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Abstract

We show that one half is a lower bound for the critical probability of an ori-
ented site percolation process of Grimmett and Hiemer. This value improves
the known lower bound of one third. We employ an Ansatz which we use also
for a related oriented site percolation problem considered by Bishir. Monte
Carlo simulation indicates a critical value of close to 0.535, so the bound ap-
pears to be fairly tight.

2000 Mathematics Subject Classification: 60K35, 82B43.
Key words: Oriented site percolation, Critical probability, Phase transition, Positive

term power series.

This paper is based on the talk given by the first author within the “International
Conference of Mathematical Inequalities and their Applications, I”, December 06-
08, 2004, Victoria University, Melbourne, Australia [http://rgmia.vu.edu.au/
conference ]
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1. Introduction
Percolation theory investigates questions related to the deterministic flow of
fluid through a random medium consisting of a lattice of sites (vertices, atoms)
with adjacent sites connected by edges (bonds). In the bond percolation process,
each edge is open (with probabilityp) or closed (with probability1− p). In the
site percolation process, each site is open (with probabilityp) or closed (with
probability1 − p). In either process “fluid” is envisaged as entering the lattice
at the origin. In the site process, any site connected to the origin by a chain
of consecutive adjacent open sites is said to be wetted. Similarly in the bond
process, any edge joined to the origin through a connected sequence of open
edges is termed wetted. Percolation occurs when an infinite number of sites
(resp. edges) are wetted. Mixed site and bond percolation processes are also
possible, sites and bonds being open with respective probabilitiesps and pb.
Fluid will flow between two sites if and only if both are open and an open bond
exists between them.

Each formulation admits oriented versions. Here bonds between pairs of
sites have an associated orientation and fluid may flow only in the direction of
that orientation. For a discussion of oriented percolation see [7].

A phenomenon associated with percolation processes is that of phase tran-
sitions: for smallp percolation does not occur while ifp is above a critical
probability thresholdpc there is a positive probabilityθ(p) of percolation. Thus

pc = sup{p : θ(p) = 0}.

The functionθ is nondecreasing inp. A conceptual graph ofθ(p) is shown in
Figure1 (see [13, 14, 20]).
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Figure 1:The behaviour of the percolation probabilityθ(p) with p

Key problems in percolation theory include ascertaining the critical proba-
bility pc and characterising the system in the subcritical and supercritical phases
and its behaviour forp close topc. Summaries are given in [13, 14, 17, 19]. For
a one–dimensional percolation process,pc = 1. For a hypercubic latticeLd of
dimensiond ≥ 2 we have0 < pc(Ld) < 1 (see [13, 14]). To distinguish the
critical probabilities for site and bond processes we denote the former bypcs

and the latter bypcb.
The study of percolation processes has grown enormously following the

work of Broadbent [5] and Broadbent and Hammersley [6]. The following ex-
act results have been determined forpcb in the two–dimensional lattices shown
in Figure2.
Kesten [18]: for (a), pcb = 1/2.
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Wierman [25]: for (b), pcb = 2 sin(π/18).
Wierman [25]: for (c), pcb = 1− 2 sin(π/18).
Wierman [26]: for (d), pcb is the unique root in(0, 1) of 1−p−6p2+6p3−p5 = 0.

(a) (b) 

(c) (d) 

Figure 2:Illustration of generic portions of the graphs for whichpcb is known:
(a) square lattice, (b) triangular lattice, (c) hexagonal lattice and (d) bow-tie
lattice.

By contrast there are few exact results for site percolation or oriented per-
colation. The results above were derived using dual graphs, a technique gen-
erally inapplicable to oriented percolation (though see [27]). For site perco-
lation the relevant structural idea is that ofmatchingin place of duality (see
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[14, Ch. 3]). Some results of Monte Carlo simulation for site percolation are
given in [10, 11]. With most percolation problems effort has concentrated on
finding lower and upper bounds for the critical probability, see for example
[1, 4, 22, 28, 29, 30]. The result

(1.1) pcb < pcs

was originally shown for a general class of graph structures by Hammersley
[16]. Later proofs have centred on a lemma of Oxley and Welsh [24].

