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ABSTRACT. Letu, denote the normalized, generalized Bessel function of grdehich de-
pends on two parametebsandc and let,(z) = u,(z?), z > 0. Itis proven that under some
conditions imposed op, b, andc the Askey inequality holds true for the functiog , i.e., that
Ao () + Ap(y) < 1+ Ay(2), wherez,y > 0 andz? = 2% + y2. The lower and upper bounds for
the function),, are also established.
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1. INTRODUCTION

The Bessel function of the first kind of ordgrdenoted by/,(z), is defined as a particular
solution of the second-order differential equation ([12, p. 38])

(1.1) 3y (x) + 2y (z) + (2° — p*)y(x) =0

which is also called the Bessel equation. It is knownl([12, p. 40]) that
LS (Dt e

(1.2 Tp(@) _HZ:(Jn!F(p—i-n—f-l) (2) ’ veR.
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2 BARICZ ARPAD AND EDWARD NEUMAN

R. Askey [2] has shown that fQf,(x) = ['(p + 1)(2/x)?J,(z) the following inequality

(1.3) Tp(x) + Tp(y) <14 Fp(2)

holds true for allz,y, z,p > 0 wherez? = 2? + y*. SinceJy(x) = Jo(z), inequality [I.B)
provides a generalization of Griinbaum’s inequality ([6])

Using Legendre polynomials Griinbaum has supplied another prdof of (1(4) in [7].

Recently, E. Neuman(([9]) has obtained a different upper boundjfor) + J7,(y). In the
same paper the lower and upper bounds for the funcfigm) are established with the aid of
Gegenbauer polynomials.

The purpose of this paper is to obtain similar results to those mentioned above for the func-
tion A\, which is the transformed version of the normalized, generalized Bessel fungtion
Definitions of these functions together with the integral formula are contained in Sgction 2. An
Askey type inequality for the functiok, and the Griinbaum inequality for the modified Bessel
functions of the first kind are derived in Sect[dn 3. The lower and upper bounds for the function
A, are established in Sectiph 4.

2. THE FUNCTION ),

The following second-order differential equation (se€ [12, p. 77])

(2.1) 2%y (@) + 2y () — (2% + p*)y(x) = 0

frequently occurs in mathematical physics. A particular solutiof of (2.1), denotég by, is
called the modified Bessel function of the first kind of org@nd it is represented as the infinite
series

o

1 T\ 2n+p
(2:2) Iyw) = ; n'(p+n+1) (5) ’ velk

(see, e.q.[112, p. 77]).
A second order differential equation which reduces eith€r tg (1.1) dr (2.1) reads as follows

(2.3) *0"(z) + bxv'(z) + [cx® — p* + (1 — b)p]v(z) =0,
b,c,p € R. A particular solutiory, is

5 (1) zy 2o
(2:4) vpl) = ; nl(p+n+(b+1)/2) (2)

andu, is called the generalized Bessel function of the first kind of opdeee [4]). Itis readily
seen that fob = 1 andc = 1, v, becomes/, and forb = 1 andc = —1, v, simplifies tor,,.

The normalized, generalized Bessel function of the first kind of opgelenoted by, is
defined as

(2.5) up(x) = 2T (p + b+71> w7, (217,
Using the Pochhammer symb@l),, :=I'(a+n)/T'(a) = ala+1)----- (a+n—1)(a #0)
we obtain the following formula
0 n N "
(2.6) - —
=L,
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(p+ (b+1)/2+#0,-1,...). For later use, let us write

uy(z) = f: byx”,
n=0

where
1 c\"
2.7 b, = — (——
&0 n%ﬁ+%ﬂn< 0
(n > 0).
Finally, we define a function, as follows
(2.8) Ap(2) = up(xQ)-
Making use of[(2.6) we obtain a series representation for the function in question
= (=D)ner x\ 2
29) =3 (3)

The following lemma will be used in the sequel.

