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ABSTRACT. We show that one half is a lower bound for the critical probability of an oriented
site percolation process of Grimmett and Hiemer. This value improves the known lower bound of
one third. We employ an Ansatz which we use also for a related oriented site percolation problem
considered by Bishir. Monte Carlo simulation indicates a critical value of close to 0.535, so the
bound appears to be fairly tight.
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1. INTRODUCTION

Percolation theory investigates questions related to the deterministic flow of fluid through a
random medium consisting of a lattice of sites (vertices, atoms) with adjacent sites connected by
edges (bonds). In the bond percolation process, each edge is open (with propabilitjosed
(with probability 1 — p). In the site percolation process, each site is open (with probap)lity
or closed (with probabilityy — p). In either process “fluid” is envisaged as entering the lattice
at the origin. In the site process, any site connected to the origin by a chain of consecutive
adjacent open sites is said to be wetted. Similarly in the bond process, any edge joined to the
origin through a connected sequence of open edges is termed wetted. Percolation occurs when
an infinite number of sites (resp. edges) are wetted. Mixed site and bond percolation processes
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2 C.E.M. FEEARCE AND F.K. FLETCHER

are also possible, sites and bonds being open with respective probapiliéiedp,. Fluid will
flow between two sites if and only if both are open and an open bond exists between them.
Each formulation admits oriented versions. Here bonds between pairs of sites have an asso-
ciated orientation and fluid may flow only in the direction of that orientation. For a discussion
of oriented percolation seel[7].
A phenomenon associated with percolation processes is that of phase transitions: for small
p percolation does not occur while jifis above a critical probability threshojq there is a
positive probabilityd(p) of percolation. Thus

pe = sup{p : 0(p) = 0}.

The functiond is nondecreasing ip. A conceptual graph of(p) is shown in Figur¢ 1]1 (see
[13,[14,20]).
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Figure 1.1: The behaviour of the percolation probabilityp) with p

Key problems in percolation theory include ascertaining the critical probapijliand char-
acterising the system in the subcritical and supercritical phases and its behavipaidse to
p.. Summaries are given in [13,114,/17]) 19]. For a one—dimensional percolation pyocess,

For a hypercubic lattic&? of dimensiond > 2 we have0 < p.(L%) < 1 (see[13/14]). To
distinguish the critical probabilities for site and bond processes we denote the forpmeag
the latter byp,,.

The study of percolation processes has grown enormously following the work of Broadbent
[5] and Broadbent and Hammersley [6]. The following exact results have been determined for
pe N the two—dimensional lattices shown in Figfire| 1.2.

Kesten [18]: for (a)p., = 1/2.

Wierman [25]: for (b) p, = 2sin(7/18).

Wierman [25]: for (C)pe, = 1 — 2sin(7/18).

Wierman [26]: for (d),p., is the unique root irf0, 1) of 1 — p — 6p® + 6p® — p° = 0.

By contrast there are few exact results for site percolation or oriented percolation. The results
above were derived using dual graphs, a technique generally inapplicable to oriented percolation
(though see [27]). For site percolation the relevant structural idea is thatochingin place of
duality (seel[14, Ch. 3]). Some results of Monte Carlo simulation for site percolation are given
in [10,11]. With most percolation problems effort has concentrated on finding lower and upper
bounds for the critical probability, see for examplel[1, 4,22 28, 29, 30]. The result

(11) DPeb < Des
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Figure 1.2: lllustration of generic portions of the graphs for whigl is known: (a) square lattice, (b) triangular
lattice, (c) hexagonal lattice and (d) bow-tie lattice.

was originally shown for a general class of graph structures by Hammersley [16]. Later proofs
have centred on a lemma of Oxley and Welsh [24].

In Sectionﬂz we introduce two oriented latticé$,andL?,,, on which site percolations exhibit
phase transitions. In Sectiph 3 we provide a useful Ansatz. In S¢gtion 4 we make use of this in

amplifying a derivation by Bishir [3] of a lower bound f@r <E2>. Finally, in Sectiorﬂ’s, we

give our main result, an improved lower bound foy (L?th).

