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ABSTRACT. Let up denote the normalized, generalized Bessel function of orderp which de-
pends on two parametersb andc and letλp(x) = up(x2), x ≥ 0. It is proven that under some
conditions imposed onp, b, andc the Askey inequality holds true for the functionλp , i.e., that
λp(x) + λp(y) ≤ 1 + λp(z), wherex, y ≥ 0 andz2 = x2 + y2. The lower and upper bounds for
the functionλp are also established.
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1. I NTRODUCTION

The Bessel function of the first kind of orderp, denoted byJp(x), is defined as a particular
solution of the second-order differential equation ([12, p. 38])

(1.1) x2y′′(x) + xy′(x) + (x2 − p2)y(x) = 0

which is also called the Bessel equation. It is known ([12, p. 40]) that

(1.2) Jp(x) =
∞∑

n=0

(−1)n

n!Γ(p + n + 1)

(x

2

)2n+p

, x ∈ R.
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2 BARICZ ÁRPÁD AND EDWARD NEUMAN

R. Askey [2] has shown that forJp(x) = Γ(p + 1)(2/x)pJp(x) the following inequality

(1.3) Jp(x) + Jp(y) ≤ 1 + Jp(z)

holds true for allx, y, z, p ≥ 0 wherez2 = x2 + y2. SinceJ0(x) = J0(x), inequality (1.3)
provides a generalization of Grünbaum’s inequality ([6])

(1.4) J0(x) + J0(y) ≤ 1 + J0(z).

Using Legendre polynomials Grünbaum has supplied another proof of (1.4) in [7].
Recently, E. Neuman ([9]) has obtained a different upper bound forJp(x) + Jp(y). In the

same paper the lower and upper bounds for the functionJp(x) are established with the aid of
Gegenbauer polynomials.

The purpose of this paper is to obtain similar results to those mentioned above for the func-
tion λp which is the transformed version of the normalized, generalized Bessel functionup.
Definitions of these functions together with the integral formula are contained in Section 2. An
Askey type inequality for the functionλp and the Grünbaum inequality for the modified Bessel
functions of the first kind are derived in Section 3. The lower and upper bounds for the function
λp are established in Section 4.

2. THE FUNCTION λp

The following second-order differential equation (see [12, p. 77])

(2.1) x2y′′(x) + xy′(x)− (x2 + p2)y(x) = 0

frequently occurs in mathematical physics. A particular solution of (2.1), denoted byIp(x), is
called the modified Bessel function of the first kind of orderp and it is represented as the infinite
series

(2.2) Ip(x) =
∞∑

n=0

1

n!Γ(p + n + 1)

(x

2

)2n+p

, x ∈ R

(see, e.g., [12, p. 77]).
A second order differential equation which reduces either to (1.1) or (2.1) reads as follows

(2.3) x2v′′(x) + bxv′(x) +
[
cx2 − p2 + (1− b)p

]
v(x) = 0,

b, c, p ∈ R. A particular solutionvp is

(2.4) vp(x) =
∞∑

n=0

(−1)ncn

n!Γ(p + n + (b + 1)/2)

(x

2

)2n+p

andvp is called the generalized Bessel function of the first kind of orderp (see [4]). It is readily
seen that forb = 1 andc = 1, vp becomesJp and forb = 1 andc = −1, vp simplifies toIp.

The normalized, generalized Bessel function of the first kind of orderp, denoted byup, is
defined as

(2.5) up(x) = 2pΓ

(
p +

b + 1

2

)
x−p/2vp(x

1/2).

Using the Pochhammer symbol(a)n := Γ(a + n)/Γ(a) = a(a + 1) · · · · · (a + n− 1) (a 6= 0)
we obtain the following formula

(2.6) up(x) =
∞∑

n=0

(−1)ncn

4n
(
p + b+1

2

)
n

· xn

n!
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INEQUALITIES INVOLVING GENERALIZED BESSELFUNCTIONS 3

(p + (b + 1)/2 6= 0,−1, . . .). For later use, let us write

up(x) =
∞∑

n=0

bnx
n,

where

(2.7) bn =
1

n!
(
p + b+1

2

)
n

(
− c

4

)n

(n ≥ 0).
Finally, we define a functionλp as follows

(2.8) λp(x) = up(x
2).

