SOME APPLICATIONS OF THE GENERALIZED BERNARDI-LIBERA-LIVINGSTON INTEGRAL OPERATOR ON UNIVALENT FUNCTIONS

M. ESHAGHI GORDJI, D. ALIMOHAMMADI, AND A. EBADIAN
Department of Mathematics
Faculty of Science
Semnan University
Semnan, Iran
madjideshaghi@gmail.com
Department of Mathematics
Arak University
Arak, Iran
d-alimohammadi@araku.ac.ir
Department of Mathematics
Faculty of Science
Urmia University
Urmia, Iran
ebadian.ali@gmail.com

Received 17 October, 2008; accepted 24 July, 2009
Communicated by S.S. Dragomir

Abstract

In this paper by making use of the generalized Bernardi-Libera-Livingston integral operator we introduce and study some new subclasses of univalent functions. Also we investigate the relations between those classes and the classes which are studied by Jin-Lin Liu.

Key words and phrases: Analytic function, Integral operator, Univalent function.
2000 Mathematics Subject Classification. 30C45, 30C50.

1. Introduction

Let A be the class of functions of the form, $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are analytic in the unit disk $U=\{z:|z|<1\}$. Also, let S denote the subclass of A consisting of all univalent functions in U. Suppose λ is a real number with $0 \leq \lambda<1$. A function $f \in S$ is said to be starlike of order λ if and only if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\lambda, z \in U$. Also, $f \in S$ is said to be convex of order λ if and only if $\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\lambda, z \in U$. We denote by $S^{*}(\lambda), C(\lambda)$ the classes of starlike and convex functions of order λ respectively. It is well known that $f \in C(\lambda)$ if and only

[^0]if $z f^{\prime *}(\lambda)$. If $f \in A$, then $f \in K(\beta, \lambda)$ if and only if there exists a function $g \in S^{*}(\lambda)$ such that $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{g(z)}\right\}>\beta, z \in U$, where $0 \leq \beta<1$. These functions are called close-to-convex functions of order β type λ. A function $f \in A$ is called quasi-convex of order β type λ if there exists a function $g \in C(\lambda)$ such that $\operatorname{Re}\left\{\frac{\left(z f^{\prime}(z)\right)^{\prime}}{g^{\prime}(z)}\right\}>\beta$. We denote this class by $K^{*}(\beta, \lambda)$ [10]. It is easy to see that $f \in K^{*}(\beta, \gamma)$ if and only if $z f^{\prime} \in K(\beta, \gamma)$ [9]. For $f \in A$ if for some $\lambda(0 \leq \lambda<1)$ and $\eta(0<\eta \leq 1)$ we have
\[

$$
\begin{equation*}
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}-\lambda\right)\right|<\frac{\pi}{2} \eta, \quad(z \in U) \tag{1.1}
\end{equation*}
$$

\]

then $f(z)$ is said to be strongly starlike of order η and type λ in U and we denote this class by $S^{*}(\eta, \lambda)$. If $f \in A$ satisfies the condition

$$
\begin{equation*}
\left|\arg \left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\lambda\right)\right|<\frac{\pi}{2} \eta, \quad(z \in U) \tag{1.2}
\end{equation*}
$$

for some λ and η as above, then we say that $f(z)$ is strongly convex of order η and type λ in U and we denote this class by $C(\eta, \lambda)$. Clearly $f \in C(\eta, \lambda)$ if and only if $z f^{\prime *}(\eta, \lambda)$, and in particular, we have $S^{*}(1, \lambda)=S^{*}(\lambda)$ and $C(1, \lambda)=C(\lambda)$.

For $c>-1$ and $f \in A$ the generalized Bernardi-Libera-Livingston integral operator $L_{c} f$ is defined as follows

$$
\begin{equation*}
L_{c} f(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{1.3}
\end{equation*}
$$

This operator for $c \in \mathbb{N}=\{1,2,3, \ldots\}$ was studied by Bernardi [1] and for $c=1$ by Libera [4] (see also [8]). The classes $S T_{c}(\eta, \lambda)$ and $C V_{c}(\eta, \lambda)$ were introduced by Liu [7], where

$$
\begin{aligned}
& S T_{c}(\eta, \lambda)=\left\{f \in A: L_{c} f \in S^{*}(\eta, \lambda), \frac{z\left(L_{c} f(z)\right)^{\prime}}{L_{c} f(z)} \neq \lambda, z \in U\right\} \\
& C V_{c}(\eta, \lambda)=\left\{f \in A: L_{c} f \in C(\eta, \lambda), \frac{\left(z\left(L_{c} f(z)\right)^{\prime}\right)^{\prime}}{\left(L_{c} f(z)\right)^{\prime}} \neq \lambda, z \in U\right\}
\end{aligned}
$$