2. THE ORIENTED LATTICES L2 AND L2,

The graph structure illustrated in Figdre]2.1 was first considered in an oriented bond perco-
lation context by Grimmett and Hiemer [15]. We follow their notatiﬁbt. We write L2 for
the two—dimensional lattick? with bonds oriented in the positiveandy directions. The set
of sites that may be reached at timdrom the origin is then the set of sitd$z,y)} on the
diagonalr + y = n (see Figure 2]2(a)). Figure 2.2(b) shows this graph rotated throgigh

Consider the graph formed by removing all sitesy) with = +y odd. This consists of bonds
directed from each sitér, y) with x + y even to(x + 1,y — 1) and(z + 1,y + 1) and so is
simply the grapH.2, showing thaf.2,, > L2.

Durrett [7], Liggett [21], Ballister, Bollobas and Staceéy [1] use the gr]EE)ﬁn an oriented
bond or site percolation model. In particular, Liggétt/[21] considers percolation on the graph
L2, where the probability of a site being present at time dependent on whether it has 0, 1
or 2 neighbours at timeé— 1. Denote byA,, the set of sites open at timg that is, sites with
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Figure 2.1: Possible state transitions in the first three time stegs’n

x 4+ y = n. The probability of a sitéx, y) being open at time + 1 is then given by
¢ i 1A, N {(ey— 1), (@ Ly} =2
P{(z,y) € Ani1lAn} = p #]AnN{(z,y — 1), (z - Ly} =1
0 otherwise

This general formulation allows for site percolation, bond percolation and mixed percolation
processes on the graph. We say th&t) survives or dies out according to whethefA,, #

() Vn) is positive or zero (for nonempty finite initial states). Liggett proved that

(@) ifg < 2(1 — p), then(A,,) dies out;

(b)if 1 < p < 1landg > 4p(1 —p), then(A,) survives.
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Figure 2.2: The grapHL? (a) oriented as the square lattice and (b) rotaffdso that thez-axis represents time
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For site percolation ofi.2, the probability of each site being open is independent of the
number of adjacent bonds and sites,pse- ¢q. Result (b) then gives thdt4,,) survives for

p > 3/4, so thatp,, <IE2> satisfies

>~ w

(2.1) pes (17) <
This leads to the following.

Theorem 2.1. The site percolation process dﬁilt undergoes a phase transition, with
1 - - 3
§ S Des (Lzlt> S Des (L2) S Z

Proof. Let N(n) be the total number of opem-step paths in the site process IBi)t. From

the orientation of the graph, these will be self—avoiding. Thgn) < 3", the total number of

n-step paths of.2,,, so
P(N(n) > 1) <E(N(n)) < 3"p".
Since3"p" — 0 whenp < 1/3, we have
1
lim P(N(n) >1)=0 for p< 3

This givesp,s (Jﬁg,t) >1/3.

Sincel?, O L2, we havep,, <]ﬂ§lt> < Pes (I[7>. The remainder of the enunciation follows

from (2.1). O

The above derivation qf, (]f?) < 3/4 was given by Liggett [21] in 1995. Earlier rigorous

upper bounds are 0.819 (Liggeti [8] 1992), 0.762 (Balisteal. [1] 1993) and 0.7491 (Balister

et al. [2] 1994). The last paper corrected a misprintlin [1]. The tighter bounds required sub-
stantial computer calculation. A nonrigorous estimate 0.7055 was given by Onody and Neves
[23] in 1992. These values may be compared with the lower bound 2/3 found by Bishir and
discussed in Sectigr) 4. Although derived as far back as 1963, this does not appear to have been

improved subsequently. Thus (a) of Liggett also g'rpgs(]f?) > 2/3.

The derivation of the first inequality in Theordm 2.1 is due to Grimmiett [14]. In fact by
considering instead the corresponding bond percolation and invdkifg (1.1), this result can be

strengthened minimally t@.. (Iﬂilt> > 1/3. In SectiorBS we improve the lower bound for

Pe (IE?L”) from one third to one half.

