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Abstract

We show that one half is a lower bound for the critical probability of an ori-
ented site percolation process of Grimmett and Hiemer. This value improves
the known lower bound of one third. We employ an Ansatz which we use also
for a related oriented site percolation problem considered by Bishir. Monte
Carlo simulation indicates a critical value of close to 0.535, so the bound ap-
pears to be fairly tight.
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Percolation theory investigates questions related to the deterministic flow of
fluid through a random medium consisting of a lattice of sites (vertices, atoms)
with adjacent sites connected by edges (bonds). In the bond percolation process,
each edge is open (with probability or closed (with probability — p). In the

site percolation process, each site is open (with probabi)ityr closed (with
probability 1 — p). In either process “fluid” is envisaged as entering the lattice

at the origin. In the site process, any site connected to the origin by a chain , . .

. . . . . .. . Oriented Site Percolation,
of consecutive adjacent open sites is said to be wetted. Similarly in the bond Phase Transitions and
process, any edge joined to the origin through a connected sequence of open ety v
edges is termed wetted. Percolation occurs when an infinite number of SiteS c e.m. Pearce and EK. Fletcher
(resp. edges) are wetted. Mixed site and bond percolation processes are also
possible, sites and bonds being open with respective probabjitiaad p,.

Fluid will flow between two sites if and only if both are open and an open bond Title Page

exists between them. Contents
Each formulation admits oriented versions. Here bonds between pairs of <« S

sites have an associated orientation and fluid may flow only in the direction of p R

that orientation. For a discussion of oriented percolation sge |
A phenomenon associated with percolation processes is that of phase tran- Go Back
sitions: for smallp percolation does not occur while jif is above a critical

probability thresholg. there is a positive probabilit§(p) of percolation. Thus Close
Quit
pe = sup{p : 6(p) = 0}. Page 3 of 32

The functiond is nondecreasing ip. A conceptual graph of(p) is shown in

i [ . J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005
Figurel (see [L3, 14, 20]) http://jipam.vu.edu.au



http://jipam.vu.edu.au/
mailto:
mailto:cpearce@maths.adelaide.edu.au
mailto:
mailto:Fiona.Fletcher@defence.dsto.gov.au
http://jipam.vu.edu.au/

e(p)
0.87
0.67
0.47
0.27
00 P, 1 Oriented Site Percolation,
P Phase Transitions and
Probability Bounds
Figure 1:The behaviour of the percolation probabilifyp) with p SR IR SR
Key problems in percolation theory include ascertaining the critical proba- Title Page
bility p. and characterising the system in the subcritical and supercritical phases Contents
and its behaviour fop close top.. Summaries are given i f, 14, 17, 19. For
a one—dimensional percolation procgss= 1. For a hypercubic lattic& of “ dd
dimensiond > 2 we have0) < p.(L%) < 1 (see [.3, 14]). To distinguish the < >
critical probabilities for site and bond processes we denote the formgy, by
and the latter by,,. Clo 2HES
The study of percolation processes has grown enormously following the Close
work of Broadbent$] and Broadbent and Hammerslesy).[ The following ex- Quit
act results have been determinedfgrin the two—dimensional lattices shown
in Figure2. SCUERo

Kesten [ ]: for (a), ps, = 1/2.
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Wierman P5]: for (b), ps = 2sin(7/18).
Wierman P5): for (¢), po, = 1 — 2sin(7/18).
Wierman p4]: for (d), p. is the unique root irf0, 1) of 1—p—6p?+6p>—p® = 0.

