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Abstract

In this paper the authors discuss some monotonicity properties of functions
involving sine and cosine, and obtain some sharp inequalities for them. These
inequalities are extensions and sharpenings of the well-known Jordan’s and
Kober’s inequalities.
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1. Introduction
The well-known inequalities

(1.1)
2

π
x ≤ sin x ≤ x, x ∈

[
0,

π

2

]
and

(1.2) cos x ≥ 1− 2

π
x, x ∈

[
0,

π

2

]
are called Jordan’s and Kober’s inequality, respectively. In fact, Jordan’s and
Kober’s inequalities are dual in the sense that they follow from each other via the
transformationT : x → π/2 − x. Some different extensions and sharpenings
of these inequalities have been obtained by many authors (see [1] – [4]).

In this note, we will extend and sharpen Jordan’s and Kober’s inequalities by
using the monotone form of l’Hôpital’s Rule (cf. [5, Theorem 1.25]) and obtain
the following results:

Theorem 1.1.For x ∈ [0, π/2],

(1.3)
2

π
x +

π − 2

π2
x(π − 2x) ≤ sin x ≤ 2

π
x +

2

π2
x(π − 2x),

(1.4)
2

π
x +

1

π3
x(π2 − 4x2) ≤ sin x ≤ 2

π
x +

π − 2

π3
x(π2 − 4x2),

and

(1.5) 1− 2

π
x +

π − 2

π2
x(π − 2x) ≤ cos x ≤ 1− 2

π
x +

2

π2
x(π − 2x),

where the coefficients are all best possible.
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2. Proof of Theorem1.1
The following monotone form of l’Hôpital’s Rule, which is put forward in [5,
Theorem 1.25], is extremely useful in our proof.

Lemma 2.1 (The Monotone Form of l’Hôpital’s Rule). For −∞ < a < b <
∞, let f , g : [a, b] → R be continuous on[a, b], and differentiable on(a, b), let
g′(x) 6= 0 on (a, b). If f ′(x)/g′(x) is increasing (decreasing) on(a, b), then so
are

f(x)− f(a)

g(x)− g(a)
and

f(x)− f(b)

g(x)− g(b)
.

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is
also strict.

We next prove the inequalities (1.3) – (1.5) by making use of the monotone
form of l’Hôpital’s Rule.

Proof of Inequality (1.3). Let f(x) =
(

sin x
x
− 2

π

)
/
(

π
2
− x

)
. Write f1(x) =

sin x
x
− 2

π
, andf2(x) = π

2
− x. Thenf1(π/2) = f2(π/2) = 0 and

(2.1)
f ′1(x)

f ′2(x)
=

sin x− x cos x

x2
=

f3(x)

f4(x)
,

wheref3(x) = sin x− x cos x andf4(x) = x2. Thenf3(0) = f4(0) = 0 and

(2.2)
f ′3(x)

f ′4(x)
=

sin x

2
,
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which is strictly increasing on[0, π/2]. By (2.1), (2.2) and the monotone form
of l’Hôpital’s rule, f(x) is strictly increasing on[0, π/2].

The limiting valuef(0) = 2
π
(1 − 2

π
) is clear. By (2.1) and l’Hôpital’s Rule,

we havef(π/2) = 4
π2 .

The inequality (1.3) follows from the monotonicity and the limiting values
of f(x).

Proof of Inequality (1.4). Let g(x) = g1(x)/g2(x), whereg1(x) = sin x
x
− 2

π
and

g2(x) = π2

4
− x2. Theng1(π/2) = g2(π/2) = 0. By differentiation, we have

(2.3)
g′1(x)

g′2(x)
=

sin x− x cos x

2x3
=

g3(x)

g4(x)
,

whereg3(x) = sin x− x cos x andg4(x) = 2x3. Theng3(0) = g4(0) = 0 and

(2.4)
g′3(x)

g′4(x)
=

sin x

6x
,

which is strictly decreasing on[0, π/2]. Hence, by the monotone form of l’Hôpital’s
rule,g(x) is also strictly decreasing on[0, π/2].

The limiting valueg(0) = 4
π2 (1− 2

π
) is clear. By (2.3) and l’Hôpital’s Rule,

g(π/2) = 4
π3 .

The inequality (1.4) follows from the monotonicity and the limiting values
of g(x).

Proof of Inequality (1.5). Leth(x) =
(

1−cos x
x

− 2
π

)
/
(

π
2
− x

)
. Simple calculat-

ing similar to proofs of inequalities (1.3) and (1.4) will yield the monotonicity
and limiting values ofh(x), and the inequality (1.5) follow.
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Remark 1.

1. The inequalities (1.3) and (1.5) areT−dual to each other.

2. Like the proof of inequality (1.4), we can construct a function

m(x) =

(
1− cos x

x
− 2

π

)/ (
π2

4
− x2

)
and obtain the following inequality:

(2.5) 1− 2

π
x +

π − 2

2π3
x(π2− 4x2) ≤ cos x ≤ 1− 2

π
x +

2

π3
x(π2− 4x2).

But the inequalities (1.4) and (2.5) are notT−dual. Comparing the in-
equality (1.5) with (2.5), we can find the inequality (1.5) is stronger than
(2.5). Whereas the inequalities (1.3) and (1.4) cannot be compared on the
whole interval[0, π/2].

3. Straightforward simplifications of the inequalities (1.3) – (1.5) yield that
for x ∈ [0, π/2],

(2.6) x− 2(π − 2)

π2
x2 ≤ sin x ≤ 4x

π
− 4

π2
x2,

(2.7)
3

π
x− 4

π3
x3 ≤ sin x ≤ x− 4(π − 2)

π3
x3,

and

(2.8) 1− 4− π

π
x− 2(π − 2)

π2
x2 ≤ cos x ≤ 1− 4

π2
x2.
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