Now by making use of the operator given by (1.3) we introduce the following classes.

$$
\begin{aligned}
& S_{c}^{*}(\lambda)=\left\{f \in A: L_{c} f \in S^{*}(\lambda)\right\}, \\
& C_{c}(\lambda)=\left\{f \in A: L_{c} f \in C(\lambda)\right\} .
\end{aligned}
$$

Obviously $f \in C V_{c}(\eta, \lambda)$ if and only if $z f^{\prime} \in S T_{c}(\eta, \lambda)$. J. L. Liu [5] and [6] introduced and similarly investigated the classes $S_{\sigma}^{*}(\lambda), C_{\sigma}(\lambda), K_{\sigma}(\beta, \lambda), K_{\sigma}^{*}(\beta, \lambda), S T_{\sigma}(\eta, \lambda), C V_{\sigma}(\eta, \lambda)$ by making use of the integral operator $I^{\sigma} f$ given by

$$
\begin{equation*}
I^{\sigma} f(z)=\frac{2^{\sigma}}{z \Gamma(\sigma)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\sigma-1} f(t) d t, \quad \sigma>0, f \in A \tag{1.4}
\end{equation*}
$$

The operator I^{σ} was introduced by Jung, Kim and Srivastava [2] and then investigated by Uralegaddi and Somanatha [13], Li [3] and Liu [5]. For the integral operators given by (1.3) and (1.4) we have verified following relationships.

$$
\begin{gather*}
I^{\sigma} f(z)=z+\sum_{n=2}^{\infty}\left(\frac{2}{n+1}\right)^{\sigma} a_{n} z^{n} \tag{1.5}\\
L_{c} f(z)=z+\sum_{n=2}^{\infty} \frac{c+1}{n+c} a_{n} z^{n} \tag{1.6}
\end{gather*}
$$

$$
\begin{align*}
& z\left(I^{\sigma} L_{c} f(z)\right)^{\prime \sigma} f(z)-c I^{\sigma} L_{c} f(z), \tag{1.7}\\
& z\left(L_{c} I^{\sigma} f(z)\right)^{\prime \sigma} f(z)-c L_{c} I^{\sigma} f(z) \tag{1.8}
\end{align*}
$$

It follows from (1.5) that one can define the operator I^{σ} for any real number σ. In this paper we investigate the properties of the classes $S_{c}^{*}(\lambda), C_{c}(\lambda), K_{c}(\beta, \lambda), K_{c}^{*}(\beta, \lambda), S T_{c}(\eta, \lambda)$ and $C V_{c}(\eta, \lambda)$. We also study the relations between these classes by the classes which are introduced by Liu in [5] and [6]. For our purposes we need the following lemmas.

Lemma 1.1 ([9]). Let $u=u_{1}+i u_{2}, v=v_{1}+i v_{2}$ and let $\psi(u, v)$ be a complex function $\psi: D \subset \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$. Suppose that ψ satisfies the following conditions
(i) $\psi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\operatorname{Re}\{\psi(1,0)\}>0$;
(iii) $\operatorname{Re}\left\{\psi\left(i u_{2}, v_{1}\right)\right\} \leq 0$ for all $\left(i u_{2}, v_{1}\right) \in D$ with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$.

Let $p(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$ be analytic in U so that $\left(p(z), z p^{\prime}(z)\right) \in D$ for all $z \in U$. If $\operatorname{Re}\left\{\psi\left(p(z), z p^{\prime}(z)\right)\right\}>0, z \in U$ then $\operatorname{Re}\{p(z)\}>0, z \in U$.
Lemma 1.2 ([11]). Let the function $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ be analytic in U and $p(z) \neq 0$, $z \in U$. If there exists a point $z_{0} \in U$ such that $|\arg (p(z))|<\frac{\pi}{2} \eta$ for $|z|<\left|z_{0}\right|$ and $\arg p\left(z_{0}\right) \mid=$ $\frac{\pi}{2} \eta$ where $0<\eta \leq 1$, then $\frac{z_{0}{ }^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}=i k \eta$ and $k \geq \frac{1}{2}\left(r+\frac{1}{r}\right)$ when $\arg p\left(z_{0}\right)=\frac{\pi}{2} \eta$, Also, $k \leq \frac{-1}{2}\left(r+\frac{1}{r}\right)$ when $\arg p\left(z_{0}\right)=\frac{-\pi}{2} \eta$, and $p\left(z_{0}\right)^{1 / \eta}= \pm i r(r>0)$.

2. Main Results

In this section we obtain some inclusion theorems by following the method of proof adopted in [12].