\M/ Oriented Site Percolation,
Phase Transitions and

(@ (b) Probability Bounds

C.E.M. Pearce and FK. Fletcher

Title Page
Contents
(© (d) 44 4 4
< >
Figure 2:lllustration of generic portions of the graphs for whiph, is known: Go Back
(a) square lattice, (b) triangular lattice, (c) hexagonal lattice and (d) bow-tie =
lattice. ose
. . . uit
By contrast there are few exact results for site percolation or oriented per- 2
Page 5 of 32

colation. The results above were derived using dual graphs, a technique gen-
erally inapplicable to oriented percolation (though s2d)[ For site perco-
lation the relevant structural idea is thatmftchingin place of duality (see
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[14, Ch. 3]). Some results of Monte Carlo simulation for site percolation are

given in [LO, 11]. With most percolation problems effort has concentrated on
finding lower and upper bounds for the critical probability, see for example
[1,4,22,28 29, 30]. The result

(11) Peb < Des

was originally shown for a general class of graph structures by Hammersley
[16]. Later proofs have centred on a lemma of Oxley and Weish [

In Section2 we introduce two oriented lattice’?2 andﬂzlt, on which site
percolations exhibit phase transitions. In Sectiome provide a useful Ansatz.
In Section4 we make use of this in amplifying a derivation by Bishi} pf a

lower bound forp,, (]i?). Finally, in Section5, we give our main result, an

improved lower bound fop,, (Iﬂzlt).
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t=0
t=1

t=2

t=3

Figure 3:Possible state transitions in the first three time step&gn

The graph structure illustrated in Figusevas first considered in an oriented
bond percolation context by Grimmett and Hiemér][ We follow their nota-
tion L2,,. We write L? for the two—dimensional lattick2 with bonds oriented
in the positiver andy directions. The set of sites that may be reached attime
from the origin is then the set of sitééz, y)} on the diagonat + y = n (see
Figure4(a)). Figured(b) shows this graph rotated througi.

Consider the graph formed by removing all sitesy) with = + y odd. This
consists of bonds directed from each sitey) with z +y evento(z+ 1,y — 1)

Oriented Site Percolation,
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and(z + 1,y + 1) and so is simply the gragh?, showing that’2,, > L2.

Durrett [/], Liggett [21], Ballister, Bollobas and Stacey][use the graph
L2 in an oriented bond or site percolation model. In particular, Ligget} [
considers percolation on the grapR, where the probability of a site being
present at time is dependent on whether it has 0, 1 or 2 neighbours at time
t — 1. Denote byA,, the set of sites open at timeg that is, sites with: +y = n.
The probability of a sitéz, y) being open at time + 1 is then given by

q ff ‘A" N {(x’ U 1>’ (JZ -1 y)}| =2 Oriented Site Percolation,
. Phase Transitions and
P{([p7 y) c An+1|An} = p if ‘An N {(;@ Yy — 1), (m -1, y)}’ =1 . Probability Bounds
0 otherwise C.E.M. Pearce and EK. Fletcher
This general formulation allows for site percolation, bond percolation and mixed Title Page
percolation processes on the graph. We say (tHg} survives or dies out ac-
cording to whetheP(A,, # () ¥n) is positive or zero (for nonempty finite initial Contents
states). Liggett proved that < >
(@) ifg < 2(1 — p), then(A,,) dies out;
(b)if 1 < p <1landg > 4p(1 — p), then(A,) survives. < d
For site percolation ofi.2, the probability of each site being open is inde- Go Back
pendent of the number of adjacent bonds anq sitep, s0g. Result (b) then Close
gives that(A,,) survives forp > 3/4, so thatp (ILF) satisfies Quit
- 3 Page 8 of 32
2.1 N (L2) <. g
(2.1) Pe: <3
ThiS |eads to the fo”owing. J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005
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M

<

A
t=0
A

A "X " iy =1 *
. . ) =2 Oriented Site Percolation,
N > N . Phase Transitions and
t=0 t=1 t=2 t=3 t=3 Probability Bounds
(a) (b) C.E.M. Pearce and EK. Fletcher
Figure 4:The graph]ﬂ2 (a) oriented as the square lattice and (b) rotated so Title Page
that thex-axis represents time Fe—
. . - . 44 44
Theorem 2.1. The site percolation process dtf,, undergoes a phase transi-
tion, with . ; | >
g S DPes (I[‘czllt> S DPes <L2> S Z Go Back
Proof. Let N(n) be the total number of opem-step paths in the site process Close
onL?,. From the orientation of the graph, these will be self-avoiding. Then Quit
N(n) < 3, the total number ofi-step paths of.2;,, so Page 9 of 32