In Section2 we introduce two oriented lattices,~L2 and~L2
alt, on which site

percolations exhibit phase transitions. In Section3 we provide a useful Ansatz.
In Section4 we make use of this in amplifying a derivation by Bishir [3] of a

lower bound forpcs

(
~L2

)
. Finally, in Section5, we give our main result, an

improved lower bound forpcs

(
~L2

alt

)
.
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2. The Oriented Lattices~L2 and ~L2
alt

t=0

t=3

t=2

t=1

Figure 3:Possible state transitions in the first three time steps on~L2
alt.

The graph structure illustrated in Figure3 was first considered in an oriented
bond percolation context by Grimmett and Hiemer [15]. We follow their nota-
tion ~L2

alt. We write~L2 for the two–dimensional latticeL2 with bonds oriented
in the positivex andy directions. The set of sites that may be reached at timen
from the origin is then the set of sites{(x, y)} on the diagonalx + y = n (see
Figure4(a)). Figure4(b) shows this graph rotated throughπ/4.

Consider the graph formed by removing all sites(x, y) with x + y odd. This
consists of bonds directed from each site(x, y) with x+y even to(x+1, y−1)
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and(x + 1, y + 1) and so is simply the graph~L2, showing that~L2
alt ⊃ ~L2.

Durrett [7], Liggett [21], Ballister, Bollobas and Stacey [1] use the graph
~L2 in an oriented bond or site percolation model. In particular, Liggett [21]
considers percolation on the graph~L2, where the probability of a site being
present at timet is dependent on whether it has 0, 1 or 2 neighbours at time
t− 1. Denote byAn the set of sites open at timen, that is, sites withx+ y = n.
The probability of a site(x, y) being open at timen + 1 is then given by

P{(x, y) ∈ An+1|An} =


q if |An ∩ {(x, y − 1), (x− 1, y)}| = 2

p if |An ∩ {(x, y − 1), (x− 1, y)}| = 1

0 otherwise

.

This general formulation allows for site percolation, bond percolation and mixed
percolation processes on the graph. We say that(An) survives or dies out ac-
cording to whetherP (An 6= ∅ ∀n) is positive or zero (for nonempty finite initial
states). Liggett proved that
(a) if q < 2(1− p), then(An) dies out;
(b) if 1

2
< p ≤ 1 andq ≥ 4p(1− p), then(An) survives.

For site percolation on~L2, the probability of each site being open is inde-
pendent of the number of adjacent bonds and sites, sop = q. Result (b) then

gives that(An) survives forp ≥ 3/4, so thatpcs

(
~L2

)
satisfies

(2.1) pcs

(
~L2

)
≤ 3

4
.

This leads to the following.
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t=1t=0 t=2 t=3

t=0

t=3

t=2

t=1

(a) (b)

Figure 4:The graph~L2 (a) oriented as the square lattice and (b) rotated45o so
that thex-axis represents time

Theorem 2.1. The site percolation process on~L2
alt undergoes a phase transi-

tion, with
1

3
≤ pcs

(
~L2

alt

)
≤ pcs

(
~L2

)
≤ 3

4
.

Proof. Let N(n) be the total number of openn–step paths in the site process
on ~L2

alt. From the orientation of the graph, these will be self–avoiding. Then
N(n) ≤ 3n, the total number ofn-step paths on~L2

alt, so

P(N(n) ≥ 1) ≤ E(N(n)) ≤ 3npn.

http://jipam.vu.edu.au/
mailto:
mailto:cpearce@maths.adelaide.edu.au
mailto:
mailto:Fiona.Fletcher@defence.dsto.gov.au
http://jipam.vu.edu.au/


Oriented Site Percolation,
Phase Transitions and

Probability Bounds

C.E.M. Pearce and F.K. Fletcher

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 32

J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005

http://jipam.vu.edu.au

Since3npn → 0 whenp < 1/3, we have

lim
n→∞

P(N(n) ≥ 1) = 0 for p <
1

3
.

This givespcs

(
~L2

alt

)
≥ 1/3.

