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ABSTRACT. In the present paper we establish some integral inequalities analogous to the well-
known Hadamard inequality for a class of generalized weighted quasi-arithmetic means in inte-
gral form.
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1. INTRODUCTION

In papers([6] and ]7] we have investigated some basic properties of a class of generalized
weighted quasi-arithmetic means in integral form and we have presented some inequalities in-
volving such a class of means.

In this paper we extend our considerations to inequalities of Hadamard type. Recall that the
inequality, cf. [5],

(1.1) f (;b> < E . / fa)de < f(a)—;f(b)

which holds for all convex functions : [a, b] — R, is known in the literature as tidadamard
inequality (sometimes denoted as the Hermite-Hadamard inequality). This inequality has be-
came an important cornerstone in mathematical analysis and optimization and has found uses in
a variety of settings. There is a growing literature providing new proofs, extensions and consid-
ering its refinements, generalizations, numerous interpolations and applications, for example,
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2 ONDREJHUTNIK

in the theory of special means and information theory. For some results on generalization,
extensions and applications of the Hadamard inequality] see [1], [2]. [4]. [8], [9].and [10].
In general, the inequality (1.1) is a special case of a result of Fejér, [3],

wa s (50) [ < [ s < OO e,

which holds whery is convex ang is a nonnegative function whose graph is symmetric with
respect to the center of the interjal b]. It is interesting to investigate the role of symmetry
in this result and whether such an inequality holds also for other functions (instead of convex
ones). In this paper we consider the weight funcii@s a positive Lebesgue integrable function
defined on the closed interv@l, b] C R, a < b with a finite norm, i.e.p belongs to the vector
spaceL; ([a, b]) (see Sectiop|2). We also give an elementary proof of the Jensen inequality and
state a result which corresponds to some of its conversions. In the last section of this article
we give a result involving two convex (concave) functions and (not necessarily symmetric) a
weight functionp on the intervala, b] which is a generalization of a result given in [9].

The main aim of this paper is to establish some integral inequalities analogous to that of the
weighted Hadamard inequality (1.2) for a class of generalized weighted quasi-arithmetic means
in integral form.

2. PRELIMINARIES

The notion of a convex function plays a fundamental role in modern mathematics. As usual,
a functionf : I — R is calledconvexf

JI =Nz +Ay) < (1 =N f(z) +Af(y)

forall z,y € I and allA € [0, 1]. Note that if(—f) is convex, therf is calledconcave In
this paper we will use the following simple characterization of convex functions. For the proof,
see([10].

Lemma 2.1. Let f : [a,b] — R. Then the following statements are equivalent:
(i) fis convex ofa, b;
(i) forall z,y € [a,b] the functiong : [0,1] — R, defined byy(t) = f((1 — t)z + ty) is
convex or0, 1].

For the convenience of the reader we continue by recalling the definition of a class of gener-
alized weighted quasi-arithmetic means in integral form, ¢f. [6].

Let L,([a,b]) be the vector space of all real Lebesgue integrable functions defined on the
interval [a,b] C R, a < b, with respect to the classical Lebesgue measure. Let us denote by
L{ ([a, b]) the positive cone of([a, ]), i.e. the vector space of all real positive Lebesgue
integrable functions ofu, b]. In what follows||p||;.;; denotes the finitd.,-norm of a func-
tionp € L] ([a,b]). For the purpose of integrability of the product of two functions we also
consider the spack,([a, b]) as the dual td ([, b]) (@and L} ([a, b]) as the dual td.; ([a, b]),
respectively).

Definition 2.1. Let (p, f) € L{ ([a,b]) x L ([a,b]) andg : [0,00] — R be a real continuous
monotone function. The generalized weighted quasi-arithmetic mean of furfotiih respect
to weight functiorp is a real numben/y, ; ,(p, f) given by

b
2.1) Mo f) = g7 (||pH1[ : [ sratre) d:c) ,

whereg—! denotes the inverse function to the functipn
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Many known means in the integral form of two variabje¢ are a special case 81, ; ,(p, f)
when taking the suitable functions f, g. For instance, putting = 1 on [a, b] we obtain clas-
sical quasi-arithmetic integral means of a functjorMeansiM|, ; ,(p, f) generalize also other
types of means, cfl [7], e.g. generalized weighted arithmetic, geometric and harmonic means,
logarithmic means, intrinsic means, power means, one-parameter means, extended logarithmic
means, extended mean values, generalized weighted mean values, and others. Hence, from
Miq4.4(p, f) we can deduce most of the two variable means.