]P)(N(n) Z 1) S ]E<N(n)) S 3npn J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005
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Since3"p" — 0 whenp < 1/3, we have

1
lim P(N(n) >1)=0 for p< 3

n—oo

This givesp,, <IE§”> > 1/3.

Sincel?, D L2, we havep,, (IEZH) < Des (I[?). The remainder of the
enunciation follows fromZ.1). O]

Oriented Site Percolation,
Phase Transitions and

The above derivation gf., L2) < 3/4 was given by Liggett{1] in 1995. Probability Bounds

Earlier rigorous upper bounds are 0.819 (Liggéett]992), 0.762 (Balisteet

al. [1] 1993) and 0.7491 (Balisteat al. [?] 1994). The last paper corrected a
misprint in [1]. The tighter bounds required substantial computer calculation.
A nonrigorous estimate 0.7055 was given by Onody and NeVdsirf 1992. Title Page
These values may be compared with the lower bound 2/3 found by Bishir and Contents
discussed in SectioA. Although derived as far back as 1963, this does not

C.E.M. Pearce and FK. Fletcher

appear to have been improved subsequently. Thus (a) of Liggett also gives 14 dd
Pes (I[7> >2/3. S 4
The derivation of the first inequality in Theoréirlis due to Grimmett4]. Go Back
In fact by considering instead the corresponding bond percolation and invoking —
(1.1, this result can be strengthened minimallyto <]ﬁ§lt) > 1/3. In Section p——

- _"2 .
5 we improve the lower bound fagr, (Lalt) from one third to one half. Page 10 of 32
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As a prelude to deriving an improved lower boundmr(lﬂglt> and filling out
Bishir’s derivation of a lower bound far,, (Iﬁ?) , we introduce a useful lemma.

Lemma 3.1. SupposeR;, R, are proper real polynomials i, with Ry of
degreem > 1 and R, of degree less than or equal to, and that

Rl(Z)
(1= 2)Ra()

has a patrtial fractions decomposition

A m+1 Az
h(z)=——+)_

h(z) =

l—z = 1-2z/z
with
Zmtl > B > . > 29 > 1
and theA'’s satisfying
ZAJ» >0 for ¢=1,2,...,m+1.
j=1
If

h(z) := i hpz",
n=0

then(h, )22, is positive and bounded above.

Oriented Site Percolation,
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Proof. From the given conditions we have for> 0 that
m+1

—A1+Z—

Al _'_ A2 m+l

> 2 Z—

v

> A1+A2+ A A

> 0,
supplying positivity. Boundedness follows from

h, — A; asn — oo.
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Phase Transitions and
Probability Bounds

C.E.M. Pearce and EK. Fletcher

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 12 of 32

J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:cpearce@maths.adelaide.edu.au
mailto:
mailto:Fiona.Fletcher@defence.dsto.gov.au
http://jipam.vu.edu.au/

In this section a result of Bishif]] is presented and proved. The result provides
a lower bound for the critical probability for oriented site percolation on the
graphﬂ? The convergence arguments presented by Bishare incomplete.
We present a more complete argument utilising the lemma.