Theorem 2.1.

(i) For $f \in A$ if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(L_{c} f(z)\right)^{\prime}}{L_{c} f(z)}\right\}>0$ and $\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}$ is an analytic function, then $S_{c}^{*}(\lambda) \subset S_{c+1}^{*}(\lambda)$.
(ii) Let $c>-\lambda$. For $f \in A$ if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}\right\}>0$ and $\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}$ is an analytic function, then $S_{c+1}^{*}(\lambda) \subset S_{c}^{*}(\lambda)$.

Proof. (i) Suppose that $f \in S_{c}^{*}(\lambda)$ and set

$$
\begin{equation*}
\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}-\lambda=(1-\lambda) p(z) \tag{2.1}
\end{equation*}
$$

where $p(z)=1+\sum_{n=2}^{\infty} c_{n} z^{n}$. An easy calculation shows that

$$
\begin{equation*}
\frac{\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}\left[2+c+\frac{z\left(L_{c+1} f(z)\right)^{\prime \prime}}{\left(L_{c+1} f(z)\right)^{\prime}}\right]}{\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}+c+1}=\frac{z f^{\prime}(z)}{f(z)} . \tag{2.2}
\end{equation*}
$$

By setting $H(z)=\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}$ we have

$$
\begin{equation*}
1+\frac{z\left(L_{c+1} f(z)\right)^{\prime \prime}}{\left(L_{c+1} f(z)\right)^{\prime}}=H(z)+\frac{z H^{\prime}(z)}{H(z)} \tag{2.3}
\end{equation*}
$$

By making use of (2.3) in (2.2), since $H(z)=\lambda+(1-\lambda) p(z)$, we obtain

$$
\begin{equation*}
(1-\lambda) p(z)+\frac{(1-\lambda) z p^{\prime}(z)}{\lambda+c+1+(1-\lambda) p(z)}=\frac{z f^{\prime}(z)}{f(z)}-\lambda . \tag{2.4}
\end{equation*}
$$

If we consider

$$
\psi(u, v)=(1-\lambda) u+\frac{(1-\lambda) v}{\lambda+c+1+(1-\lambda) u}
$$

then $\psi(u, v)$ is a continuous function in $D=\left\{\mathbb{C}-\frac{\lambda+c+1}{\lambda-1}\right\} \times \mathbb{C}$ and $(1,0) \in D$. Also, $\psi(1,0)>$ 0 and for all $\left(i u_{2}, v_{1}\right) \in D$ with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$ we have

$$
\begin{aligned}
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right) & =\frac{(1-\lambda)(\lambda+c+1) v_{1}}{(1-\lambda)^{2} u_{2}^{2}+(\lambda+c+1)^{2}} \\
& \leq \frac{-(1-\lambda)(\lambda+c+1)\left(1+u_{2}^{2}\right)}{2\left[(1-\lambda)^{2} u_{2}^{2}+(\lambda+c+1)^{2}\right]}<0
\end{aligned}
$$

Therefore the function $\psi(u, v)$ satisfies the conditions of Lemma 1.1 and since in view of the assumption, by considering (2.4), we have $\operatorname{Re}\left\{\psi\left(p(z), z p^{\prime}(z)\right)\right\}>0$, Lemma 1.1 implies that $\operatorname{Re} p(z)>0, z \in U$ and this completes the proof of (i).
(ii) For proving this part of the theorem, we use the same method and a easily verified formula similar to 2.2 . By replacing $c+1$ with c we get the desired result.

Theorem 2.2.

(i) For $f \in A$ if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(L_{c} f(z)\right)^{\prime}}{L_{c} f(z)}\right\}>0$ and $\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}$ is an analytic function, then $C_{c}(\lambda) \subset C_{c+1}(\lambda)$.
(ii) Let $c>-\lambda$. For $f \in A$ if $\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}\right\}>0$ and $\frac{z\left(L_{c+1} f(z)\right)^{\prime}}{L_{c+1} f(z)}$ is an analytic function, then $C_{c+1}(\lambda) \subset C_{c}(\lambda)$.

