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1. Introduction

LetA be the class of functions of the form,f(z) = z+
∑∞

n=2 anz
n which are analytic

in the unit diskU = {z : |z| < 1}. Also, letS denote the subclass ofA consisting of
all univalent functions inU . Supposeλ is a real number with0 ≤ λ < 1. A function

f ∈ S is said to be starlike of orderλ if and only if Re
{

zf ′(z)
f(z)

}
> λ, z ∈ U .

Also, f ∈ S is said to be convex of orderλ if and only if Re
{

1 + zf ′′(z)
f ′(z)

}
> λ,

z ∈ U . We denote byS∗(λ), C(λ) the classes of starlike and convex functions of
orderλ respectively. It is well known thatf ∈ C(λ) if and only if zf ′∗(λ). If
f ∈ A, thenf ∈ K(β, λ) if and only if there exists a functiong ∈ S∗(λ) such that

Re
{

zf ′(z)
g(z)

}
> β, z ∈ U, where0 ≤ β < 1. These functions are called close-to-

convex functions of orderβ type λ. A function f ∈ A is called quasi-convex of

orderβ typeλ if there exists a functiong ∈ C(λ) such thatRe
{

(zf ′(z))′

g′(z)

}
> β. We

denote this class byK∗(β, λ) [10]. It is easy to see thatf ∈ K∗(β, γ) if and only if
zf ′ ∈ K(β, γ) [9]. For f ∈ A if for someλ(0 ≤ λ < 1) andη(0 < η ≤ 1) we have

(1.1)

∣∣∣∣arg

(
zf ′(z)

f(z)
− λ

)∣∣∣∣ < π

2
η, (z ∈ U),

thenf(z) is said to be strongly starlike of orderη and typeλ in U and we denote this
class byS∗(η, λ). If f ∈ A satisfies the condition

(1.2)

∣∣∣∣arg

(
1 +

zf ′′(z)

f ′(z)
− λ

)∣∣∣∣ < π

2
η, (z ∈ U)

for someλ andη as above, then we say thatf(z) is strongly convex of orderη and
typeλ in U and we denote this class byC(η, λ). Clearlyf ∈ C(η, λ) if and only if
zf ′∗(η, λ), and in particular, we haveS∗(1, λ) = S∗(λ) andC(1, λ) = C(λ).
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For c > −1 and f ∈ A the generalized Bernardi–Libera–Livingston integral
operatorLcf is defined as follows

(1.3) Lcf(z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt.

This operator forc ∈ N = {1, 2, 3, . . . } was studied by Bernardi [1] and forc = 1
by Libera [4] (see also [8]). The classesSTc(η, λ) andCVc(η, λ) were introduced
by Liu [7], where

STc(η, λ) =

{
f ∈ A : Lcf ∈ S∗(η, λ),

z(Lcf(z))′

Lcf(z)
6= λ, z ∈ U

}
,

CVc(η, λ) =

{
f ∈ A : Lcf ∈ C(η, λ),

(z(Lcf(z))′)′

(Lcf(z))′
6= λ, z ∈ U

}
.

Now by making use of the operator given by(1.3) we introduce the following
classes.

S∗c (λ) = {f ∈ A : Lcf ∈ S∗(λ)},
Cc(λ) = {f ∈ A : Lcf ∈ C(λ)}.

Obviously f ∈ CVc(η, λ) if and only if zf ′ ∈ STc(η, λ). J. L. Liu [5] and [6]
introduced and similarly investigated the classesS∗σ(λ), Cσ(λ),Kσ(β, λ),K∗

σ(β, λ),
STσ(η, λ), CVσ(η, λ) by making use of the integral operatorIσf given by

(1.4) Iσf(z) =
2σ

zΓ(σ)

∫ z

0

(
log

z

t

)σ−1

f(t)dt, σ > 0, f ∈ A.

The operatorIσ was introduced by Jung, Kim and Srivastava [2] and then investi-
gated by Uralegaddi and Somanatha [13], Li [ 3] and Liu [5]. For the integral opera-
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tors given by(1.3) and(1.4) we have verified following relationships.

(1.5) Iσf(z) = z +
∞∑

n=2

(
2

n+ 1

)σ

anz
n,

(1.6) Lcf(z) = z +
∞∑

n=2

c+ 1

n+ c
anz

n,

(1.7) z(IσLcf(z))′σf(z)− cIσLcf(z),

(1.8) z(LcI
σf(z))′σf(z)− cLcI

σf(z).

It follows from (1.5) that one can define the operatorIσ for any real numberσ. In this
paper we investigate the properties of the classesS∗c (λ), Cc(λ), Kc(β, λ), K∗

c (β, λ),
STc(η, λ) andCVc(η, λ). We also study the relations between these classes by the
classes which are introduced by Liu in [5] and [6]. For our purposes we need the
following lemmas.

Lemma 1.1 ([9]). Let u = u1 + iu2, v = v1 + iv2 and letψ(u, v) be a complex
functionψ : D ⊂ C× C → C. Suppose thatψ satisfies the following conditions

(i) ψ(u, v) is continuous inD;

(ii) (1, 0) ∈ D andRe{ψ(1, 0)} > 0;

(iii) Re{ψ(iu2, v1)} ≤ 0 for all (iu2, v1) ∈ D with v1 ≤ −1+u2
2

2
.