Making use of (2.6) we obtain a series representation for the function in question

(2.9) λp(x) =
∞∑

n=0

(−1)ncn(
p + b+1

2

)
n
n!

(x

2

)2n

.

The following lemma will be used in the sequel.

Lemma 2.1. Let the numbersp andb be suchRe(p + b/2) > 0. Then for anyx ∈ R

(2.10) λp(x) =


∫ 1

0
cos(tx

√
c) dµ(t), c ≥ 0∫ 1

0
cosh(tx

√
−c) dµ(t), c ≤ 0,

wheredµ(t) = µ(t) dt with

(2.11) µ(t) =
2(1− t2)p+(b−2)/2

B
(
p + b

2
, 1

2

)
being the probability measure on[0, 1]. HereB(·, ·) stands for the beta function.

Proof. We shall prove first that the functionµ(t), defined in (2.11), is indeed the probability
measure on[0, 1]. Clearly the function in question is nonnegative on the indicated interval.
Moreover, withA = 1/B(p + b/2, 1/2), we have∫ 1

0

dµ(t) = 2A

∫ 1

0

(1− t2)p+(b−2)/2dt

= A

∫ 1

0

r−1/2(1− r)p+(b−2)/2dr = A · A−1.

Here we have used the substitutionr = t1/2.
In order to establish formula (2.10) we note that (2.9) impliesλp(0) = 1 and also that

λp(−x) = λ(x). To this end, letx > 0. For the sake of brevity, let

I =

∫ π/2

0

(sin θ)2p+b−1 cos(
√

c z cos θ) dθ, c ≥ 0.

Using the Maclaurin expansion for the cosine function and integrating term by term we obtain

I =
∞∑

n=0

(−1)ncn

(2n)!
z2n

∫ π/2

0

(sin θ)2p+b−1(cos θ)2ndθ,

J. Inequal. Pure and Appl. Math., 6(4) Art. 126, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 BARICZ ÁRPÁD AND EDWARD NEUMAN

where the last integral converges uniformly providedRe(p + b/2) > 0. Making use of the
well-known formula

B(a, b) = 2

∫ π/2

0

(cos θ)2a−1(sin θ)2b−1dθ

(Re a > 0, Re b > 0) we obtain

I =
1

2

∞∑
n=0

(−1)ncn

(2n)!
B

(
p +

b

2
, n +

1

2

)
z2n.

Application of

B

(
p +

b

2
, n +

1

2

)
=

Γ(p + b/2)Γ(n + 1/2)

Γ(p + n + (b + 1)/2)

and

Γ

(
n +

1

2

)
=

(2n)!

22nn!

√
π

(n = 0, 1, . . .) gives

I =

√
π

2
Γ

(
p +

b

2

) ∞∑
n=0

(−1)ncn

n! Γ(p + n + (b + 1)/2)

(z

2

)2n

=

√
π

2
Γ

(
p +

b

2

)(
2

z

)p

vp(z).

Hence

vp(z) = 2
(z

2

)p 1
√

π Γ
(
p + b

2

) ∫ π/2

0

(sin θ)2p+b−1 cos(
√

c z cos θ) dθ.

Utilizing (2.5) we obtain

up(z) =
2

B
(
p + b

2
, 1

2

) ∫ π/2

0

(sin θ)2p+b−1 cos(
√

c z cos θ) dθ.

Letting z = x2 and making a substitutiont = cos θ we obtain, with the aid of (2.8) and (2.11),
the first part of (2.10). Whenc < 0, the proof of the second part of (2.10) goes along the lines
introduced above. We begin with a series expansion

cosh(
√
−c z cos θ) =

∞∑
n=0

(−1)ncn

(2n)!
z2n(cos θ)2n.

Application to the right side of

I :=

∫ π/2

0

(sin θ)2p+b−1 cosh(
√
−c z cos θ) dθ

gives

vp(z) = 2
(z

2

)p 1
√

π Γ
(
p + b

2

) ∫ π/2

0

(sin θ)2p+b−1 cosh(
√
−c z cos θ) dθ.

