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ABSTRACT. In the present paper we establish some integral inequalities analogous to the well-
known Hadamard inequality for a class of generalized weighted quasi-arithmetic means in inte-
gral form.
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1. I NTRODUCTION

In papers [6] and [7] we have investigated some basic properties of a class of generalized
weighted quasi-arithmetic means in integral form and we have presented some inequalities in-
volving such a class of means.

In this paper we extend our considerations to inequalities of Hadamard type. Recall that the
inequality, cf. [5],

(1.1) f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x) dx ≤ f(a) + f(b)

2

which holds for all convex functionsf : [a, b] → R, is known in the literature as theHadamard
inequality(sometimes denoted as the Hermite-Hadamard inequality). This inequality has be-
came an important cornerstone in mathematical analysis and optimization and has found uses in
a variety of settings. There is a growing literature providing new proofs, extensions and consid-
ering its refinements, generalizations, numerous interpolations and applications, for example,
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2 ONDREJHUTNÍK

in the theory of special means and information theory. For some results on generalization,
extensions and applications of the Hadamard inequality, see [1], [2], [4], [8], [9] and [10].

In general, the inequality (1.1) is a special case of a result of Fejér, [3],

(1.2) f

(
a + b

2

) ∫ b

a

p(x) dx ≤
∫ b

a

p(x)f(x) dx ≤ f(a) + f(b)

2

∫ b

a

p(x) dx,

which holds whenf is convex andp is a nonnegative function whose graph is symmetric with
respect to the center of the interval[a, b]. It is interesting to investigate the role of symmetry
in this result and whether such an inequality holds also for other functions (instead of convex
ones). In this paper we consider the weight functionp as a positive Lebesgue integrable function
defined on the closed interval[a, b] ⊂ R, a < b with a finite norm, i.e.p belongs to the vector
spaceL+

1 ([a, b]) (see Section 2). We also give an elementary proof of the Jensen inequality and
state a result which corresponds to some of its conversions. In the last section of this article
we give a result involving two convex (concave) functions and (not necessarily symmetric) a
weight functionp on the interval[a, b] which is a generalization of a result given in [9].

The main aim of this paper is to establish some integral inequalities analogous to that of the
weighted Hadamard inequality (1.2) for a class of generalized weighted quasi-arithmetic means
in integral form.

2. PRELIMINARIES

The notion of a convex function plays a fundamental role in modern mathematics. As usual,
a functionf : I → R is calledconvexif

f((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ I and allλ ∈ [0, 1]. Note that if(−f) is convex, thenf is calledconcave. In
this paper we will use the following simple characterization of convex functions. For the proof,
see [10].

Lemma 2.1. Letf : [a, b] → R. Then the following statements are equivalent:

(i) f is convex on[a, b];
(ii) for all x, y ∈ [a, b] the functiong : [0, 1] → R, defined byg(t) = f((1 − t)x + ty) is

convex on[0, 1].

For the convenience of the reader we continue by recalling the definition of a class of gener-
alized weighted quasi-arithmetic means in integral form, cf. [6].

Let L1([a, b]) be the vector space of all real Lebesgue integrable functions defined on the
interval [a, b] ⊂ R, a < b, with respect to the classical Lebesgue measure. Let us denote by
L+

1 ([a, b]) the positive cone ofL1([a, b]), i.e. the vector space of all real positive Lebesgue
integrable functions on[a, b]. In what follows‖p‖[a,b] denotes the finiteL1-norm of a func-
tion p ∈ L+

1 ([a, b]). For the purpose of integrability of the product of two functions we also
consider the spaceL∞([a, b]) as the dual toL1([a, b]) (andL+

∞([a, b]) as the dual toL+
1 ([a, b]),

respectively).

Definition 2.1. Let (p, f) ∈ L+
1 ([a, b]) × L+

∞([a, b]) andg : [0,∞] → R be a real continuous
monotone function. The generalized weighted quasi-arithmetic mean of functionf with respect
to weight functionp is a real numberM[a,b],g(p, f) given by

(2.1) M[a,b],g(p, f) = g−1

(
1

‖p‖[a,b]

∫ b

a

p(x)g(f(x)) dx

)
,

whereg−1 denotes the inverse function to the functiong.
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ON HADAMARD TYPE INEQUALITIES 3

Many known means in the integral form of two variablesp, f are a special case ofM[a,b],g(p, f)
when taking the suitable functionsp, f, g. For instance, puttingp ≡ 1 on [a, b] we obtain clas-
sical quasi-arithmetic integral means of a functionf . MeansM[a,b],g(p, f) generalize also other
types of means, cf. [7], e.g. generalized weighted arithmetic, geometric and harmonic means,
logarithmic means, intrinsic means, power means, one-parameter means, extended logarithmic
means, extended mean values, generalized weighted mean values, and others. Hence, from
M[a,b],g(p, f) we can deduce most of the two variable means.