Since~L2
alt ⊃ ~L2, we havepcs

(
~L2

alt

)
≤ pcs

(
~L2

)
. The remainder of the

enunciation follows from (2.1).

The above derivation ofpcs

(
~L2

)
≤ 3/4 was given by Liggett [21] in 1995.

Earlier rigorous upper bounds are 0.819 (Liggett [8] 1992), 0.762 (Balisteret
al. [1] 1993) and 0.7491 (Balisteret al. [2] 1994). The last paper corrected a
misprint in [1]. The tighter bounds required substantial computer calculation.
A nonrigorous estimate 0.7055 was given by Onody and Neves [23] in 1992.
These values may be compared with the lower bound 2/3 found by Bishir and
discussed in Section4. Although derived as far back as 1963, this does not
appear to have been improved subsequently. Thus (a) of Liggett also gives

pcs

(
~L2

)
≥ 2/3.

The derivation of the first inequality in Theorem2.1is due to Grimmett [14].
In fact by considering instead the corresponding bond percolation and invoking

(1.1), this result can be strengthened minimally topcs

(
~L2

alt

)
> 1/3. In Section

5 we improve the lower bound forpc

(
~L2

alt

)
from one third to one half.
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3. Ansatz
As a prelude to deriving an improved lower bound forpcs

(
~L2

alt

)
and filling out

Bishir’s derivation of a lower bound forpcs

(
~L2

)
, we introduce a useful lemma.

Lemma 3.1. SupposeR1, R2 are proper real polynomials inz, with R2 of
degreem ≥ 1 andR1 of degree less than or equal tom, and that

h(z) =
R1(z)

(1− z)R2(z)

has a partial fractions decomposition

h(z) =
A1

1− z
+

m+1∑
i=2

Ai

1− z/zi

with
zm+1 > zm > . . . > z2 > 1

and theA’s satisfying

i∑
j=1

Aj > 0 for i = 1, 2, . . . ,m + 1.

If

h(z) :=
∞∑

n=0

hnz
n,

then(hn)∞n=0 is positive and bounded above.
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Proof. From the given conditions we have forn ≥ 0 that

hn = A1 +
m+1∑
i=2

Ai

zn
i

≥ A1 + A2

zn
2

+
m+1∑
i=3

Ai

zn
i

≥ . . . . . .

≥ A1 + A2 + . . . + Am+1

zn
m

> 0,

supplying positivity. Boundedness follows from

hn → A1 asn →∞.
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4. Bishir’s Lower Bound
In this section a result of Bishir [3] is presented and proved. The result provides
a lower bound for the critical probability for oriented site percolation on the
graph~L2. The convergence arguments presented by Bishir [3] are incomplete.
We present a more complete argument utilising the lemma.

Theorem 4.1.The critical probabilitypcs

(
~L2

)
satisfies

pcs

(
~L2

)
≥ 2

3
.

Proof. Consider a modification of the percolation process wherein sites are open
with probabilityp but where, if any two sites are wetted at timet, then all inter-
vening sites are deemed to be wetted. Letγ(p) be the probability that an infinite
number of sites will be wetted in the modified process andpγ

cs the correspond-
ing critical probability. Thenγ(p) ≥ θ(p), since more sites are wetted in the

modified process. Accordinglypγ
cs ≤ pcs

(
~L2

)
. It thus suffices to show that

pγ
cs = 2/3.

The modified process is a Markov chain whose state at timet is the number
n of consecutive wetted sites. As for the original process, if there are no sites
wetted at some time then no sites can be wetted at any later time, so state 0 is
absorbing. The transition probabilitypi,j takes the form

(4.1) pi,j =


δ0,j for i = 0
qi+1 for i ≥ 1 andj = 0
(i + 1)pqi for i ≥ 1 andj = 1
(i + 2− j)p2qi+1−j for i ≥ 1 andj = 2, . . . , i + 1
0 for i ≥ 1 andj > i + 1.
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Let bn be the probability that the process is never in state 0, given that it
started in staten. We note that(bn) must be nondecreasing. Since the percola-
tion process has initial state 1, thenγ(p) = b1. SetB = (b1, b2, . . .)