3. ANSATZ
As a prelude to deriving an improved lower bound for <]ﬁ§lt> and filling out Bishir’s

derivation of a lower bound fay.., (]ﬂ?), we introduce a useful lemma.

Lemma 3.1. SupposeR;, R, are proper real polynomials i, with R, of degreem > 1 and
R, of degree less than or equal o, and that
Ri(2)

"= T R
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has a partial fractions decomposition

A T4,
h(z)=——+>

l—z Z1-2z/%
with
Zmal > Zm > .. > 29 > 1
and theA'’s satisfying
d Aj>0 for i=12....m+1.
j=1
If

h(z) := i hp2",
n=0

then(h,)s°, is positive and bounded above.

Proof. From the given conditions we have for> 0 that

supplying positivity. Boundedness follows from

h, — A; asn — oo.

4. BISHIR’SLOWER BOUND

In this section a result of Bishir [3] is presented and proved. The result provides a lower
bound for the critical probability for oriented site percolation on the grﬁhh The conver-
gence arguments presented by Bighir [3] are incomplete. We present a more complete argument
utilising the lemma.

Theorem 4.1. The critical probabilityp,. (]I?) satisfies
- 2
s JLP) > 2.
P ( =3
Proof. Consider a modification of the percolation process wherein sites are open with proba-
bility p but where, if any two sites are wetted at timyehen all intervening sites are deemed

to be wetted. Lety(p) be the probability that an infinite number of sites will be wetted in the
modified process ang, the corresponding critical probability. Thettip) > 6(p), since more

sites are wetted in the modified process. Accordingly< p.s <E2>. It thus suffices to show
thatp}, = 2/3.
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The modified process is a Markov chain whose state attimée number of consecutive
wetted sites. As for the original process, if there are no sites wetted at some time then no sites
can be wetted at any later time, so state O is absorbing. The transition probabiliakes the
form

(b fori =0
s fori >1andj =0
4.2) pij =1 (i+1)pg fori > 1andj =1
(i+2—j)p*¢7 fori>1landj=2,...,i+1
L 0 fori > 1andj > i+ 1.

Let b, be the probability that the process is never in state 0, given that it started imstate
We note thatb,,) must be nondecreasing. Since the percolation process has initial state 1, then
")/(p) = bl. SetB = (bl,bg, .. .)T.

Suppose the states of the modified process are partitionet & . . .|, inducing a partition

1 0
=[x
of its transition matrix. It is well known (see, for example, [9, p. 364]) tRast the maximal
solution to

(4.2) B=QB
satisfying
(4.3) 0<b, <.
From (4.2)
(4.4) Zb 2= (2,222 .. )B = (2,24 2°...)QB.

Since(b,) is nondecreasm.S) gives thatz) has radius of convergence unity unléss= 0,
when the radius of convergence is infinity. Frdm [4.1) we have

2 2.2
p p =z p =z
(2,22,2%,..)Q = ((——p, , ),

1—gqz)? (1—¢2)?" (1 —qz)?

whereq =1 — p.
Substitution into[(4]4) gives

R YR O St S
Bl = S P F ((1 mpRE p) g
_rxla—(1-¢2)),
d(1—q2)?—p®
_ pzg(2)
S,
where
~ (1=g2)*—g¢q
9 () = (p—q2)? — >z

SinceB(z) is convergent on the open unit disk, the sefigs := >~ g,2" must also have a
radius of convergence of at least unity.
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8 C.E.M. FEEARCE AND F.K. FLETCHER

Whenp = 0, absorption occurs at the first step, so that= 0 for n > 0. Whenp = 1,
the process always survives provided it does not start in state 0, dg, that for n > 0. For
0 < p < 1, the denominator of the right—hand side[of {4.5) has two zeros given by

l+p— /(1 +p)?—4p°
2y = 2q )
1+ p+ /(1 +p)? —4p?
— > :

z3

The factorisation(1 + p)? — 4p* = (1 + 3p)(1 — p) > 0 for all 0 < p < 1 ensures that, and
23 are real and positive. Alsg, > 1 for all 0 < p < 1. It may be seen by taking the derivative
of z, with respect tg thatz, is increasing fof < p < 1.

