‖ ≥ max
i

∥∥∥∥∥
(∑

j

aja
∗
j

)
ai

∥∥∥∥∥
/∥∥(a∗1ai . . . a∗nai)

T
∥∥ ,

and, restricting toI = N and assuming the row sum vectorr = (r1 . . . rn)T nonzero,

(4.5) ‖A‖ ≥

∥∥∥∥∥
(∑

j

aja
∗
j

)
r

∥∥∥∥∥
/∥∥(a∗1r . . . a∗nr)

T
∥∥ .

5. EXPERIMENTS

We studied our bounds by random matrices of order10. In the case of (2.2), (3.2), and (4.3),
to avoid big complexities, we did not maximize over sets but studied onlyI = {1, 3, 5, 7, 9},
K = {2, 4, 6, 8, 10}. We considered various types of matrices (positive, normal, etc.). For each
type, we performed one hundred experiments and computed means (m) and standard deviations
(s) of

‖A‖ − bound
bound

.

For positive symmetric matrices, (4.5) was by far the best with very surprising success:m =
0.0000215, s = 0.0000316. For all the remaining types, (4.4) was the best also with surprising
success. We mention a few examples.

Type m s

Normal 0.0463 0.0227
Positive 0.0020 0.0012
Real 0.0261 0.0151
Complex 0.0429 0.0162

For positive matrices, also the very simple bound (2.4) was surprisingly good:m = 0.0150,
s = 0.0067.
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6. CONCLUSIONS

Our bounds (2.1), (2.3), (2.4), (3.1), (3.3), (3.4), (4.4), and (4.5) have complexityO(n2).
Also the bounds (2.2), (3.2), and (4.3) have this complexity if we do not include all the subsets
of N but only some suitable subsets. Our bestO(n2) bounds seem to be in general better than
all theO(n2) bounds we have found from the literature (e.g., the bound of [1, Theorem 3.7.15]).

One natural way [5, 6] of finding a lower bound for‖A‖ is to compute the Wolkowicz-Styan
[7] lower bound for the largest eigenvalue ofA∗A and to take the square root. The bound so
obtained [5, 6] is fairly simple but seems to be in general worse than many of our bounds and
has complexityO(n3).

7. REMARK

As ‖A‖ = ‖AT‖ = ‖A∗‖, all our results remain valid if we take row vectors instead of
column vectors, and column sums instead of row sums. We can also do both and choose the
better one.
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