Some basic properties of meansM[a,b],g(p, f) related to properties of input functionsf, g were
studied in [6] and [7] in connection with the weighted integral Jensen inequality for convex
functions. The following lemma states Jensen’s inequality in the case of meansM[a,b],g(p, f)
and we give its elementary proof.

Lemma 2.2(Jensen’s Inequality). Let (p, f) ∈ L+
1 ([a, b])× L+

∞([a, b]) such thatc < f(x) < d
for all x ∈ [a, b], where−∞ < c < d < ∞.

(i) If g is a convex function on(c, d), then

(2.2) g
(
A[a,b](p, f)

)
≤ A[a,b](p, g ◦ f).

(ii) If g is a concave function on(c, d), then

g
(
A[a,b](p, f)

)
≥ A[a,b](p, g ◦ f),

whereA[a,b](p, f) denotes the weighted arithmetic mean of the functionf on [a, b].

Proof. Let g be a convex function. Put

(2.3) ξ = A[a,b](p, f).

From the mean value theorem, it follows thatc < ξ < d. Put

η = sup
τ∈(c,d)

g(ξ)− g(τ)

ξ − τ
,

i.e., the supremum of slopes of secant lines. From the convexity ofg it follows that

η ≤ g(θ)− g(ξ)

θ − ξ
, for any θ ∈ (ξ, d).

Therefore, we have that

g(τ) ≥ g(ξ) + η(τ − ξ), for any τ ∈ (c, d),

which is equivalent to

(2.4) g(ξ)− g(τ) ≤ η(ξ − τ),

for any τ ∈ (c, d). Choosing, in particular,τ = f(x), multiplying both sides of (2.4) by
p(x)/‖p‖[a,b] and integrating over the interval[a, b] with respect tox, we get

(2.5) g(ξ)− A[a,b](p, g ◦ f) ≤ η · A[a,b](p, ξ − f).

The integral at the right side of the inequality (2.5) is equal to0. Indeed,

η · A[a,b](p, ξ − f) = η
(
ξ − A[a,b](p, f)

)
= 0.

Replacingξ by (2.3), we have

g
(
A[a,b](p, f)

)
− A[a,b](p, g ◦ f) ≤ 0.

Hence the result (2.2). �

As a direct consequence of Jensen’s inequality we obtain the following
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4 ONDREJHUTNÍK

Corollary 2.3. Let (p, f) ∈ L+
1 ([a, b]) × L+

∞([a, b]) such thatc < f(x) < d for all x ∈ [a, b],
where−∞ < c < d < ∞.

(i) If g is a convex increasing or concave decreasing function on(c, d), then

(2.6) A[a,b](p, f) ≤ M[a,b],g(p, f).

(ii) If g is a convex decreasing or concave increasing function on(c, d), then

A[a,b](p, f) ≥ M[a,b],g(p, f).

Proof. Let g be a convex increasing function. Applying the inverse ofg to both sides of Jensen’s
inequality (2.2) we obtain the desired result (2.6).

Proofs of remaining parts are similar. �

In what follows the following two simple lemmas will be useful.

Lemma 2.4. Leth : [a, b] → [c, d] and leth−1 be the inverse function to the functionh.

(i) If h is strictly increasing and convex, or a strictly decreasing and concave function on
[a, b], thenh−1 is a concave function on[c, d].

(ii) If h is strictly decreasing and convex, or a strictly increasing and concave function on
[a, b], thenh−1 is a convex function on[c, d].