First suppos® < p < 2/3. In this casé) < 2z, < 1, sog(z) has a pole inside the unit disk
unless the numerator ip (4.5) vanishes{et z,. The latter is readily seen to be impossible for
p > 0. For B(z) to converge inside that disk we require= 0, which implies thab,, = 0 for
alln > 1.

Next suppose/3 < p < 1. In this case

(46) z3 > 29 > 1.
The function

has partial fraction decomposition
A A A
9(2) _ 1 i 2 + 3 :
l—2z 11—z 1—2z/zg 1—2/z

where
2
P —q
A= —
P -2 -
. (I—g=)*—q¢
A2 - 2 )
(1 - Zz)p (1 - 2’2/23)
A= (L—azm) g

(1= 23)p?(1 — 23/22)
We haveA; > (0 for 2/3 < p < 1. Further,

1

To deriveA; + A, > 0, it suffices to demonstrate thdt, < 0. By (4.6) the denominator od;
must be positive. Substitution ef into the numerator gives

—q
(1—qz)®—q= - ¢+ Vg =3¢%) <0,

yielding the desired result; < 0.

Thus h(z) satisfies the conditions of the lemma, so ttat)° , is positive and bounded
above. SinceB(z) = pzbh(z), the sequencé,,) is also positive and bounded above unless
b, = 0, whenb,, = 0.

The valueb = lim,,_,, b,, may be obtained from Abel's theorem as

b= lim (1—2)B(z) = e

bi.
z—1~ 1—3q !
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Whenb, > 0, the maximal solution tq (42) satisfying (#.3) hias= 1, so thatb; = (1 —
3¢)/(p* — q) and

Finally suppose = 2/3. In this case:, = 1, soB(z) has a pole of order two at= 1 unless
b, = 0. Suppose, if possible, tha — b > 0 asn — oco. By Abel’'s theorem

b= linlai(l —2)B(z) = o0,
contradictingy < 1. Thus we must havg, = 0 for p = 2/3.

Accordingly the probability of obtaining an infinite number of wetted sites starting from a
single site is

0 forp < g
") =9 4 _ 3 5
5 forp > -
pT—q
Thusp), = sup{p : 7v(p) = 0} = 2/3, completing the proof. O

5. A LOWER BOUND FOR pgs (Eilt)

The approach of the previous section may be employed to develop a lower bomc(ﬂf)ﬁﬁ .

In this section, we use this technique to derive a bound that is a substantial improvement on that
of Theorem 2.11.

Theorem 5.1. The critical probabilityp.. (IE?LH> satisfieg,. (Eglt) >1/2.

Proof. We introduce a modified process on the grﬁ?@p with the same structure as the original
oriented site percolation problem except in that if any two sites are wetted at titthen all
sites between them at tinteare deemed wetted, so the wetted sites at tirae consecutive.
Denote the probability of wetting an infinite number of sites for this new proceggy The
percolation thresholg? for this process is

piy = sup{p : n(p) = 0}.

The percolation probability for the modified process will be at least as large as that for the
original oriented site percolation process, since sites not wetted at tirtee latter may be in
the former. These sites may in turn lead to other sites being wetted at the next time step. Thus

0(p) <n(p) and pe, (L2,) > pl,

and it suffices to demonstrate thét = 1/2.

The state of the process at any time is the number of sites wetted at that time. By construc-
tion these sites are contiguous. The modified process is a Markov chain whose states are the
nonnegative integers.
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When no sites are wetted at some tifethen none are wetted subsequently, so 0 is an
absorbing state. The transition probabilities for the chain are

(o, fori =0
qit? fori >1andj =0
pij=1< (1+2)pg fori>1andj =1
(i+3—7)p*¢"*7 fori>1andj=2,...,i+2
L 0 fori >1andj > i+ 2,
whereg = 1 —p. We define,,, B, Q as in Theorerp 4]1. With initial state 1, we haug) = b;.
As before[(4.R)+(4]4) hold.