Lemma 2.1. Let the numberpg andb be suchRe(p + b/2) > 0. Then for anyr € R
[ cos(tzy/e) du(t),  ¢>0

(2.10) A(z) =
fol cosh(tx/—c)du(t), ¢ <0,
wheredp(t) = u(t) dt with
2(1 — ¢2)pH(-2)/2
B(p+3:5)
being the probability measure d@, 1]. Here B(-, -) stands for the beta function.

(2.11) u(t) =

Proof. We shall prove first that the function(¢), defined in [(2.111), is indeed the probability
measure on0, 1]. Clearly the function in question is nonnegative on the indicated interval.
Moreover, withA = 1/B(p + b/2,1/2), we have

1 1
/ du(t) = 2A / (1 — 2yrre=2/2qy
0 0
1
0

Here we have used the substitutios: ¢'/2,
In order to establish formuld (2.10) we note tHat [(2.9) implie8)) = 1 and also that
Ap(—z) = A(z). To this end, let: > 0. For the sake of brevity, let

/2
I= / (sin )27~ cos(y/c z cos 0) db), c>0.
0

Using the Maclaurin expansion for the cosine function and integrating term by term we obtain

I = i (_1)ncn22" /ﬂ/z(sin 0)*P =1 (cos 0)*"df
~ (2n)! 0 ’
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where the last integral converges uniformly providedp + b/2) > 0. Making use of the
well-known formula

/2
B(a,b) = 2/ (cos )% (sin #)**~'dh
0
(Rea > 0, Reb > 0) we obtain

1 <= (—=1)"c” b 1\ ,
== B — — ",
27; (2n)! (p+2’"+2>2

b1\ T(p+b/2)0(n+1/2)
B(p+_’n+_> T Thp+tnt+(+1)/2)

2 2
. (n+ 1) _ ) o

2 22np|

Application of

n=0

I= ?F <p+ g) 2 n!r(p+(;1+)n(cg+ 1)/2) (g)%
B

Hence P
Z\P 1 4
v(2)=2(2) ——— sin 0)2Pt0=1 cos(v/c 2z cos 0) dO.
0 =2(3) mrprm ) mo (V= cos )
Utilizing (2.5) we obtain

up(2) =

2 /“/2 oh

_— sin 0)?P10~1 cos(y/c z cos 0) d6.

Bl gg) o T

Letting z = 22 and making a substitution= cos & we obtain, with the aid of (28) anf (2]11),
the first part of[(2.10). When < 0, the proof of the second part ¢f (2]10) goes along the lines
introduced above. We begin with a series expansion

o

cosh(v/—czcosf) = Z (_(21?)17;@ 2*"(cos 0)>".

Application to the right side of

w/2
I ::/ (sin 0)P =1 cosh(v/—c z cos ) df
0
gives
2\ D 1 w/2
v(2)=2(=2) ——~ sin )27~ cosh(v/—c z cos 6) df.
0 =2(3) mrprm ) o (v=czcos0)

This in turn implies that

/2
u,(z) = 24 / (sin 0)?PT~L cosh(v/—cz cos 0) db.
0

Puttingz = 2? and making a substitution= cos § we obtain, utilizing[(Z.8) and (2.11), the
second part of (2.10). The proof is complete. O

Whenb = ¢ = 1, formula [2.10) simplifies to Eq. (9.1.20) in/[1].
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3. ASKEY’SINEQUALITY FOR THE FUNCTION A, AND GRUNBAUM'S INEQUALITY
FOR MODIFIED BESSEL FUNCTIONS OF THE FIRST KIND

We begin with the following.

Theorem 3.1. Let the real numbersg, b, andc be such thap + b/2 > 1/2 and letx,y,z > 0
with 22 = 22 + 2. Then the following inequality

(3.1) )‘p<x> + )‘p@) <1+ )‘p(z)
holds true.

Proof. There is nothing to prove when= 0, because in this casg,(z) = 1. Assume that
¢ > 0. It follows from (1.2) and[(2]9) that

(3.2) Tp(b-1)/2(x/€) = Np().