Some basic properties of meab, ) ,(p, f) related to properties of input functiorisg were
studied in [6] and[[7] in connection with the weighted integral Jensen inequality for convex
functions. The following lemma states Jensen’s inequality in the case of méans (p, f)
and we give its elementary proof.

Lemma 2.2(Jensen’s Inequality)Let (p, f) € L ([a,b]) x LL ([a,b]) such that < f(z) < d
for all z € [a, b], where—oo < ¢ < d < .

(i) If g is a convex function ofx, d), then

(22) g(A[a,b] (p> f)) < A[a,b} (p7 go f)
(i) If g is a concave function ofr, d), then

9(Aun(p, ) = An(p, g0 ),
whereA, ; (p, f) denotes the weighted arithmetic mean of the funcfiom [a, b|.

Proof. Let g be a convex function. Put

(2.3) §= Auy(p, f)
From the mean value theorem, it follows tlat ¢ < d. Put
D= sup 9(&) —g(7)

T€(c,d) 5 =T ’

i.e., the supremum of slopes of secant lines. From the convexitytdbllows that

n < %ﬁ(f), forany 6 € (& 4d).
Therefore, we have that

9(1) 2 g(§) +n(r —¢§), forany 7€ (cd),
which is equivalent to

(2.4) g(&) —g(r) <n€ —1),

for anyr € (c¢,d). Choosing, in particularr = f(z), multiplying both sides of[ (2]4) by
p(z)/||pll.,5 @and integrating over the interval, b] with respect tar, we get

(25) g(g)_A[a,b](pvgof) SHA[a,b](]%g_f)
The integral at the right side of the inequality (2.5) is equdl.thdeed,

U A[a,b](paf - f) =7 (5 - A[a,b}(p7 f)) = 0.
Replacingg by (2.3), we have

9<A[a,b] (p, f)) — Ay (prgo f) <0.
Hence the resulf (2.2). O
As a direct consequence of Jensen’s inequality we obtain the following
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Corollary 2.3. Let(p, f) € L{([a,b]) x L ([a,b]) such thate < f(z) < d for all z € [a,b],
where—oo < ¢ < d < 0.

(i) If g is a convex increasing or concave decreasing functiofcod), then

(2.6) Ay (0, f) £ Mg o(p; f)-
(i) If g is a convex decreasing or concave increasing functiofcod), then

A (0, f) = Mgy o0, f).

Proof. Let g be a convex increasing function. Applying the inverse t both sides of Jensen’s
inequality [2.2) we obtain the desired res[ili [2.6).
Proofs of remaining parts are similar. O

In what follows the following two simple lemmas will be useful.

Lemma 2.4. Leth : [a,b] — [c,d] and leth~! be the inverse function to the functién

() If his strictly increasing and convex, or a strictly decreasing and concave function on
[a, b], thenh ! is a concave function ofe, d].

(if) If 1 is strictly decreasing and convex, or a strictly increasing and concave function on
[a,b], thenh~! is a convex function ofe, d.

Proof. We will prove only the item (i), the item (ii) may be proved analogously. Supposéthat
is a strictly decreasing and convex function[anb]. Then clearlyh~! is strictly decreasing on
lc,d]. Takex,, x5 € [a,b] anda, 3 € [0, 1] such thatx + 8 = 1. Sinceh™! is the inverse ta,
there exist;, y2 € [c, d] such thay; = h(z;) andz; = h'(y;), fori € {1,2}. Then

h=Yawy + Bya) = h™ (ah(xy) + Bh(x2)).

Sinceh is convex, i.e.ah(z1) + Bh(zy) > h(az; + Bxy), andh~ ! is strictly decreasing, we
have

hHayy + Byz) < h™H(h(awy + Baz)) = ah™ (1) + Bh™" (y2).
From this it follows that: ! is a convex function ofr, d. O
Lemma 2.5. Lety : [a,b] — [c,d] andh : [c,d] — R.