We set
= Zzipi,j (j=1).
=1

This is well-defined forz| < 1, since0 < p;; < 1. We derive

oo

- - 3—2qz
Qi(z) =) 2'(i+2)pdt =pg*r—=,
(2) 2_; (i+2) ErDE

p2

_ i+ gt — .2
;Z(H )P°q A—qp 7
and forj > 3
Q;(z) = 2'(i+ 3 — j)pPgtH
.

00

=)
oo

k=0

(k‘ + 1)zk+j—2p2qk

B pQZj—2
C (1—g2)”
Hence for|z| < 1

(2,22, 2%,...)Q = (Q1(2), Q2(2), Qs(2), ...

p2

=—F7 (1 2.
2(1—q2)2(’z’z’ )
3 —2qz p?
2 2
+ 0,0,...).
(pq Z(l—qz)2 2(1 —qz)?’ LAk )

By (4.3), the power series
= Z b, 2"
n=1

converges absolutely for| < 1. From [4.4) we derive

p2

22(1 — qz)?

3—2qz p?
B 2 — by — p°b
(Z) + |:pq 2(1 _ q2)2 Z(l _ q2)2:| 1 D 02

B(z) =
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for |z| < 1, so that
(5.1) [2*(1 = q2)> = p°] B(z) =pzN(z) for |[z] <1,
where
N(z) = [¢°2*(3 — 2¢2) — p] by — pz(1 — q2)°bs.
To show thap?, = 1/2, we now establish that a necessary and sufficient condition for the
b, to be not all zero is thaf < 1/2. When this holds),, > 0 for all » > 1 and the radius of

convergence oB(z) is unity.
A factorisation of the left-hand side ¢f (b.1) yields

(5.2) [2(1 = gz) +pl(1 — 2)(gz —p)B(2) = pzN(2) (|| <1).
The zeros on the left-hand side of this expression occur at1, zo = p/q and at the roots of
2(1—qz)+p=0.

The casep = 0 andp = 1 are trivial: if p = 0, the process dies out at the first step with
probability 1; if p = 1, the process grows strictly monotonically with probability 1.

Suppose firsd < p < 1/2, sothatl/2 < ¢ < 1 andz; = p/q < 1. The left-hand side of
(5.2) vanishes for = z,, so thatV(z,) = 0. Substitution of: = z, into N(z) gives

N(z2) = [p*(3 — 2p) — plby — p°qby

= p[(1 —p)(2p — 1)by — pgbs]
<0

unlessh; = by, = 0. In the latter eventN(z) = 0, so thatB(z) vanishes for each in the unit
circle, entailingb,, = 0 for eachn > 1.

If p=¢q=1/2,thenz, = 1andN(1) < 0, soB(z) has a pole of order two at= 1 unless
b, = 0. Suppose if possible that — b > 0 asn — oo. Then by Abel’s theorem,

b= 111%(1 —2)B(z) =00 asn — oo,
contradicting < 1. Hence we must havg, = 0 for ¢ = 1/2.
This establishes necessity. For sufficiency, supposelff?zat p < 1 so thatd < ¢ < 1/2.

In this casez, = p/q > 1, so thatgz — p is non-vanishing inside the unit disk. The quadratic
termz(1 — ¢z) + p on the left-hand side of (5.2) has zeros

0= 20(p) = 5 [1 = VI 4pa] € (-1,0),
(5.3) z3 = 23(p) = 2—1q [1 +4/1 +4pq] € (1,00).

We must havéeV(z,) = 0 for a nontrivial solution to exist, so that

[%22(3 — 2q20) — plb1 = p2o(1 — q20)>b.
Since
(5.4) 1—qzy=qz3 and p= —qzyzs,
this simplifies to

[g20(1 + 2q23) + 23]b1 = pqz3by

or
(5.5) (14 pzs — 2pq)by = pqz3bs,
which shows that ib; # 0 thenb, /b, is positive.
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A common factor: = 2, may be removed from both sides pf (5.2) and divisiorpbyyields
(1 - i> <1 - %> (1 - 2)B(2) = pzNi(2),
Z3 p
whereN; (z) is a quadratic ire. The coefficient ofB(z) is nonvanishing on the interior of the
unit disk, so that3(z) may be written
pzN1(z)

(1 —2/2) (1 —qz/p) (1 - =)
It remains to show that i, andb, are positive and satisfy (§.5), then the constantdefined
through [(5.6) are all positive.