T .
Suppose the states of the modified process are partitioned as[0|1, 2, . . .],

inducing a partition
P =

[
1 0
R Q

]
of its transition matrix. It is well known (see, for example, [9, p. 364]) thatB
is the maximal solution to

(4.2) B = QB

satisfying

(4.3) 0 ≤ bn ≤ 1.

From (4.2)

(4.4) B(z) :=
∞∑

n=1

bnz
n = (z, z2, z3, . . .)B = (z, z2, z3, . . .)QB.

Since(bn) is nondecreasing, (4.3) gives thatB(z) has radius of convergence
unity unlessbn ≡ 0, when the radius of convergence is infinity. From (4.1) we
have

(z, z2, z3, . . .)Q =

(
p

(1− qz)2
− p,

p2z

(1− qz)2
,

p2z2

(1− qz)2
, . . .

)
,

whereq = 1− p.
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Substitution into (4.4) gives

B(z) =
p2

z(1− qz)2
B(z) +

(
p− p2

(1− qz)2
− p

)
b1

=
pz(q − (1− qz)2)

z(1− qz)2 − p2
b1

=
pzg(z)

1− z
b1,

where

(4.5) g(z) =
(1− qz)2 − q

(p− qz)2 − q2z
.

SinceB(z) is convergent on the open unit disk, the seriesg(z) :=
∑∞

n=0 gnz
n

must also have a radius of convergence of at least unity.
Whenp = 0, absorption occurs at the first step, so thatbn = 0 for n > 0.

Whenp = 1, the process always survives provided it does not start in state 0, so
thatbn = 1 for n > 0. For0 < p < 1, the denominator of the right–hand side
of (4.5) has two zeros given by

z2 =
1 + p−

√
(1 + p)2 − 4p2

2q
,

z3 =
1 + p +

√
(1 + p)2 − 4p2

2q
.

The factorisation(1 + p)2 − 4p2 = (1 + 3p)(1 − p) > 0 for all 0 < p < 1
ensures thatz2 andz3 are real and positive. Alsoz3 > 1 for all 0 < p < 1. It
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may be seen by taking the derivative ofz2 with respect top thatz2 is increasing
for 0 < p < 1.

First suppose0 < p < 2/3. In this case0 < z2 < 1, sog(z) has a pole
inside the unit disk unless the numerator in (4.5) vanishes forz = z2. The latter
is readily seen to be impossible forp > 0. ForB(z) to converge inside that disk
we requireb1 = 0, which implies thatbn = 0 for all n ≥ 1.

Next suppose2/3 < p < 1. In this case

(4.6) z3 > z2 > 1.

The function

h(z) :=
g(z)

1− z

has partial fraction decomposition

g(z)

1− z
=

A1

1− z
+

A2

1− z/z2

+
A3

1− z/z3

,

where

A1 =
p2 − q

(p− q)2 − q2
,

A2 =
(1− qz2)

2 − q

(1− z2)p2(1− z2/z3)
,

A3 =
(1− qz3)

2 − q

(1− z3)p2(1− z3/z2)
.
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We haveA1 > 0 for 2/3 < p < 1. Further,

A1 + A2 + A3 = g(0) =
1

p
> 0.

To deriveA1 + A2 > 0, it suffices to demonstrate thatA3 < 0. By (4.6) the
denominator ofA3 must be positive. Substitution ofz3 into the numerator gives

(1− qz3)
2 − q =

−q

2
(q +

√
4q − 3q2) < 0,

yielding the desired resultA3 < 0.
Thush(z) satisfies the conditions of the lemma, so that(hn)∞n=0 is positive

and bounded above. SinceB(z) = pzb1h(z), the sequence(bn) is also positive
and bounded above unlessb1 = 0, whenbn ≡ 0.

The valueb = limn→∞ bn may be obtained from Abel’s theorem as

b = lim
z→1−

(1− z)B(z) =
p2 − q

1− 3q
b1.