Proof. We will prove only the item (i), the item (ii) may be proved analogously. Suppose thath
is a strictly decreasing and convex function on[a, b]. Then clearlyh−1 is strictly decreasing on
[c, d]. Takex1, x2 ∈ [a, b] andα, β ∈ [0, 1] such thatα + β = 1. Sinceh−1 is the inverse toh,
there existy1, y2 ∈ [c, d] such thatyi = h(xi) andxi = h−1(yi), for i ∈ {1, 2}. Then

h−1(αy1 + βy2) = h−1(αh(x1) + βh(x2)).

Sinceh is convex, i.e.αh(x1) + βh(x2) ≥ h(αx1 + βx2), andh−1 is strictly decreasing, we
have

h−1(αy1 + βy2) ≤ h−1(h(αx1 + βx2)) = αh−1(y1) + βh−1(y2).

From this it follows thath−1 is a convex function on[c, d]. �

Lemma 2.5. Letϕ : [a, b] → [c, d] andh : [c, d] → R.

(i) If ϕ is convex on[a, b] andh is convex increasing on[c, d], or ϕ is concave on[a, b] and
h is convex decreasing on[c, d], thenh(ϕ(x)) is convex on[c, d].

(ii) If ϕ is convex on[a, b] andh is concave decreasing on[c, d], or ϕ is concave on[a, b]
andh is concave increasing on[c, d], thenh(ϕ(x)) is concave on[c, d].

Proof. Let us suppose thatϕ is concave on[a, b] andh is convex decreasing on[c, d]. Taking
x1, x2 ∈ [a, b] andα, β ∈ [0, 1] : α + β = 1, we get

h(ϕ(αx1 + βx2)) ≤ h(αϕ(x1) + βϕ(x2)) ≤ αh(ϕ(x1)) + βh(ϕ(x2)),

i.e. h(ϕ(x)) is a convex function on[c, d]. Proofs of the remaining parts are similar. �

3. A GENERALIZATION OF FEJÉR’ S RESULT

By the use of Jensen’s inequality we obtain the following result involvingM[a,b],g(p, f). In
what followsg is always a real continuous monotone function on the range off (in accordance
with Definition 2.1).

Theorem 3.1.Let (p, f) ∈ L+
1 ([a, b])× L+

∞([a, b]) andIm(f) = [c, d], −∞ < c < d < ∞.
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ON HADAMARD TYPE INEQUALITIES 5

(i) If g : [c, d] → R is convex increasing or concave decreasing, andf is concave, then

f(a)(1− α∗) + f(b)α∗ ≤ M[a,b],g(p, f),

where

(3.1) α∗ = A[a,b](p, α), for α(x) =
x− a

b− a
.

(ii) If g : [c, d] → R is concave increasing or convex decreasing, andf is convex, then

M[a,b],g(p, f) ≤ f(a)(1− α∗) + f(b)α∗.

Proof. The presented inequalities are intuitively obvious from the geometric meaning of con-
vexity. Let g be a concave increasing andf be a convex function. From Corollary 2.3(ii) we
have

M[a,b],g(p, f) ≤ A[a,b](p, f).

Putting

α(x) =
x− a

b− a
,

we getx = (1− α(x))a + α(x)b, for all x ∈ [a, b]. From the convexity of functionf we have

f
(
(1− α(x))a + α(x)b

)
≤ (1− α(x))f(a) + α(x)f(b),

and therefore

M[a,b],g(p, f) ≤ 1

‖p‖[a,b]

∫ b

a

p(x)
(
(1− α(x))f(a) + α(x)f(b)

)
dx

= f(a)

∫ b

a
p(x)(1− α(x)) dx

‖p‖[a,b]

+ f(b)

∫ b

a
p(x)α(x) dx

‖p‖[a,b]

.

Using (3.1) the above inequality may be rewritten into

M[a,b],g(p, f) ≤ f(a)(1− α∗) + f(b)α∗.

Remaining parts may be proved analogously. �

Remark 3.2. If p is symmetric with respect to the center of the interval[a, b], i.e.

p(a + t) = p(b− t), 0 ≤ t ≤ b− a

2
,

thenα∗ = 1/2. It then follows that items (i) and (ii) reduce to

f(a) + f(b)

2
≤ M[a,b],g(p, f), and M[a,b],g(p, f) ≤ f(a) + f(b)

2
,

respectively.

The Fejér inequality (1.2) immediately yields the following version of the generalized weighted
Hadamard inequality for meansM[a,b],g(p, f).