This in turn implies that

up(z) = 2A

∫ π/2

0

(sin θ)2p+b−1 cosh(
√
−cz cos θ) dθ.

Puttingz = x2 and making a substitutiont = cos θ we obtain, utilizing (2.8) and (2.11), the
second part of (2.10). The proof is complete. �

Whenb = c = 1, formula (2.10) simplifies to Eq. (9.1.20) in [1].
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INEQUALITIES INVOLVING GENERALIZED BESSELFUNCTIONS 5

3. ASKEY ’ S I NEQUALITY FOR THE FUNCTION λp AND GRÜNBAUM ’ S I NEQUALITY

FOR M ODIFIED BESSEL FUNCTIONS OF THE FIRST K IND

We begin with the following.

Theorem 3.1. Let the real numbersp, b, andc be such thatp + b/2 > 1/2 and letx, y, z ≥ 0
with z2 = x2 + y2. Then the following inequality

(3.1) λp(x) + λp(y) ≤ 1 + λp(z)

holds true.

Proof. There is nothing to prove whenc = 0, because in this caseλp(x) = 1. Assume that
c > 0. It follows from (1.2) and (2.9) that

(3.2) Jp+(b−1)/2(x
√

c) = λp(x).

Making use of (1.3) withx replaced byx
√

c, y replaced byy
√

c, andp replaced byp+(b−1)/2
together with application of (3.2) gives the desired result. Now letc < 0. Then the inequality
(3.1) can be written as

up(x
2) + up(y

2) ≤ 1 + up(z
2)

or after replacingx2 by x, y2 by y, andz2 by z, as

(3.3) up(x) + up(y) ≤ 1 + up(z).

Let us note that in order for the inequality (3.3) to be valid it suffices to show that a function
f(x) = up(x) − 1 is superadditive, i.e., thatf(x + y) ≥ f(x) + f(y) for x, y ≥ 0. We shall
prove that if the functiong(x) = f(x)/x is increasing, thenf(x) is superadditive. We have
g(x) =

(
up(x) − 1

)
/x. Henceg′(x) =

[
xu′p(x) − (up(x) − 1)

]
/x2. In order forg(x) to be

increasing it is necessary and sufficient thatxu′p(x) ≥ up(x)− 1. Since

up(x) =
∞∑

n=0

bnx
n

with the coefficientsbn (n ≥ 0) defined in (2.7), the last inequality can be written as
∞∑

n=1

(n− 1)bnx
n ≥ 0.

Making use of (2.7) we see thatbn ≥ 0 for all n ≥ 1. This in turn implies that the function
g(x) = f(x)/x is increasing. Using this one can prove easily the superadditivity off(x). We
have

f(x + y) = x
f(x + y)

x + y
+ y

f(x + y)

x + y
≥ x

f(x)

x
+ y

f(y)

y
= f(x) + f(y).

This completes the proof of (3.3). Lettingx := x2, y := y2, andz := z2 in (3.3) and utilizing
(2.8) we obtain the assertion. �

Before we state the next theorem, let us introduce more notation. LetIp(x) = (2/x)pΓ(p +
1)Ip(x). Let us note thatIp = λp whenb = 1 andc = −1.

Theorem 3.2.Letp, x, y, z ≥ 0 with z2 = x2 + y2. Then

(3.4) Ip(x) + Ip(y) ≤ 1 + Ip(z).
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6 BARICZ ÁRPÁD AND EDWARD NEUMAN

Proof. Let p > 0. Then the inequality (3.4) is a special case of (3.1). Whenp = 0, I0 = I0 .
In order to prove Grünbaum’s inequality for the modified Bessel functions of the first kind of
order zero:

(3.5) I0(x) + I0(y) ≤ 1 + I0(z)

we may proceed as in the proof of Theorem 3.1, case of negative value ofc. We need Petrović’s
theorem for convex functions (see [10], [8, Theorem 1, p. 22]). This result states that ifφ is a
convex function on the domain which contains0, x1, x2, . . . , xn ≥ 0, then

φ(x1) + φ(x2) + · · ·+ φ(xn) ≤ φ(x1 + · · ·+ xn) + (n− 1)φ(0).