Whenb1 > 0, the maximal solution to (4.2) satisfying (4.3) hasb = 1, so that
b1 = (1− 3q)/(p2 − q) and

B(z) =
1− 3q

p2 − q
pzg(z).

Finally supposep = 2/3. In this casez2 = 1, soB(z) has a pole of order
two atz = 1 unlessbn ≡ 0. Suppose, if possible, thatbn → b > 0 asn → ∞.
By Abel’s theorem

b = lim
z→1−

(1− z)B(z) = ∞,
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contradictingb ≤ 1. Thus we must havebn ≡ 0 for p = 2/3.
Accordingly the probability of obtaining an infinite number of wetted sites

starting from a single site is

γ(p) =


0 for p ≤ 2

3

1− 3q

p2 − q
for p >

2

3

.

Thuspγ
cs = sup{p : γ(p) = 0} = 2/3, completing the proof.
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5. A Lower Bound for pcs

(
~L2

alt

)
The approach of the previous section may be employed to develop a lower

bound forpcs

(
~L2

alt

)
. In this section, we use this technique to derive a bound

that is a substantial improvement on that of Theorem2.1.

Theorem 5.1.The critical probabilitypcs

(
~L2

alt

)
satisfiespcs

(
~L2

alt

)
≥ 1/2.

Proof. We introduce a modified process on the graph~L2
alt with the same struc-

ture as the original oriented site percolation problem except in that if any two
sites are wetted at timet, then all sites between them at timet are deemed
wetted, so the wetted sites at timet are consecutive. Denote the probability of
wetting an infinite number of sites for this new process byη(p). The percolation
thresholdpη

c for this process is

pη
cs = sup{p : η(p) = 0}.

The percolation probability for the modified process will be at least as large as
that for the original oriented site percolation process, since sites not wetted at
time t in the latter may be in the former. These sites may in turn lead to other
sites being wetted at the next time step. Thus

θ(p) ≤ η(p) and pcs

(
~L2

alt

)
≥ pη

cs

and it suffices to demonstrate thatpη
cs = 1/2.
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The state of the process at any time is the number of sites wetted at that time.
By construction these sites are contiguous. The modified process is a Markov
chain whose states are the nonnegative integers.

When no sites are wetted at some timek, then none are wetted subsequently,
so 0 is an absorbing state. The transition probabilities for the chain are

pi,j =



δ0,j for i = 0

qi+2 for i ≥ 1 andj = 0

(i + 2)pqi+1 for i ≥ 1 andj = 1

(i + 3− j)p2qi+2−j for i ≥ 1 andj = 2, . . . , i + 2

0 for i ≥ 1 andj > i + 2,

whereq = 1 − p. We definebn, B, Q as in Theorem4.1. With initial state 1,
we haveη(p) = b1. As before (4.2)–(4.4) hold.

We set

Qj(z) =
∞∑
i=1

zipi,j (j ≥ 1).

This is well–defined for|z| < 1, since0 ≤ pi,j ≤ 1. We derive

Q1(z) =
∞∑
i=1

zi(i + 2)pqi+1 = pq2z
3− 2qz

(1− qz)2
,

Q2(z) =
∞∑
i=1

zi(i + 1)p2qi =
p2

(1− qz)2
− p2,
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and forj ≥ 3

Qj(z) =
∞∑

i=j−2

zi(i + 3− j)p2qi+2−j

=
∞∑

k=0

(k + 1)zk+j−2p2qk

=
p2zj−2

(1− qz)2
.

Hence for|z| < 1

(z, z2, z3, . . .)Q = (Q1(z), Q2(z), Q3(z), . . .)

=
p2

z(1− qz)2
(1, z, z2, . . .)

+

(
pq2z

3− 2qz

(1− qz)2
− p2

z(1− qz)2
,−p2, 0, 0, . . .

)
.

By (4.3), the power series

B(z) :=
∞∑

n=1

bnz
n

converges absolutely for|z| < 1. From (4.4) we derive

B(z) =
p2

z2(1− qz)2
B(z) +

[
pq2z

3− 2qz

(1− qz)2
− p2

z(1− qz)2

]
b1 − p2b2
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for |z| < 1, so that

(5.1)
[
z2(1− qz)2 − p2

]
B(z) = pzN(z) for |z| < 1,

where
N(z) =

[
q2z2(3− 2qz)− p

]
b1 − pz(1− qz)2b2.