Theorem 3.3. Let (p, f) ∈ L+
1 ([a, b])× L+

∞([a, b]) such thatp is symmetric with respect to the
center of the interval[a, b]. Let Im(f) = [c, d], −∞ < c < d < ∞, andg : [c, d] → R.

(i) If g is convex increasing or concave decreasing andf is convex, then

(3.2) f

(
a + b

2

)
≤ M[a,b],g(p, f) ≤ g−1

(
g(f(a)) + g(f(b))

2

)
.
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6 ONDREJHUTNÍK

(ii) If g is concave increasing or convex decreasing andf is concave, then

g−1

(
g(f(a)) + g(f(b))

2

)
≤ M[a,b],g(p, f) ≤ f

(
a + b

2

)
.

Proof. We will prove the item (i). The item (ii) may be proved analogously.
Sinceg is increasing (decreasing), then assumption (i) of Theorem 3.3 and Lemma 2.5 yield

thath = g ◦ f is convex (concave). Applying (1.2) forh, then applying the inverse ofg to (1.2),
the inequalities in (3.2) immediately follow. �

Corollary 3.4. Let us suppose the functionsp(x) = 1 andg(x) = x. If f is a convex function
on [a, b], then we get the celebrated Hadamard inequality (1.1).

Using our approach from the proof of Theorem 3.1 we are able to prove the following theorem
which corresponds to some conversions of the Jensen inequality for convex functions in the case
of M[a,b],g(p, f).

Theorem 3.5. Let (p, f) ∈ L+
1 ([a, b]) × L+

∞([a, b]), such thatf : [a, b] → [k, K], and g :
[k,K] → R, where−∞ < k < K < ∞.

(i) If g is convex on[k, K], then

A[a,b](p, g ◦ f) ≤
g(k)

(
K − A[a,b](p, f)

)
K − k

+
g(K)

(
A[a,b](p, f)− k

)
K − k

.

(ii) If g is concave on[k,K], then

A[a,b](p, g ◦ f) ≥
g(k)

(
K − A[a,b](p, f)

)
K − k

+
g(K)

(
A[a,b](p, f)− k

)
K − k

.

Proof. Let us prove the item (i). Suppose thatg is a convex function on the interval[k,K]. Let
us consider the following integral ∫ b

a

p(x)g(f(x)) dx.

Sincek ≤ f(x) ≤ K for all x ∈ [a, b] andf(x) = (1− αf (x))k + αf (x)K, where

(3.3) αf (x) =
f(x)− k

K − k
,

then ∫ b

a

p(x)g(f(x)) dx ≤
∫ b

a

p(x)
(
(1− αf (x))g(k) + αf (x)g(K)

)
dx

= g(k)

∫ b

a

p(x)
(
1− αf (x)

)
dx + g(K)

∫ b

a

p(x)αf (x) dx.

By (3.3) we get∫ b

a

p(x)αf (x) dx =
1

K − k

(∫ b

a

p(x)f(x) dx− k ‖p‖[a,b]

)
and therefore∫ b

a

p(x)g(f(x)) dx ≤ g(k)

K − k

(
K ‖p‖[a,b] −

∫ b

a

p(x)f(x) dx

)
+

g(K)

K − k

(∫ b

a

p(x)f(x) dx− k ‖p‖[a,b]

)
.
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ON HADAMARD TYPE INEQUALITIES 7

Since‖p‖[a,b] is positive and finite, we may write

A[a,b](p, g ◦ f) ≤
g(k)

(
K − 1

‖p‖[a,b]

∫ b

a
p(x)f(x) dx

)
K − k

+
g(K)

(
1

‖p‖[a,b]

∫ b

a
p(x)f(x) dx− k

)
K − k

=
g(k)

(
K − A[a,b](p, f)

)
K − k

+
g(K)

(
A[a,b](p, f)− k

)
K − k

.

Hence the result. Item (ii) may be proved analogously. �

4. HADAMARD TYPE I NEQUALITY FOR THE PRODUCT OF TWO FUNCTIONS

The main result of this section consists in generalization of a result for two convex functions
given in [9]. Observe that symmetry of a weight functionp on the interval[a, b] is now not
necessarily required. Our approach is based on using of a fairly elementary analysis.

Theorem 4.1.Letp ∈ L+
1 ([a, b]) andh, k be two real-valued nonnegative and integrable func-

tions on[a, b]. Letg be a real continuous monotone function defined on the range ofhk.