Making use of[(1.3) with: replaced byz+/c, y replaced by, /c, andp replaced by + (b—1)/2
together with application of (3.2) gives the desired result. Now let0. Then the inequality
(3.1) can be written as

up(2?) + up(y®) < 1+ w,(2?)
or after replacing:? by z, 3* by y, andz? by z, as

(3.3) up(z) + up(y) <1+ up(2).

Let us note that in order for the inequalify (B.3) to be valid it suffices to show that a function
f(x) = u,(z) — 1 is superadditive, i.e., that(z + y) > f(z) + f(y) for z,y > 0. We shall
prove that if the functiory(z) = f(x)/x is increasing, therf(x) is superadditive. We have
g(z) = (up(z) — 1)/z. Hencey'(z) = [zu,(z) — (uy(z) — 1)]/2*. In order forg(z) to be
increasing it is necessary and sufficient thaff(z) > u,(z) — 1. Since

up(z) = i byx"
n=0

with the coefficient$,, (n > 0) defined in|[(2.]7), the last inequality can be written as

Z(n — 1)b,z™ > 0.

n=1
Making use of [(2.]7) we see that > 0 for all n > 1. This in turn implies that the function
g(x) = f(z)/z is increasing. Using this one can prove easily the superadditivify{.of. We
have

f(x+y)+yf($+y) >xf(x) f(y)

flaty) == P g STt = flz)+ f(y).
This completes the proof df (3.3). Letting:= z?, y := 2, andz := 22 in (3.3) and utilizing
(2.8) we obtain the assertion. O

Before we state the next theorem, let us introduce more notatioriZ, et = (2/z)"T'(p +
1)I,(x). Let us note thaf, = A\, whenb = 1 andc = —1.

Theorem 3.2.Letp, x,y, z > 0 with 22 = 2% + y2. Then
(3.4) Ty(z) + Tp(y) < 1+ Tp(2).
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Proof. Letp > 0. Then the inequality| (3]4) is a special case[of|(3.1). When 0, Z, = 1.
In order to prove Grinbaum’s inequality for the modified Bessel functions of the first kind of
order zero:

(3.9) Io(z) + Io(y) < 1+ Io(z)

we may proceed as in the proof of Theorenj 3.1, case of negative vatud\efneed Petrotis
theorem for convex functions (see [10], [8, Theorem 1, p. 22]). This result states thist af
convex function on the domain which contaihg:, z», ..., z, > 0, then

P(x1) + ¢(x2) + -+ 4+ ¢(xn) < d(x1 + -+ + ) + (0 — 1)§(0).

If n = 2 and¢(0) = 0, then the last inequality shows thats a superadditive function. Let
f(z) = up(z) — 1. Using [2.6) withb = 1 andc = —1 we see thaf (x) is a convex function and
also thatf (0) = 0. Using Petrowi’s result we conclude that the functigifz) is superadditive.

This in turn implies inequality (3]5). O

4. LOWER AND UPPER BOUNDS FOR THE FUNCTION ),

In the recent paper (se€l [5, Theorem 1.22]) A. Baricz has shown that foe (0,1) and
under some assumptions on the parametgisandc, the following inequality

Ap() + Ap(y) < 2X(2)

holds true provided? = 1 — /(1 — 22)(1 — 2).
We are in a position to prove the following.

Theorem 4.1. Let the real numbers, b, andc be such thap + b/2 > 0. Then for arbitrary
real numbers: andy the inequality

(4.1) P‘p(@ + Ap(?/)}? < [1 + >\p<x + y)] [1 + )‘p(QJ - 3/)]

is valid. Equality holds inf4.1)if ¢ = 0.

Proof. There is nothing to prove when= 0. In this case\,(z) = 1 (see[(2.P),[(2.10)). Assume
thatc > 0. Theorem 2.1 in[9] states that (#.1) is satisfied whenc = 1, i.e., when\, = 7,.

Replacingz by x\/c, y by y/c, andp by p + (b — 1)/2 we obtain the desired resuft (#.1).
Assume now that < 0. It follows from Lemmd 2.11 that

/\p(a:):/o cosh(tzv/—c) du(t).