Theorem 4.1. The critical probabilityp,. (1[7) satisfies

- 2
Des (LQ) > —. Oriented Site Percolation,
3 Phase Transitions and
Proof. Consider a modification of the percolation process wherein sites are open Probability Bounds
with probabilityp but where, if any two sites are wetted at timéhen all inter- C.E.M. Pearce and EK. Fletcher

vening sites are deemed to be wetted. 1(ef) be the probability that an infinite
number of sites will be wetted in the modified process ghdhe correspond-

ing critical probability. Theny(p) > 6(p), since more sites are wetted in the Title Page
modified process. Accordinglyl, < pe (I[f?). It thus suffices to show that CaiEs
pl, = 2/3. 44 >
The modified process is a Markov chain whose state attiméhe number < >
n of consecutive wetted sites. As for the original process, if there are no sites
wetted at some time then no sites can be wetted at any later time, so state 0 is Go Back
absorbing. The transition probability ; takes the form Close
00, forz: =0 Quit
gt fori >1andj =0
(4.1)  piy=1 (i+1)pgd fori > 1landj =1 Page 13 of 32
(i+2—7)p*¢tt=7 fori>1landj=2,...,i+1
O for Z > 1 andj > Z + 1 J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005
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Let b, be the probability that the process is never in state 0, given that it
started in state. We note thatb, ) must be nondecreasing. Since the percola-

tion process has initial state 1, the(p) = b;. SetB = (b, by, .. .)7.
Suppose the states of the modified process are partitiong@1as, .. |,

inducing a partition
p_[1 0

R Q
of its transition matrix. It is well known (see, for examplé,
is the maximal solution to

p. 364]) thatB3

4.2) B=Q@B
satisfying
(4.3) 0<0b, <1
From (@.2)
(4.4) B(z Zb 2= (2,2%2 .. )B = (22%2,...)QB.

Since (b,,) is nondecreasing4(3) gives thatB(z) has radius of convergence
unity unlessh,, = 0, when the radius of convergence is infinity. Frofnlj we
have

2 2.2
2 3 - p _ p =z p =z
2200 = (g e )

Oriented Site Percolation,
Phase Transitions and
Probability Bounds
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Substitution into 4.4) gives

2 2

p p—p
)= )+ (= )

_pag—(1—4¢2)°),

2(1 —qz)? —p? !
_rz9(2),
— 1
1—2
Oriented Site Percolation,
where Phase Transitions and
(1 - qz)2 P Probability Bounds
(4-5) g(Z) - (p — qz)g _ qQZ' C.E.M. Pearce and FK. Fletcher
SinceB(z) is convergent on the open unit disk, the segies) := >~ g,2" Title P
itle Page

must also have a radius of convergence of at least unity.
Whenp = 0, absorption occurs at the first step, so that= 0 for n > 0. Contents
Whenp = 1, the process always survives provided it does not start in state 0, SO

) . : 44 >»
thatb, = 1 forn > 0. For0 < p < 1, the denominator of the right—hand side
of (4.5) has two zeros given by < >
l4p-— /(1 +p)2 — 4p? Go Back
2= 2q ’ Close
s 1+p+/(1+p)?—4p? Quit
3 = .
2q

Page 15 of 32

The factorisation1 + p)? — 4p?> = (1 +3p)(1 —p) > 0forall 0 < p < 1

ensures that, andz; are real and positive. Alsg; > 1 forall0 < p < 1. It J-Ineg. Pure and Appl. Math. 6(5) Art. 135, 2005
http://jipam.vu.edu.au
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may be seen by taking the derivativezgfwith respect tg thatz, is increasing
for0 <p< 1.

First suppos® < p < 2/3. In this casd) < z, < 1, sog(z) has a pole
inside the unit disk unless the numerator4rgj vanishes for = z,. The latter
is readily seen to be impossible for> 0. For B(z) to converge inside that disk
we requireb; = 0, which implies thab,, = 0 for all n > 1.