(i) If h, k are convex andg is either convex increasing, or concave decreasing, then

(4.1) M[a,b],g(p, hk) ≤ g−1

[
(1− 2α∗ + β∗)g

(
h(a)k(a)

)
+ (α∗ − β∗)

×
(
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

))
+ β∗g

(
h(b)k(b)

)]
.

and

(4.2) M[a,b],g(p, hk) ≥ g−1

[
2g

(
h

(
a + b

2

)
k

(
a + b

2

))
+ (β∗ − α∗)

×
(
g
(
h(a)k(a)

)
+ g

(
h(b)k(b)

))
+

(
α∗ − β∗ − 1

2

)
×

(
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

)) ]
,

where

(4.3) α∗ = A[a,b](p, α), β∗ = A[a,b](p, α
2) and α(x) =

x− a

b− a
.

(ii) If h, k are convex andg is either concave increasing, or convex decreasing, then the
above inequalities (4.1) and (4.2) are in the reversed order.

Proof. We will prove only the item (i). The proof of the item (ii) is very similar.
Suppose thatg is a convex increasing function andh, k are convex functions on[a, b]. Therefore
for t ∈ [0, 1], we have

(4.4) h
(
(1− t)a + tb

)
≤ (1− t)h(a) + th(b)

and

(4.5) k
(
(1− t)a + tb

)
≤ (1− t)k(a) + tk(b).
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From (4.4) and (4.5) we obtain

h
(
(1− t)a + tb

)
k
(
(1− t)a + tb

)
≤ (1− t)2h(a)k(a) + t(1− t)h(a)k(b) + t(1− t)h(b)k(a) + t2h(b)k(b).

By the Lemma 2.1 the functionsh((1 − t)a + tb) andk((1 − t)a + tb) are convex on the
interval[0, 1] and therefore they are integrable on[0, 1]. Consequently the functionh((1− t)a+
tb)k((1− t)a+ tb) is also integrable on[0, 1]. Similarly sinceh andk are convex on the interval
[a, b], they are integrable on[a, b] and hencehk is also integrable function on[a, b].

Sinceg is increasing and convex on the range ofhk, by applying Jensen’s inequality we get

(4.6) g
(
h
(
(1− t)a + tb

)
k
(
(1− t)a + tb

))
≤ (1− t)2g

(
h(a)k(a)

)
+ t(1− t)

(
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

))
+ t2g

(
h(b)k(b)

)
.

Multiplying both sides of the equation (4.6) byp
(
(1− t)a + tb

)
/‖p‖[a,b] and integrating over

the interval[0, 1], we have

1

‖p‖[a,b]

∫ 1

0

p
(
(1− t)a + tb

)
g
[
h
(
(1− t)a + tb

)
k
(
(1− t)a + tb

)]
dt

≤ 1

‖p‖[a,b]

g
(
h(a)k(a)

) ∫ 1

0

p
(
(1− t)a + tb

)
(1− t)2 dt

+
1

‖p‖[a,b]

(
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

)) ∫ 1

0

p
(
(1− t)a + tb

)
t(1− t) dt

+
1

‖p‖[a,b]

g
(
h(b)k(b)

) ∫ 1

0

p
(
(1− t)a + tb

)
t2 dt.

Substituting(1− t)a + tb = x and puttingα(x) = x−a
b−a

we obtain

1

‖p‖[a,b]

∫ b

a

p(x)g
(
h(x)k(x)

)
dx ≤ 1

‖p‖[a,b]

g
(
h(a)k(a)

) ∫ b

a

p(x)(1− α(x))2 dx

+
1

‖p‖[a,b]

(
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

)) ∫ b

a

p(x)α(x)(1− α(x)) dx

+
1

‖p‖[a,b]

g
(
h(b)k(b)

) ∫ b

a

p(x)α2(x) dx.

Using notation (4.3) we obtain

1

‖p‖[a,b]

∫ b

a

p(x)g
(
h(x)k(x)

)
dx ≤ (1− 2α∗ + β∗)g

(
h(a)k(a)

)
+ β∗g

(
h(b)k(b)

)
+ (α∗ − β∗)

(
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

))
.