(i) If ¢ is convex ona, b] andh is convex increasing ofe, d], or ¢ is concave otja, b and
h is convex decreasing dn, d], thenh(p(x)) is convex oric, d].

(i) If ¢ is convex orja,b] andh is concave decreasing dn, d|, or ¢ is concave ofja, b]
andh is concave increasing o, d|, thenh(p(z)) is concave oric, d|.

Proof. Let us suppose that is concave ora, b] andh is convex decreasing dn, d]. Taking
x1,29 € [a,b] anda, 5 € [0,1] : o+ B = 1, we get

h(p(awy + Bx)) < hlap(z) + Bp(x2)) < ah(p(z1)) + Bhip(z2)),
i.e. h(p(z)) is a convex function ofr, d]. Proofs of the remaining parts are similar. O

3. A GENERALIZATION OF FEJER’S RESULT

By the use of Jensen’s inequality we obtain the following result involvifigy ,(p, f). In
what followsg is always a real continuous monotone function on the range(mf accordance
with Definition[2.1).

Theorem 3.1.Let(p, f) € L{ ([a,b]) x LT ([a,b]) andIm(f) = [¢,d], —00 < ¢ < d < oc.
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() If g : [c,d] — Ris convex increasing or concave decreasing, drns concave, then

fla)(1 = a®) + f(b)a" < Miap,4(p, f),
where

T —a
(3.1) o = Apy(p, o), for ax)= o

(i) If g : [e,d] — R is concave increasing or convex decreasing, @nsl convex, then
Miap,4(p; f) < fla)(1 —a®) + f(b)a™.

Proof. The presented inequalities are intuitively obvious from the geometric meaning of con-
vexity. Letg be a concave increasing aficbe a convex function. From Corollafy 2.3(ii) we
have

M[mb],g(p, f) S A[a,b} (p» f)

Putting
r—a

T bh—a’

we getr = (1 — a(z))a + a(z)b, for all z € [a, b]. From the convexity of functiorf we have

(1= a@)a+a@p) < (1 -a@)f(@) +al@)fb),

a(z)

and therefore

1 b

Moag 1) < i [ @) (1= a@) ) + ate)0)) e
b b

_ joylaP@za@)de o [ p@at)

1Pl 12l 0.0
Using (3.1) the above inequality may be rewritten into
Miapg(p, f) < fla)(1 —a®) + f(b)a.
Remaining parts may be proved analogously. O

Remark 3.2. If p is symmetric with respect to the center of the intefwab], i.e.

b_
platt)y=pb—t), 0<t<’"

thena* = 1/2. It then follows that items (i) and (ii) reduce to

f(a) + f(b)
2

< Miapg(p, f), and My ,(p, f) < M

respectively.

The Fejérinequality (1]2) immediately yields the following version of the generalized weighted
Hadamard inequality for meandy, ) ,(p, f).

Theorem 3.3.Let(p, f) € LT ([a,b]) x LE ([a,b]) such thap is symmetric with respect to the
center of the intervalla, b]. LetIm(f) = [¢,d], —o0 < ¢ < d < 00, andg : [¢,d] — R.
(i) If g is convex increasing or concave decreasing gns convex, then

(3.2) f(a;b)Sﬁﬂmg@J)SQJ(gum»;gU®»>‘
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(i) If g is concave increasing or convex decreasing gns concave, then

ot (OO <y < (250).

Proof. We will prove the item (i). The item (ii) may be proved analogously.

Sincey is increasing (decreasing), then assumption (i) of Theprem 3.3 and LEmma 2.5 yield
thath = go f is convex (concave). Applying (1.2) far, then applylng the inverse gfto @)
the inequalities in (3]2) immediately follow.

Corollary 3.4. Let us suppose the functiop§r) = 1 andg(z) = x. If f is a convex function
on [a, b, then we get the celebrated Hadamard inequality|(1.1).

Using our approach from the proof of Theorem 3.1 we are able to prove the following theorem
which corresponds to some conversions of the Jensen inequality for convex functions in the case

of M[a,b},g<pa f)
Theorem 3.5. Let (p, f) € L{([a,b]) x L ([a,d]), such thatf : [a,b] — [k, K], andg :
[k, K] — R, where—oco < k < K < 0.