Next suppose/3 < p < 1. In this case

(46) 23 > 29 > 1.
The function )
gz
h pu—
(2) =1
has partial fraction decomposition
9(2) _ Ay i Ay i Az
1l—2z 1—2z 1—2z/2 1—2z/z’
where
2
P —q
A=,
-0
A, — (1 - q22)2 —dq
(1= )21 — 22/23)
A= (L azm) g

(1 — 23)p*(1 — 23/22)

Oriented Site Percolation,
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We haveA; > 0 for 2/3 < p < 1. Further,

1
A1+A2+A3:g(0)22—9>0

To derive A; + A, > 0, it suffices to demonstrate tha; < 0. By (4.6) the
denominator ofA; must be positive. Substitution ef into the numerator gives

—q
(1—gz)*—q= - (a+ V49 —=3¢%) <0,

yielding the desired result; < 0.

Thush(z) satisfies the conditions of the lemma, so t{fat);° , is positive
and bounded above. SinéXz) = pzb,h(z), the sequencé,,) is also positive
and bounded above unlelss= 0, whens,, = 0.

The valueb = lim,, ., b, may be obtained from Abel’'s theorem as

2
b= lim (1= 9)BC) = T,

Whenb; > 0, the maximal solution to4(2) satisfying ¢.3) hasb = 1, so that
bi = (1—3q)/(p* — ¢) and

by.

_1—-3q

Ble) = P —q

pzg(2).

Finally suppose» = 2/3. In this casex; = 1, so B(z) has a pole of order
two atz = 1 unlessh, = 0. Suppose, if possible, thaf — b > 0 asn — oc.
By Abel's theorem

b= lim (1 — z)B(z) = o0,

z—1—
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contradictingy < 1. Thus we must havg, = 0 for p = 2/3.
Accordingly the probability of obtaining an infinite number of wetted sites
starting from a single site is

2

0 forp < -

() = ’
T 13 for >2
p?—q P=3

. Oriented Site Percolation,
Thusp), = sup{p : v(p) = 0} = 2/3, completing the proof. O Phase Transitions and
Probability Bounds

C.E.M. Pearce and EK. Fletcher
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The approach of the previous section may be employed to develop a lower
bound forp, ]f?lt). In this section, we use this technique to derive a bound

a

that is a substantial improvement on that of Theofefn

Theorem 5.1. The critical probabilityp.., (E§Zt> satisfieg. (Eglt) > 1/2.

Oriented Site Percolation,

Proof. We introduce a modified process on the gragh with the same struc- Phase Transitions and
ture as the original oriented site percolation problem except in that if any two Probability Bounds
sites are wetted at timg then all sites between them at timeare deemed C.E.M. Pearce and FK. Fletcher

wetted, so the wetted sites at timare consecutive. Denote the probability of
wetting an infinite number of sites for this new process)fyy). The percolation

. . Title Page
thresholdp? for this process is
Contents
pls = sup{p : n(p) = 0}. « "
The percolation probability for the modified process will be at least as large as < >
that for the original oriented site percolation process, since sites not wetted at —
timet in the latter may be in the former. These sites may in turn lead to other
sites being wetted at the next time step. Thus Close
Quit

0(p) < and CS<E2>>’7
(p) = 77(19) p alt | = DPes Page 19 of 32
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The state of the process at any time is the number of sites wetted at that time.
By construction these sites are contiguous. The modified process is a Markov

chain whose states are the nonnegative integers.

When no sites are wetted at some tilp¢hen none are wetted subsequently,

so 0 is an absorbing state. The transition probabilities for the chain are

o, fori=0
q*? fori >1andj =0
pij =4 (i+2)pg™! fori >1andj =1

(i+3—7)p*¢t?*7 fori>1landj=2,...,i+2

L 0 fori > 1andj > i+ 2,

whereq = 1 — p. We defineb,,, B, @ as in Theoremt. 1. With initial state 1,
we haven(p) = b;. As before 4.2)—(4.4) hold.
We set

Qi(z)=> #'pi; (F=1)
i=1
This is well-defined fofz| < 1, since0 < p; ; < 1. We derive
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and forj > 3

Qi(z) = Y Z(i+3—j)p’q
i=j—2
_ Z(k 4 1)k
k=0
P22
(1 — qz)2 ' Oriented Site Percolation,

Phase Transitions and
Probability Bounds

Hence for|z| < 1

(2,22, 2%,...)Q = (Q1(2), Qa2(2), Qs(2), . ..)