Using the identities

cosh a + cosh 3 = 2 cosh (OZTW) cosh (a — ﬁ) ,

2
2 cosh? (%) =1+ cosha,
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and the Cauchy-Schwarz inequality for integrals, we obtain

Ap(x) + A (y) = /o [ cosh(tzv/=c) + cosh(tyv/—c)] du(t)
t(r - y)\/_

—9 1 cosh t(x +y)v/—c cosh p
/ 2 u(t)
co [t H/ W
— {/01 (1 + cosh(t(z + y)v/—c)) du(t) /o 1 + cosh(t y)\/__c))dﬂ(t)r
- [<1+Ap<w+y>)(1+Ap<x—y>)ﬁ.
Hence the assertion follows. B

Whenz = y, inequality [4.1) reduces @\>(z) < 1+ \,(2z) which resembles the double-
angle formulas for the cosine and the hyperbolic cosine functions2 tes? x = 1 + cos(2x)
and2 cosh® x = 1 + cosh(2x), respectively.

Our next goal is to establish computable lower and upper bounds for the fuﬁgtidﬁu)r the
reader’s convenience, we recall some facts about Gegenbauer polynGth{als- —: k eN)
and the Gauss-Gegenbauer quadrature formulas. The polynomials in questlon are orthogonal
on the interval—1, 1] with the weight functiont — (1 — ¢2)>=(1/2), The explicit formula for
G is ([1, 22.3.4])

[k/2]

Clp+k—n) oo
4.2 P(t) = 1" 2 ",
In particular,
(4.3) GhH(t) = 2p(p + 1)t* — p.
The classical Gauss-Gegenbauer quadrature formula with the remainder reads as/follows [3]
1

(4.4) / (1 =P 2 f(t)dt = Zwl i)+ (),

-1

wheref € C?*([—1,1]), v is a positive number which does not dependfon is an interme-
diate point in(—1,1). The nodes; (: = 1,2,..., k) are the roots of} and the weights; are
given explicitly by [11, (15.3.2)]

2PN T (2p+k) ¢, -2
(4.5) wz:w(r(p)) R ) (e @]

(1 <i<k).
The last result of this paper is contained in the following.

Theorem4.2.Forp,b e R, letk :=p+ (b+1)/2 > 1/2.
(i) fce0,1]and|z| < 7, then

(4.6) Cos<\/§)<)\() %[2/{—1—1—(/{—#1)005( 2(/{3;);5)].
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(i) If c<0andz € R, then

4.7) cosh (\/;::x> < Ap(z).

Equalities hold in(4.§)and (4.7)if c =0 or z = 0.
Proof. Utilizing Theorem 2.2 in[[9] we see that the inequalities (4.6) are valid where = 1,

i.e., when\, = 7,
T 1 °
cos <W) < Jp(x) < 3 +1) 2p+1+(p+2)cos (J%x)] .

Let0 < ¢ < 1. Replacinge by x+/c, y by y/c, pby p+ (b—1)/2, and utilizing [3.2) we obtain
the desired result. Assume now that 0. In order to establish the lower bound|in (4.7) we use
the Gauss-Gegenbauer quadrature fornfuld (4.4) kvith2 and f(¢) = cosh(tz+/—c). Since
f@(t) = 2*c® cosh(tzy/—c) > 0 for [t| < 1, (@.3) yields

1

(4.8) wy f(ty) + waf(ta) < / (1-— t2)p_% cosh (tzv/—c) dt.
-1
Using formulas[(4]3) andl (4.5), withreplaced by + (b — 1) /2, we obtain
—li =1l = = ;

2K
1 11
—wy=-B(k—=,-].
w1 Wo 9 (/{ 2,2)

This, in conjuction with[(4.8), gives

11 [—c ! 3
N - < — 283 —
B (KJ 5 2> cosh ( 5 x) < /1(1 t°)*"2 cosh(tzv/—c) dt

1
= 2/ (1-— tz)”_% cosh(tzy/—c) dt.
0
Application of Lemma 2]1 gives the desired result|(4.7). The proof is complete. O
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