(i) If g is convex onk, K], then

g(k) (K = Awn(®. ) 90K) (Awn(p, /)~ k)

<

(i) If g is concave onk, K|, then

) N g(k) (K — Ay (P f)) 9(K) (A[a,b] (p, f) — /f)
Proof. Let us prove the item (i). Suppose thgis a convex function on the intervgl, K]. Let
us consider the following integral

b
| st de.
Sincek < f(z) < K forall z € [a,b] and f(z) = (1 — af( x))k + ay(z) K, where
@3 arte) = LD =K
then

/abp(x)g(f(x)) de < /abp(x)<(1 —ap(z))g(k) + Oéf([B)Q(K)) d

= g(k) / () (1= as(@)) de + g(K) / ' p(z)ay(o) de.
By (3.3) we get

/abp(m)af(ﬁ) dr = ﬁ (/abp(x)f(x) vt HpH[a»b])

and therefore

[ vtsyar < 29 (%ol | ’ @) (3] o)

N é(ﬂ (/abp(x)f(x) dz — k ||p||[a7b1> -
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Since||p||(.,5 is positive and finite, we may write

(k) (K — pl - fb (2) /() di
Apy(p.go f) < g ( lios Ja P )

—k
+9K)(puabf df“’“)
K-k
 g(k) (K — Ay (p, /) PGS (A (p, f) — k)
K—k K—k '
Hence the result. Item (ii) may be proved analogously. O

4. HADAMARD TYPE INEQUALITY FOR THE PRODUCT OF TWO FUNCTIONS

The main result of this section consists in generalization of a result for two convex functions
given in [9]. Observe that symmetry of a weight functipron the intervalla, b] is now not
necessarily required. Our approach is based on using of a fairly elementary analysis.

Theorem 4.1.Letp € L] ([a,b]) andh, k be two real-valued nonnegative and integrable func-
tions onla, b]. Letg be a real continuous monotone function defined on the rangé.of

(i) If h, k are convex and is either convex increasing, or concave decreasing, then

(4.1)  Miyyy(p, hk) < g~ [(1 — 20" + 3)g(ha)k(a)) + (a* — )

X <g (h(a)k(b)) + g(h(b)k(a))) + ﬁ*g(h(b)k(b))] .

and
(42) Miosyop,hK) > g~ llzg (n(“57) (%57)) + 5 =)
X <g(h(a)k(a)) —l—g(h(b)k(b))) + (oz* - B - %)
% (9(r(@k®) + g(hB)k())) ] ,
where
(4.3) o = Apy(p,a), B =Auy(p,e®) and a(z) = Z:Z

(i) If A,k are convex andy is either concave increasing, or convex decreasing, then the
above inequalitieg (4]1) anf (4.2) are in the reversed order.

Proof. We will prove only the item (i). The proof of the item (ii) is very similar.
Suppose thaj is a convex increasing function ahndk are convex functions oja, b]. Therefore
fort € [0, 1], we have

(4.4) h((l —t)a+ tb) < (1—t)h(a) + th(b)
and
(4.5) k((l —t)a+ tb) < (1 - t)k(a) + th(b).
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From (4.4) and[(4]5) we obtain

h((l —t)a+ tb)k((l —t)a+ tb)
< (1 —=t)?h(a)k(a) +t(1 —t)h(a)k(b) + t(1 — t)h(b)k(a) + t*h(b)k(b).
By the Lemmg 2]1 the functions((1 — ¢t)a + tb) andk((1 — t)a + tb) are convex on the
interval [0, 1] and therefore they are integrable[onl]. Consequently the functiof((1 —t)a +
th)k((1—t)a+tb) is also integrable ofb, 1]. Similarly sinceh andk are convex on the interval

la, b], they are integrable oja, b] and hencé:k is also integrable function ofa, b].
Sinceg is increasing and convex on the rangewéf by applying Jensen’s inequality we get

(4.6) g<h<(1 —t)a+ tb)k((l ~#)a+ tb))
<(1- t)29<h(a)k(a)> (1 —t) (g(h(a)k:(b)) +g<h(b)k(a)>> +t29<h(b)k(b)).