Sinceg−1 is increasing, we get the desired inequality in (4.1).
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Now let us show the inequality in (4.2). Sinceh andk are convex on[a, b], then fort ∈ [a, b]
we observe that

h

(
a + b

2

)
k

(
a + b

2

)
= h

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
k

(
(1− t)a + tb

2
+

ta + (1− t)b

2

)
≤ 1

4

[
h
(
(1− t)a + tb

)
+ h

(
ta + (1− t)b

)] [
k
(
(1− t)a + tb

)
+ k

(
ta + (1− t)b

)]
+

1

4

[
2t(1− t)

(
h(a)k(a) + h(b)k(b)

)
+

(
t2 + (1− t)2

)(
h(a)k(b) + h(b)k(a)

)]
.

Sinceg is increasing and convex, by the use of Jensen’s inequality we obtain

g

(
h

(
a + b

2

)
k

(
a + b

2

))
≤ 1

4
g

(
h
(
(1− t)a + tb

)
k
(
(1− t)a + tb

))
+

1

4
g

(
h
(
ta + (1− t)b

)
k
(
ta + (1− t)b

))
+

1

2
t(1− t)

[
g
(
h(a)k(a)

)
+ g

(
h(b)k(b)

)]
+

1

2

(
t2 − t +

1

2

) [
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

)]
.

Multiplying both sides of the last inequality byp
(
(1− t)a + tb

)
/‖p‖[a,b] and integrating over

the interval[0, 1], we have

2

‖p‖[a,b]

∫ 1

0

p
(
(1− t)a + tb

)
g

(
h

(
a + b

2

)
k

(
a + b

2

))
dt

≤ 1

‖p‖[a,b]

∫ 1

0

p
(
(1− t)a + tb

)
g

(
h
(
(1− t)a + tb

)
k
(
(1− t)a + tb

))
dt

+
1

‖p‖[a,b]

∫ 1

0

p
(
(1− t)a + tb

)
g

(
h
(
ta + (1− t)b

)
k
(
ta + (1− t)b

))
dt

+
g
(
h(a)k(a)

)
+ g

(
h(b)k(b)

)
‖p‖[a,b]

∫ 1

0

p
(
(1− t)a + tb

)
t(1− t) dt

+
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

)
‖p‖[a,b]

∫ 1

0

p
(
(1− t)a + tb

) (
t2 − t +

1

2

)
dt.

Substituting(1− t)a + tb = x and using notation (4.3), we obtain

2g

(
h

(
a + b

2

)
k

(
a + b

2

))
≤ 1

‖p‖[a,b]

∫ b

a

p(x)g
(
h(x)k(x)

)
dx

+ (α∗ − β∗)
(
g
(
h(a)k(a)

)
+ g

(
h(b)k(b)

))
+

(
β∗ − α∗ +

1

2

) (
g
(
h(a)k(b)

)
+ g

(
h(b)k(a)

))
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Sinceg−1 is increasing, we complete the proof. �

Remark 4.2. If p is a symmetric function with respect to the center of the interval[a, b], then
α∗ = 1/2 andβ∗ = 1/3.

As a consequence of Theorem 4.1 we obtain the following main result stated in [9].

Corollary 4.3. Let us considerg(x) = x andp(x) ≡ 1 on [a, b]. If h, k are two real-valued
nonnegative convex functions on[a, b], then

2h

(
a + b

2

)
k

(
a + b

2

)
− 1

6
M(a, b)− 1

3
N(a, b) ≤ 1

b− a

∫ b

a

h(x)k(x) dx,

and
1

b− a

∫ b

a

h(x)k(x) dx ≤ 1

3
M(a, b) +

1

6
N(a, b),

whereM(a, b) = h(a)k(a) + h(b)k(b) andN(a, b) = h(a)k(b) + h(b)k(a).

Proof. Sincep is symmetric on[a, b], then the result follows immediately from Theorem 4.1 (i)
and Remark 4.2. �
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[10] J. PĚCARIĆ AND S.S. DRAGOMIR, A generalization of Hadamard’s inequality for isotonic linear
functionals,Rad. Mat.,7 (1991), 103–107.

J. Inequal. Pure and Appl. Math., 7(3) Art. 96, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/article.php?sid=399
http://rgmia.vu.edu.au/v6(E).html
http://jipam.vu.edu.au/

	1. Introduction
	2. Preliminaries
	3. A Generalization of Fejér's Result
	4. Hadamard Type Inequality for the Product of Two Functions
	References