If n = 2 andφ(0) = 0, then the last inequality shows thatφ is a superadditive function. Let
f(x) = u0(x)−1. Using (2.6) withb = 1 andc = −1 we see thatf(x) is a convex function and
also thatf(0) = 0. Using Petrovíc’s result we conclude that the functionf(x) is superadditive.
This in turn implies inequality (3.5). �

4. L OWER AND UPPER BOUNDS FOR THE FUNCTION λp

In the recent paper (see [5, Theorem 1.22]) Á. Baricz has shown that forx, y ∈ (0, 1) and
under some assumptions on the parametersp, b, andc, the following inequality

λp(x) + λp(y) ≤ 2λp(z)

holds true providedz2 = 1−
√

(1− x2)(1− y2).
We are in a position to prove the following.

Theorem 4.1. Let the real numbersp, b, andc be such thatp + b/2 > 0. Then for arbitrary
real numbersx andy the inequality

(4.1)
[
λp(x) + λp(y)

]2 ≤ [1 + λp(x + y)
][

1 + λp(x− y)
]

is valid. Equality holds in(4.1) if c = 0.

Proof. There is nothing to prove whenc = 0. In this caseλp(x) = 1 (see (2.9), (2.10)). Assume
thatc > 0. Theorem 2.1 in [9] states that (4.1) is satisfied whenb = c = 1, i.e., whenλp = Jp.
Replacingx by x

√
c, y by y

√
c, andp by p + (b − 1)/2 we obtain the desired result (4.1).

Assume now thatc < 0. It follows from Lemma 2.1 that

λp(x) =

∫ 1

0

cosh(tx
√
−c) dµ(t).

Using the identities

cosh α + cosh β = 2 cosh

(
α + β

2

)
cosh

(
α− β

2

)
,

2 cosh2
(α

2

)
= 1 + cosh α,
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INEQUALITIES INVOLVING GENERALIZED BESSELFUNCTIONS 7

and the Cauchy-Schwarz inequality for integrals, we obtain

λp(x) + λp(y) =

∫ 1

0

[
cosh(tx

√
−c) + cosh(ty

√
−c)
]
dµ(t)

= 2

∫ 1

0

cosh
t(x + y)

√
−c

2
cosh

t(x− y)
√
−c

2
dµ(t)

≤ 2

[ ∫ 1

0

cosh2 t(x + y)
√
−c

2
dµ(t)

] 1
2
[ ∫ 1

0

cosh2 t(x− y)
√
−c

2
dµ(t)

] 1
2

=

[ ∫ 1

0

(
1 + cosh(t(x + y)

√
−c)
)
dµ(t)

∫ 1

0

(
1 + cosh(t(x− y)

√
−c)
)
dµ(t)

] 1
2

=
[(

1 + λp(x + y)
)(

1 + λp(x− y)
)] 1

2 .

Hence the assertion follows. �

Whenx = y, inequality (4.1) reduces to2λ2
p(x) ≤ 1 + λp(2x) which resembles the double-

angle formulas for the cosine and the hyperbolic cosine functions, i.e.,2 cos2 x = 1 + cos(2x)
and2 cosh2 x = 1 + cosh(2x), respectively.

Our next goal is to establish computable lower and upper bounds for the functionλp . For the
reader’s convenience, we recall some facts about Gegenbauer polynomialsGp

k (p > −1
2
, k ∈ N)

and the Gauss-Gegenbauer quadrature formulas. The polynomials in question are orthogonal
on the interval[−1, 1] with the weight functiont → (1 − t2)p−(1/2). The explicit formula for
Gp

k is ([1, 22.3.4])

(4.2) Gp
k(t) =

[k/2]∑
n=0

(−1)n Γ(p + k − n)

Γ(p)n!(k − 2n)!
(2t)k−2n.

In particular,

(4.3) Gp
2(t) = 2p(p + 1)t2 − p.