Proof. (i) In view of part (i) of Theorem 2.1 we can write

$$
\begin{aligned}
f \in C_{c}(\lambda) & \Leftrightarrow L_{c} f \in C(\lambda) \Leftrightarrow z\left(L_{c} f\right)^{\prime *}(\lambda) \Leftrightarrow L_{c} z f^{\prime *}(\lambda) \Leftrightarrow z f_{c}^{\prime *}(\lambda) \Rightarrow z f_{c+1}^{\prime *}(\lambda) \\
& \Leftrightarrow L_{c+1} z f^{\prime *}(\lambda) \Leftrightarrow z\left(L_{c+1} f\right)^{\prime *}(\lambda) \Leftrightarrow L_{c+1} f \in C(\lambda) \Leftrightarrow f \in C_{c+1}(\lambda) .
\end{aligned}
$$

Part (ii) of the theorem can be proved in a similar manner.
Theorem 2.3. If $c \geq-\lambda$ and $\frac{z f^{\prime}(z)}{f(z)}$ is an analytic function, then $f \in S^{*}(\lambda)$ implies $f \in S_{c}^{*}(\lambda)$.
Proof. By differentiating logarithmically both sides of (1.3) with respect to z we obtain

$$
\begin{equation*}
\frac{z\left(L_{c} f(z)\right)^{\prime}}{L_{c} f(z)}+c=\frac{(c+1) f(z)}{L_{c} f(z)} \tag{2.5}
\end{equation*}
$$

Again differentiating logarithmically both sides of (2.5) we have

$$
\begin{equation*}
p(z)+\frac{z p^{\prime}(z)}{c+\lambda+p(z)}=\frac{z f^{\prime}(z)}{f(z)}-\lambda \tag{2.6}
\end{equation*}
$$

where $p(z)=\frac{z\left(L_{c} f(z)\right)^{\prime}}{L_{c} f(z)}-\lambda$. Let us consider $\psi(u, v)=u+\frac{v}{u+c+\lambda}$. Then ψ is a continuous function in $D=\{\mathbb{C}-(-c-\lambda)\} \times \mathbb{C},(1,0) \in D$ and $\operatorname{Re} \psi(1,0)>0$. If $\left(i u_{2}, v_{1}\right) \in D$ with $v_{1} \leq-\frac{1+u_{2}^{2}}{2}$, then

$$
\operatorname{Re} \psi\left(i u_{2}, v_{1}\right)=\frac{v_{1}(c+\lambda)}{u_{2}^{2}+(c+\lambda)^{2}} \leq 0
$$

Since $f \in S^{*}(\lambda)$, then (2.6) gives

$$
\operatorname{Re}\left(\psi\left(p(z), z p^{\prime}(z)\right)\right)=\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\lambda\right\}>0 .
$$

Therefore Lemma 1.1 concludes that $\operatorname{Re}\{p(z)\}>0$ and this completes the proof.
Corollary 2.4. If $c \geq \lambda$ and $\frac{z f^{\prime}(z)}{f(z)}$ is an analytic function, then $f \in C(\lambda)$ implies $f \in C_{c}(\lambda)$. Proof. We have

$$
\begin{aligned}
f \in C(\lambda) & \Leftrightarrow z f^{\prime *}(\lambda) \Lambda z f_{c}^{\prime *}(\lambda) \Leftrightarrow L_{c} z f^{\prime} \in S^{*}(\lambda) \\
& \Leftrightarrow z\left(L_{c} f\right)^{\prime *}(\lambda) \Leftrightarrow L_{c} f \in C(\lambda) \Leftrightarrow f \in C_{c}(\lambda) .
\end{aligned}
$$

References

[1] S.D. BERNARDI, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
[2] I.B. JUNG, Y.C. KIM And H.M. SRIVASTAVA, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138147.
[3] J.L. LI, Some properties of two integral operators, Soochow. J. Math., 25 (1999), 91-96
[4] R.J. LIBERA, Some classes of regular functions, Proc. Amer. Math. Soc., 16 (1965), 755-758.
[5] J.L. LIU, A linear operator and strongly starlike functions, J. Math. Soc. Japan, 54(4) (2002), 975981.
[6] J.L. LIU, Some applications of certain integral operator, Kyungpook Math. J., 43(2003), 21-219.
[7] J.L. LIU, Certain integral operator and strongly starlike functions, Int. J. Math. Math. Sci., 30(9) (2002), 569-574.
[8] A.E. LIVINGSTON, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1996), 352-357.
[9] S.S. MILLER and P.T. MOCANU, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
[10] K.I. NOOR, On quasi-convex functions and related topics, Internat. J. Math. Math. Sci., 10 (1987), 241-258.
[11] M. NUNOKAWA, S. OWA, H. SAITOH, A. IKEDA AND N. KOIKE, Some results for strongly starlike functions, J. Math. Anal. Appl., 212 (1997), 98-106.
[12] J. SOKOL, A linear operator and associated class of multivalent analytic functions, Demonstratio Math., 40(3) (2007), 559-566.
[13] B.A. URALEGADDI AND C. SOMANATHA, Certain integral operators for starlike functions, J. Math. Res. Expo., 15 (1995), 14-16.

[^0]: The authors would like to thank the referee for a number of valuable suggestions regarding of a previous version of this paper.
 284-08

