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ABSTRACT. The main purpose of the present paper is to establish a new discrete Opial-type
inequality. Our result provide a new estimates on such type of inequality.
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1. I NTRODUCTION

In 1960, Z. Opial [14] established the following integral inequality:

Theorem A. Supposef ∈ C1[0, h] satisfiesf(0) = f(h) = 0 andf(x) > 0 for all x ∈ (0, h).
Then the following integral inequality holds

(1.1)
∫ h

0

|f(x)f ′(x)| dx ≤ h

4

∫ h

0

(f ′)
2
dx,

where the constanth
4

is best possible.

Opial’s inequality and its generalizations, extensions and discretizations, play a fundamental
role in establishing the existence and uniqueness of initial and boundary value problems for
ordinary and partial differential equations as well as difference equations [1, 2, 3, 10, 12]. In
recent years, inequality (1.1) has received further attention and a large number of papers dealing
with new proofs, extensions, generalizations and variants of Opial’s inequality have appeared in
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the literature [4] – [9], [13], [15], [16], [18] – [20]. For an extensive survey on these inequalities,
see [1, 12].

For discrete analogues of Opial-type inequalities, good accounts of the recent works in this
aspect are given in [1, 12], etc. In particular, an inequality involving two sequences was estab-
lished by Pachpatte in [17] as follows:

Theorem B. Letxi andyi (i = 0, 1, . . . , τ) be non-decreasing sequences of non-negative num-
bers, andx0 = y0 = 0. Then, the following inequality holds

(1.2)
τ−1∑
i=0

[xi∆yi + yi+1∆xi] ≤
τ

2

τ−1∑
i=0

[
(∆xi)

2 + (∆yi)
2
]
.

The main purpose of the present paper is to establish a new discrete Opial-type inequality
involving two sequences as follows.

Theorem 1.1. Let{xi,j} and{yi,j} be non-decreasing sequences of non-negative numbers de-
fined fori = 0, 1, . . . , τ , j = 0, 1, . . . , σ, whereτ , σ are natural numbers, andx0,j = xi,0 = 0,
y0,j = yi,0 = 0 (i = 0, 1, . . . , τ ; j = 0, 1, . . . , σ). Let

∆1xi,j = xi+1,j − xi,j, ∆2xi,j = xi,j+1 − xi,j,

then

(1.3)
τ−1∑
i=0

σ−1∑
j=0

[
xi,j · ∆2∆1yi,j + ∆1yi,j+1 · ∆2xi+1,j

+ yi,j · ∆2∆1xi,j + ∆1xi,j+1 · ∆2yi+1,j+1

]
≤ στ

2

τ−1∑
i=0

σ−1∑
j=0

[
(∆2∆1xi,j)

2 + (∆2∆1yi,j)
2
]
.

Our result in special cases yields some of the recent results on Opial’s inequality and provides
a new estimate on such types of inequalities.

2. M AIN RESULTS

Theorem 2.1. Let{xi,j} and{yi,j} be non-decreasing sequences of non-negative numbers de-
fined fori = 0, 1, . . . , τ , j = 0, 1, . . . , σ, whereτ , σ are natural numbers, withx0,j = xi,0 = 0,
y0,j = yi,0 = 0 (i = 0, 1, . . . , τ ; j = 0, 1, . . . , σ). Let 1

p
+ 1

q
= 1, p > 1, and

∆1xi,j = xi+1,j − xi,j, ∆2xi,j = xi,j+1 − xi,j,

then

(2.1)
τ−1∑
i=0

σ−1∑
j=0

[
xi,j · ∆2∆1yi,j + ∆1yi,j+1 · ∆2xi+1,j

+ yi,j · ∆2∆1xi,j + ∆1xi,j+1 · ∆2yi+1,j+1

]
≤ 1

p
(στ)p/q

τ−1∑
i=0

σ−1∑
j=0

(∆2∆1xi,j)
p +

1

q
(στ)q/p

τ−1∑
i=0

σ−1∑
j=0

(∆2∆1yi,j)
q.
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Proof. We have

∆2∆1(xijyij) = ∆2(xi,j∆1yi,j + yi+1,j∆1xi,j)

= ∆2(xi,j∆1yi,j) + ∆2(yi+1,j∆1xi,j)

= xi,j · ∆2∆1yi,j + ∆1yi,j+1∆2xi,j + yi+1,j · ∆2∆1xi,j + ∆1xi,j+1∆2yi+1,j+1.

On the other hand, in view ofx0,j = xi,0 = 0, y0,j = yi,0 = 0 (i = 0, 1, . . . , τ ; j = 0, 1, . . . , σ),
it follows that

τ−1∑
i=0

σ−1∑
j=0

[
xi,j · ∆2∆1yi,j + ∆1yi,j+1 · ∆2xi+1,j + yi,j · ∆2∆1xi,j + ∆1xi,j+1 · ∆2yi+1,j+1

]
= xτ,σ · yτ,σ.

Now, using the elementary inequality

ab ≤ ap

p
+

bq

q
,

1

p
+

1

q
= 1, p > 1,

the facts that

xτ,σ =
τ−1∑
i=0

σ−1∑
j=0

∆2∆1xi,j,

yτ,σ =
τ−1∑
i=0

σ−1∑
j=0

∆2∆1yi,j,

and Hölder’s inequality, we obtain

τ−1∑
i=0

σ−1∑
j=0

[
xi,j · ∆2∆1yi,j + ∆1yi,j+1 · ∆2xi+1,j + yi,j · ∆2∆1xi,j + ∆1xi,j+1 · ∆2yi+1,j+1

]
≤

xp
τ,σ

p
+

yq
τ,σ

q

=
1

p

(
τ−1∑
i=0

σ−1∑
j=0

∆2∆1xi,j

)p

+
1

q

(
τ−1∑
i=0

σ−1∑
j=0

∆2∆1yi,j

)q

≤ 1

p
(στ)p/q

τ−1∑
i=0

σ−1∑
j=0

(∆2∆1xi,j)
p +

1

q
(στ)q/p

τ−1∑
i=0

σ−1∑
j=0

(∆2∆1yi,j)
q.

�

Remark 2.2. Takingp = q = 2, Theorem 2.1 reduces to Theorem 1.1.

Furthermore, by reducing{xi,j} and{yi,j} to {xi} and{yi} (i = 0, 1, . . . , τ), respectively,
and with suitable changes, we have

τ−1∑
i=0

[
xi∆yi + yi+1∆xi

]
≤ τ

2

τ−1∑
i=0

[
(∆xi)

2 + (∆yi)
2
]
.

This result was given by Pachpatte in [17].
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