The power serie8(z) has radius of convergence unity provided that1) # 0. To establish
this inequality, it suffices to show that(1) # 0. We have

N(1) = [¢*(3 — 2¢q) — 1 + q]by — p°by.

Forg € [0, 1/2], the expression in brackets is strictly increasing and achieves value zero for
q = 1/2, providing the required result thaf; (1) # 0.

(5.6) B(z) = for |z] < 1.

We consider
o N1 (Z)
(Al G TGy g
Al A2 Ag

1—z+1—qz/p 1—2/23°
By applying the cover—up rule to

_ N(z)
S T T o gy TGy
we derive that
4 N(1)
—p?(1 = 1/2)(1 = 1/z)(1 —q/p)’
(5_7) Ay = [9225(3 - 2q23) —p]b1 - pZ3(1 - q23)2b2

—p*(1 — 23/20)(1 — 23)(1 — qz3/p)
Note from [5.3) that

1
(5.8) 23>—>£:ZQ>1,
q q

so that the notation,, z3 adopted in this section is consistent with the usage of the lemma.
SinceN (1) < 0for ¢ € [0,1/2], we have thatl; > 0. Also

b

We shall prove thatl; < 0, from which it follows that4; + A, > 0 and thus that the conditions
of the lemma are satisfied.

By (5.9) andz, < 0, the denominator of the fraction ip (5.7) is negative, so that we need to
establish that the numerator is positive. By exploiting](5.4), the numerator may be expressed as

qzs [{gz3(1 + 2q20) + 20} by — pgzdbs] -
By (5.4), the expression in brackets reduces further to

{pz0 + 1 —2pg} by — pgzgbo.
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We wish to show that this must be positive. By (5.5),

{pzs +1—2pq} by — pgzibs =0,
So our task is equivalent to deriving that

p(z0 — 23)b1 — pq(z§ — 23)by > 0
or equivalently that

by — q(z0 + 2z3)b2 <0,
which by (5.4) reduces further to
by — by < 0.
Substitution forb, /b, from ) converts this condition to
pqz§ —pz3+2pg—1 < 0.
Sinceqz2 = z3 + p, the left—-hand side may be cast as
PP42pg—1=-p+2p—1=-¢,

so the condition is satisfied. Thus the conditions of the lemma apply so that a positive, bounded
solution(h,,) exists in the caseé < ¢ < 1/2. The relation

(5.9) B(z) = pzh(z)

providesb, = ph,_1, so the maximal solutioi,,) to (4.2) subject to[ (4]3) is positive. This
completes the proof. O

Remark 5.2. By Abel’'s theorem),, — b asn — oo where

b=1lim(1—2)B(z) = A;.

z—1

Takingb = 1 givesA; =1 or

[%(3 — 2¢) — 1 + q]by — p°by = —p* (1 - Zlo) (1 - Z%) (1 — z%) .

The values ob,, b, may be found by solving this equation with (5.5), whence the valués of
for all n > 0 follow from (5.9).

6. SIMULATIONS

A Monte Carlo simulation has been performed of the site percolation procd%tomracks
were able to run for 20,000 time steps and those still alive at this time were deemed to have
lasted infinitely long. After some initial testing over shorter periods of time, valugsixsre
varied from0.53 t0 0.54 in steps of siz®.0001. One thousand Monte Carlo runs were performed
for each of these probabilities. The results of this simulation are illustrated in figlire 6.1.

There are tracks lasting 20,000 steps for probabilities greater than approximatelys35,
suggesting that., ~ 0.535.
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0.35

0.3r

0.25f

0.2

0.151

Proportion of tracks lasting 20000 steps

0.05

0 L L 1 1
0.53 0.532 0.534 0.536 0.538 0.54

Figure 6.1: Monte Carlo simulation results for the oriented site percolation proce&s pn
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