The classical Gauss-Gegenbauer quadrature formula with the remainder reads as follows [3]

(4.4)
∫ 1

−1

(1− t2)p− 1
2 f(t)dt =

k∑
i=1

wif(ti) + γkf
(2k)(α),

wheref ∈ C2k([−1, 1]), γk is a positive number which does not depend onf , α is an interme-
diate point in(−1, 1). The nodesti (i = 1, 2, . . . , k) are the roots ofGp

k and the weightswi are
given explicitly by [11, (15.3.2)]

(4.5) wi = π

(
21−p

Γ(p)

)2
Γ(2p + k)

k!(1− t2i )

[
(Gp

k)
′(ti)

]−2

(1 ≤ i ≤ k).
The last result of this paper is contained in the following.

Theorem 4.2.For p, b ∈ R, let κ := p + (b + 1)/2 > 1/2.

(i) If c ∈ [0, 1] and|x| ≤ π
2

, then

(4.6) cos

(√
c

2κ
x

)
≤ λp(x) ≤ 1

3κ

[
2κ− 1 + (κ + 1) cos

(√
3c

2(κ + 1)
x

)]
.
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8 BARICZ ÁRPÁD AND EDWARD NEUMAN

(ii) If c ≤ 0 andx ∈ R, then

(4.7) cosh

(√
−c

2κ
x

)
≤ λp(x).

Equalities hold in(4.6)and (4.7) if c = 0 or x = 0.

Proof. Utilizing Theorem 2.2 in [9] we see that the inequalities (4.6) are valid whenb = c = 1,
i.e., whenλp = Jp :

cos

(
x√

2(p + 1)

)
≤ Jp(x) ≤ 1

3(p + 1)

[
2p + 1 + (p + 2) cos

(√
3

2(p + 2)
x

)]
.

Let 0 ≤ c ≤ 1. Replacingx by x
√

c, y by y
√

c, p by p+(b−1)/2, and utilizing (3.2) we obtain
the desired result. Assume now thatc ≤ 0. In order to establish the lower bound in (4.7) we use
the Gauss-Gegenbauer quadrature formula (4.4) withk = 2 andf(t) = cosh(tx

√
−c). Since

f (4)(t) = x4c2 cosh(tx
√
−c) ≥ 0 for |t| ≤ 1, (4.4) yields

(4.8) w1f(t1) + w2f(t2) ≤
∫ 1

−1

(1− t2)p− 1
2 cosh

(
tx
√
−c
)
dt.

Using formulas (4.3) and (4.5), withp replaced byp + (b− 1)/2, we obtain

−t1 = t2 =
1√
2κ

,

w1 = w2 =
1

2
B

(
κ− 1

2
,
1

2

)
.

This, in conjuction with (4.8), gives

B

(
κ− 1

2
,
1

2

)
cosh

(√
−c

2κ
x

)
≤
∫ 1

−1

(1− t2)κ− 3
2 cosh(tx

√
−c) dt

= 2

∫ 1

0

(1− t2)κ− 3
2 cosh(tx

√
−c) dt.

Application of Lemma 2.1 gives the desired result (4.7). The proof is complete. �

REFERENCES

[1] M. ABRAMOWITZ AND I.A. STEGUN (Eds.),Handbook of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables, Dover Publications, Inc., New York, 1965.

[2] R. ASKEY, Grünbaum’s inequality for Bessel functions,J. Math. Anal. Appl.41 (1973), 122–124.

[3] K.E. ATKINSON, An Introduction to Numerical Analysis, 2nd ed., John Wiley and Sons, New York
1989.

[4] Á. BARICZ, Geometric properties of generalized Bessel functions,J. Math. Anal. Appl., submitted.

[5] Á. BARICZ, Functional inequalities involving power series II,J. Math. Anal. Appl., submitted.

[6] F.A. GRÜNBAUM, A property of Legendre polynomials,Proc. Nat. Acad. Sci., USA67 (1970),
959–960.

[7] F.A. GRÜNBAUM, A new kind of inequality for Bessel functions,J. Math. Anal. Appl.41 (1973),
115–121.
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