Multiplying both sides of the equatio.6) b)((l —t)a + tb)/HpHM and integrating over
the intervall0, 1], we have

||p||1[a,b] /01p<(1 —t)a+tb)g[h((1 = ha+th)k((1 = tha+tb)] b
< mg(h(a)k(aD /01p<(1 e tb>(1 12t
* ||p||1[a,b] (g (h(“)k(b)> + g(h(b)k(a)» /01p<(1 ~ta+ tb)t(l 1) dt

+

g(h(b)k(b)> /01p<(1 ~t)a+ tb>t2 dt.

HpH [a,b]

Substituting(1 — t)a + tb = x and puttingx(z) = =2 we obtain

| /abp($>g<h(x)k($)> dp < L g (h(@)k(a)) /abp(x)(l—a(x))2dx

171l ~ Ipllas

+ m (9(n(@)k®)) + 9 (hO)k())) /abp(:c)a(:c)(l —a(z))do

+ m g(h(b)k(b)> /abp(af)aQ(ﬂf) dz.

Using notation[(4.]3) we obtain

1
||pH [a,b]

/a ’ p<x)g<h(x)k<x)) dr < (1- 20" + 5*)g(h(a>k(a))
+ 89 (kD)) + (0" = 87 (9 (R(@k®)) + g (hBIk@) )

Sinceg~! is increasing, we get the desired inequality{in|4.1).
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Now let us show the inequality i (4.2). Sinkeand#k are convex ora, b, then fort € [a, ]
we observe that

h(a;b)k(a;b>
((1—t;a+tb+ta+(;—t)b)k((l—t;a+tb+ta+(;—t)b)

< i (= ta+ 1) +h(ta+ (1 —00)] [k(@—Ha+ 1) + k(a1 1))

+ 411 {215(1 1) (h(a)k:(a) + h(b)k(b)) + (t2 (1 t)2> (h(a)k;(b) + h(b)k(a))} .

Sincey is increasing and convex, by the use of Jensen’s inequality we obtain
(1 (3 b)k(az )
<h<(1 — ) a+tb) ( (1— t)a+tb))
i ( (ta+ ) (ta—l—(l—t)b))
+ 5101 [g(ha@)k@)) + o (nR))]
+ % (t2 —t+ %) [g(h(a)k(b)> + g(h(b)k(a)ﬂ.

Multiplying both sides of the last inequality kp,((l —t)a+ tb> /|IP|l o, @nd integrating over
the intervall0, 1], we have

m/olp«l—t)a—i—tb)g <h (“;b> k; (“;b» dt
< i [ (= 0e o) (- 00+ 0)k(0 - o+ ) @

+ Hle[a’b] /Olp((l —ta+1b)g (h(ta+ (1 =) k(ta+ (1 - b)) dt
o (h@)k(@) + g (hOR)) [ o=+ )y

Hp“ [a,b]

. g(h(@)k(®)) +g(R(b)k(a)) /1p (- tas0) <t2_t %) it

Hp”[a,b]
Substituting(1 — ¢)a + tb = = and using notatiorj (4.3), we obtain

2% (h (a - b) ! (%”)) < m /abp(:v)g<h(x)k(x)> do

+ (0" = 3) (9 (h@)k(@) + g (hOIK®)))

# (=04 3) (o) + o (10

+
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Sinceg~! is increasing, we complete the proof. O

Remark 4.2. If p is a symmetric function with respect to the center of the intejwal], then
a*=1/2andg* =1/3.

As a consequence of Theorém|4.1 we obtain the following main result stated in [9].

Corollary 4.3. Let us considep(z) = x andp(z) = 1 on[a,b]. If h, k are two real-valued
nonnegative convex functions pnb|, then

2% (a;b> k (“;b) _ %M(a, b) — ;N(a b) < bia /bh(x)k(x) dz,

and
—/ A()k(r) de < S M(a,b) + SN (a, D)
whereM (a,b) = h(a)k(a) + h(b)k(b) and N (a,b) = h(a)k(b) + h(b)k(a).
Proof. Sincep is symmetric or{a, b], then the result follows immediately from Theorem]|4.1 (i)
and Remark4]2. O
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