To show thatpη
cs = 1/2, we now establish that a necessary and sufficient

condition for thebn to be not all zero is thatq < 1/2. When this holds,bn > 0
for all n ≥ 1 and the radius of convergence ofB(z) is unity.

A factorisation of the left–hand side of (5.1) yields

(5.2) [z(1− qz) + p](1− z)(qz − p)B(z) = pzN(z) (|z| < 1).

The zeros on the left–hand side of this expression occur atz1 = 1, z2 = p/q
and at the roots ofz(1− qz) + p = 0.

The casesp = 0 andp = 1 are trivial: if p = 0, the process dies out at the
first step with probability 1; ifp = 1, the process grows strictly monotonically
with probability 1.

Suppose first0 < p < 1/2, so that1/2 < q < 1 andz2 = p/q < 1. The
left–hand side of (5.2) vanishes forz = z2, so thatN(z2) = 0. Substitution of
z = z2 into N(z) gives

N(z2) = [p2(3− 2p)− p]b1 − p2qb2

= p[(1− p)(2p− 1)b1 − pqb2]

< 0
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unlessb1 = b2 = 0. In the latter event,N(z) ≡ 0, so thatB(z) vanishes for
eachz in the unit circle, entailingbn = 0 for eachn ≥ 1.

If p = q = 1/2, thenz2 = 1 andN(1) < 0, soB(z) has a pole of order two
at z = 1 unlessbn ≡ 0. Suppose if possible thatbn → b > 0 asn → ∞. Then
by Abel’s theorem,

b = lim
z→1

(1− z)B(z) = ∞ asn →∞,

contradictingb ≤ 1. Hence we must havebn ≡ 0 for q = 1/2.
This establishes necessity. For sufficiency, suppose that1/2 < p < 1 so that

0 < q < 1/2. In this case,z2 = p/q > 1, so thatqz − p is non-vanishing inside
the unit disk. The quadratic termz(1 − qz) + p on the left–hand side of (5.2)
has zeros

z0 = z0(p) =
1

2q

[
1−

√
1 + 4pq

]
∈ (−1, 0),

z3 = z3(p) =
1

2q

[
1 +

√
1 + 4pq

]
∈ (1,∞).(5.3)

We must haveN(z0) = 0 for a nontrivial solution to exist, so that

[q2z2
0(3− 2qz0)− p]b1 = pz0(1− qz0)

2b2.

Since

(5.4) 1− qz0 = qz3 and p = −qz0z3,

this simplifies to
[qz0(1 + 2qz3) + z3]b1 = pqz2

3b2
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or

(5.5) (1 + pz3 − 2pq)b1 = pqz2
3b2,

which shows that ifb2 6= 0 thenb1/b2 is positive.
A common factorz = z0 may be removed from both sides of (5.2) and

division bypz3 yields(
1− z

z3

) (
1− qz

p

)
(1− z)B(z) = pzN1(z),

whereN1(z) is a quadratic inz. The coefficient ofB(z) is nonvanishing on the
interior of the unit disk, so thatB(z) may be written

(5.6) B(z) =
pzN1(z)

(1− z/z3) (1− qz/p) (1− z)
for |z| < 1.

It remains to show that ifb1 andb2 are positive and satisfy (5.5), then the con-
stantsbn defined through (5.6) are all positive.

The power seriesB(z) has radius of convergence unity provided thatN1(1) 6=
0. To establish this inequality, it suffices to show thatN(1) 6= 0. We have

N(1) = [q2(3− 2q)− 1 + q]b1 − p3b2.

For q ∈ [0, 1/2], the expression in brackets is strictly increasing inq and
achieves value zero forq = 1/2, providing the required result thatN1(1) 6= 0.
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We consider

h(z) =
N1(z)

(1− z)(1− qz/p)(1− z/z3)

=
A1

1− z
+

A2

1− qz/p
+

A3

1− z/z3

.