C.E.M. Pearce and EK. Fletcher

v 2 Title P
= 1,2,22, ... itle Page
z(l—qz)2(’z’z’ )
392 p2 Contents
2 2
— —p,0,0,...].
+ (pq Z(]_ —qZ)2 Z(l _qz)27 b Y\, > ‘4 }}
By (4.3), the power series . ;
. Go Back
B(z) = anz" Close
" Quit

converges absolutely fog| < 1. From @.4) we derive Page 21 of 32
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for |z| < 1, so that
(5.1) [2*(1 — q2)> = p*] B(z) =pzN(z) for |z] <1,

where
N(z) = [¢°2*(3 — 2q2) — p| by — pz(1 — q2)°bs.

To show thatp, = 1/2, we now establish that a necessary and sufficient

condition for theb,, to be not all zero is that < 1/2. When this holds), > 0
for all n > 1 and the radius of convergence Bfz) is unity.
A factorisation of the left—hand side d3.Q) yields

(5.2) [2(1 —q2) +pl(1 — 2)(gz — p)B(2) = pzN(2) (Jz] <1).

The zeros on the left—-hand side of this expression occuy at 1, 2o = p/q
and at the roots of(1 — ¢z) + p = 0.

The case® = 0 andp = 1 are trivial: if p = 0, the process dies out at the
first step with probability 1; ifp = 1, the process grows strictly monotonically
with probability 1.

Suppose firsé < p < 1/2, sothatl/2 < ¢ < 1 andz, = p/q < 1. The
left—hand side of{.2) vanishes for: = z,, so thatN(z;) = 0. Substitution of
z = zy into N(z) gives

N(z2) = [p*(3 — 2p) — plbr — p°qbs
= p[(1 = p)(2p — 1)b1 — pqbs]
<0
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unlessb; = b, = 0. In the latter event)N(z) = 0, so thatB(z) vanishes for
eachz in the unit circle, entailing,, = 0 for eachn > 1.

If p=¢q=1/2,thenz, = 1andN(1) < 0, soB(z) has a pole of order two
atz = 1 unlessh,, = 0. Suppose if possible that — b > 0 asn — oo. Then
by Abel’s theorem,

b= ,13112(1 —2)B(z) =00 asn — oo,
contradicting < 1. Hence we must havg, = 0 for ¢ = 1/2.

This establishes necessity. For sufficiency, supposd fl2at p < 1 so that
0 < ¢ < 1/2. Inthis casez; = p/q > 1, so thatgz — p is non-vanishing inside
the unit disk. The quadratic tera{l — ¢z) + p on the left-hand side 05(2)
has zeros

20 = 20(p) = 1 [1 — m} € (—1,0),

= %
1
(5.3) 23 = z3(p) = % [1 +v1+ 4pq} € (1, 00).
We must haveV(z,) = 0 for a nontrivial solution to exist, so that
(%25 (3 — 2qz0) — p|br = pzo(1 — q20)ba.
Since
(5.4) 1 —gz=qz3 and p= —qzoz,

this simplifies to
[q20(1 + 2qz3) + 23]b1 = pqz3bs
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or

(5.5) (1 + pzz — 2pq)by = pqz3by,

which shows that i, # 0 thenb, /b, is positive.
A common factorz = z; may be removed from both sides & .% and
division bypz; yields

(1 - i) (1 - @) (1 - 2)B(2) = pzNy(2),

Z3 p

whereN,(z) is a quadratic ire. The coefficient of3(z) is nonvanishing on the
interior of the unit disk, so thaB(z) may be written

pzN1(2)
(I —2/2) (1 —qz/p) (1 —2)

It remains to show that i, andb, are positive and satisfyjb(5), then the con-
stantsh,, defined through4.6) are all positive.

The power serie8(z) has radius of convergence unity provided tNaf1) #
0. To establish this inequality, it suffices to show thatl) # 0. We have

(5.6) B(z) =

for |z] < 1.

N(1) = [¢*(3 — 2q) — 1+ q]by — p°bs.

For ¢ € [0,1/2], the expression in brackets is strictly increasinggiand
achieves value zero fgr= 1/2, providing the required result thaf, (1) # 0.
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We consider

N1 (Z)
S T TS TG
Al A2 A3

By applying the cover—up rule to
N(z)

M) = A== o) (L = 2/ = a2fp)

we derive that

Ay = N(1)
—p*(1 = 1/20)(1 = 1/25)(1 —q/p) ’
(5.7) Ay = [4°23(3 — 2g23) — plb1 — pz3(1 — g23)°bs

—p*(1 — 23/20)(1 — 23)(1 — qz3/p)
Note from 6.3) that
1
(58) 2’3>—>]—9:2’2>1,
qa (g

so that the notation,, z; adopted in this section is consistent with the usage of
the lemma.
SinceN(1) < 0for g € [0,1/2], we have thatd; > 0. Also

b
A1+A2+A3:g(0):j>0.
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We shall prove thatl; < 0, from which it follows that4; + A, > 0 and thus
that the conditions of the lemma are satisfied.

By (5.8) andz, < 0, the denominator of the fraction i3 (/) is negative, so
that we need to establish that the numerator is positive. By exploiidy the

numerator may be expressed as
qzs [{qzs(1 4 2q20) + 20} by — pqzyhs) -
By (5.4), the expression in brackets reduces further to
{pzo+1—2pq} b — pngbg.

We wish to show that this must be positive. By5),

{pzs +1 —2pq} by — pgz3by = 0,
So our task is equivalent to deriving that

p(z0 — 23)b1 — pa(z5 — 23)by > 0

or equivalently that
by — q(Z() + 23)62 < 0,

which by (.4) reduces further to
b1 — bg < 0.
Substitution for, /b, from (5.5) converts this condition to

png —pz3+2pg—1 < 0.
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Sinceqz? = z3 + p, the left-hand side may be cast as
PPA2pg—1=—p+2p—1=—¢,

so the condition is satisfied. Thus the conditions of the lemma apply so that a
positive, bounded solutiofh,,) exists in the case < ¢ < 1/2. The relation

(5.9) B(z) = pzh(z)

providesb,, = ph,_1, SO the maximal solutiob,,) to (4.2) subject to ¢.3) is
positive. This completes the proof. O

Remark 1. By Abel’'s theoremy,, — b asn — oo where

b=1lim(l —2)B(z) = A;.

Z—>1

Takingb = 1 givesA; = 1 or

[4*(3 — 2¢) — 1+ q]by — p°by = —p? (1 — 2—10) (1 — Z%)) (1 - %) .

The values ob,, b, may be found by solving this equation withg), whence
the values ob,, for all n > 0 follow from (.9).
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Figure 5:Monte Carlo simulation results for the oriented site percolation pro- Title Page
cess orl?,. Contents
44 44
- - - - 4 }
A Monte Carlo simulation has been performed of the site percolation process
Go Back

on ]ﬂzlt. Tracks were able to run for 20,000 time steps and those still alive at this
time were deemed to have lasted infinitely long. After some initial testing over Close
shorter periods of time, values pfwere varied fron0.53 to 0.54 in steps of

size0.0001. One thousand Monte Carlo runs were performed for each of these Quit
probabilities. The results of this simulation are illustrated in Figure Page 28 of 32

There are tracks lasting 20,000 steps for probabilities greater than approxi-
matelyp = 0.535, suggesting thai., ~ 0.535. J. Ineq. Pure and Appl. Math. 6(5) Art. 135, 2005
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