By applying the cover–up rule to

h(z) =
N(z)

−p2(1− z)(1− z/z0)(1− z/z3)(1− qz/p)
,

we derive that

A1 =
N(1)

−p2(1− 1/z0)(1− 1/z3)(1− q/p)
,

A3 =
[q2z2

3(3− 2qz3)− p]b1 − pz3(1− qz3)
2b2

−p2(1− z3/z0)(1− z3)(1− qz3/p)
.(5.7)

Note from (5.3) that

(5.8) z3 >
1

q
>

p

q
= z2 > 1,

so that the notationz2, z3 adopted in this section is consistent with the usage of
the lemma.

SinceN(1) < 0 for q ∈ [0, 1/2], we have thatA1 > 0. Also

A1 + A2 + A3 = g(0) =
b1

p
> 0.
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We shall prove thatA3 < 0, from which it follows thatA1 + A2 > 0 and thus
that the conditions of the lemma are satisfied.

By (5.8) andz0 < 0, the denominator of the fraction in (5.7) is negative, so
that we need to establish that the numerator is positive. By exploiting (5.4), the
numerator may be expressed as

qz3

[
{qz3(1 + 2qz0) + z0} b1 − pqz2

0b2

]
.

By (5.4), the expression in brackets reduces further to

{pz0 + 1− 2pq} b1 − pqz2
0b2.

We wish to show that this must be positive. By (5.5),

{pz3 + 1− 2pq} b1 − pqz2
3b2 = 0,

so our task is equivalent to deriving that

p(z0 − z3)b1 − pq(z2
0 − z2

3)b2 > 0

or equivalently that
b1 − q(z0 + z3)b2 < 0,

which by (5.4) reduces further to

b1 − b2 < 0.

Substitution forb1/b2 from (5.5) converts this condition to

pqz2
3 − pz3 + 2pq − 1 < 0.
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Sinceqz2
3 = z3 + p, the left–hand side may be cast as

p2 + 2pq − 1 = −p2 + 2p− 1 = −q2,

so the condition is satisfied. Thus the conditions of the lemma apply so that a
positive, bounded solution(hn) exists in the case0 < q < 1/2. The relation

(5.9) B(z) = pzh(z)

providesbn = phn−1, so the maximal solution(bn) to (4.2) subject to (4.3) is
positive. This completes the proof.

Remark 1. By Abel’s theorem,bn → b asn →∞ where

b = lim
z→1

(1− z)B(z) = A1.

Takingb = 1 givesA1 = 1 or

[q2(3− 2q)− 1 + q]b1 − p3b2 = −p2

(
1− 1

z0

) (
1− 1

z3

) (
1− q

p

)
.

The values ofb1, b2 may be found by solving this equation with (5.5), whence
the values ofbn for all n > 0 follow from (5.9).

http://jipam.vu.edu.au/
mailto:
mailto:cpearce@maths.adelaide.edu.au
mailto:
mailto:Fiona.Fletcher@defence.dsto.gov.au
http://jipam.vu.edu.au/


Oriented Site Percolation,
Phase Transitions and

Probability Bounds

C.E.M. Pearce and F.K. Fletcher

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 28 of 32

J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005

http://jipam.vu.edu.au

0.53 0.532 0.534 0.536 0.538 0.54
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

P
ro

po
rt

io
n 

of
 tr

ac
ks

 la
st

in
g 

20
00

0 
st

ep
s

p

Figure 5:Monte Carlo simulation results for the oriented site percolation pro-
cess on~L2

alt.

6. Simulations
A Monte Carlo simulation has been performed of the site percolation process
on~L2

alt. Tracks were able to run for 20,000 time steps and those still alive at this
time were deemed to have lasted infinitely long. After some initial testing over
shorter periods of time, values ofp were varied from0.53 to 0.54 in steps of
size0.0001. One thousand Monte Carlo runs were performed for each of these
probabilities. The results of this simulation are illustrated in Figure5.

There are tracks lasting 20,000 steps for probabilities greater than approxi-
matelyp = 0.535, suggesting thatpcs ≈ 0.535.
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