Let p(z) = 1 +
∑∞

n=2 cnz
n be analytic inU so that(p(z), zp′(z)) ∈ D for all

z ∈ U . If Re{ψ(p(z), zp′(z))} > 0, z ∈ U thenRe{p(z)} > 0, z ∈ U.
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Lemma 1.2 ([11]). Let the functionp(z) = 1 +
∑∞

n=1 cnz
n be analytic inU and

p(z) 6= 0, z ∈ U. If there exists a pointz0 ∈ U such that| arg(p(z))| < π
2
η for

|z| < |z0| and arg p(z0)| = π
2
η where0 < η ≤ 1, then z0p′(z0)

p(z0)
= ikη and k ≥

1
2
(r + 1

r
) whenarg p(z0) = π

2
η, Also,k ≤ −1

2
(r + 1

r
) whenarg p(z0) = −π

2
η, and

p(z0)
1/η = ±ir(r > 0).
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2. Main Results

In this section we obtain some inclusion theorems by following the method of proof
adopted in [12].

Theorem 2.1.

(i) For f ∈ A if Re
{

zf ′(z)
f(z)

− z(Lcf(z))′

Lcf(z)

}
> 0 and z(Lc+1f(z))′

Lc+1f(z)
is an analytic func-

tion, thenS∗c (λ) ⊂ S∗c+1(λ).

(ii) Let c > −λ. For f ∈ A if Re
{

zf ′(z)
f(z)

− z(Lc+1f(z))′

Lc+1f(z)

}
> 0 and z(Lc+1f(z))′

Lc+1f(z)
is an

analytic function, thenS∗c+1(λ) ⊂ S∗c (λ).

Proof. (i) Suppose thatf ∈ S∗c (λ) and set

(2.1)
z(Lc+1f(z))′

Lc+1f(z)
− λ = (1− λ)p(z),

wherep(z) = 1 +
∑∞

n=2 cnz
n. An easy calculation shows that

(2.2)

z(Lc+1f(z))′

Lc+1f(z)

[
2 + c+ z(Lc+1f(z))′′

(Lc+1f(z))′

]
z(Lc+1f(z))′

Lc+1f(z)
+ c+ 1

=
zf ′(z)

f(z)
.

By settingH(z) = z(Lc+1f(z))′

Lc+1f(z)
we have

(2.3) 1 +
z(Lc+1f(z))′′

(Lc+1f(z))′
= H(z) +

zH ′(z)

H(z)
.
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By making use of(2.3) in (2.2) , sinceH(z) = λ+ (1− λ)p(z), we obtain

(2.4) (1− λ)p(z) +
(1− λ)zp′(z)

λ+ c+ 1 + (1− λ)p(z)
=
zf ′(z)

f(z)
− λ.

If we consider

ψ(u, v) = (1− λ)u+
(1− λ)v

λ+ c+ 1 + (1− λ)u
,

thenψ(u, v) is a continuous function inD =
{
C− λ+c+1

λ−1

}
× C and(1, 0) ∈ D.

Also,ψ(1, 0) > 0 and for all(iu2, v1) ∈ D with v1 ≤ −1+u2
2

2
we have

Reψ(iu2, v1) =
(1− λ)(λ+ c+ 1)v1

(1− λ)2u2
2 + (λ+ c+ 1)2

≤ −(1− λ)(λ+ c+ 1)(1 + u2
2)

2[(1− λ)2u2
2 + (λ+ c+ 1)2]

< 0.

Therefore the functionψ(u, v) satisfies the conditions of Lemma1.1 and since in
view of the assumption, by considering(2.4) , we haveRe{ψ(p(z), zp′(z))} > 0,
Lemma1.1 implies thatRe p(z) > 0, z ∈ U and this completes the proof of (i).

(ii) For proving this part of the theorem, we use the same method and a easily
verified formula similar to(2.2). By replacingc + 1 with c we get the desired
result.

Theorem 2.2.

(i) For f ∈ A if Re
{

zf ′(z)
f(z)

− z(Lcf(z))′

Lcf(z)

}
> 0 and z(Lc+1f(z))′

Lc+1f(z)
is an analytic func-

tion, thenCc(λ) ⊂ Cc+1(λ).
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(ii) Let c > −λ. For f ∈ A if Re
{

zf ′(z)
f(z)

− z(Lc+1f(z))′

Lc+1f(z)

}
> 0 and z(Lc+1f(z))′

Lc+1f(z)
is an

analytic function, thenCc+1(λ) ⊂ Cc(λ).

Proof. (i) In view of part (i) of Theorem2.1we can write

f ∈ Cc(λ) ⇔ Lcf ∈ C(λ) ⇔ z(Lcf)′∗(λ) ⇔ Lczf
′∗(λ) ⇔ zf ′∗c (λ) ⇒ zf ′∗c+1(λ)

⇔ Lc+1zf
′∗(λ) ⇔ z(Lc+1f)′∗(λ) ⇔ Lc+1f ∈ C(λ) ⇔ f ∈ Cc+1(λ).

Part (ii) of the theorem can be proved in a similar manner.

Theorem 2.3. If c ≥ −λ and zf ′(z)
f(z)

is an analytic function, thenf ∈ S∗(λ) implies
f ∈ S∗c (λ).

Proof. By differentiating logarithmically both sides of(1.3) with respect toz we
obtain

(2.5)
z(Lcf(z))′

Lcf(z)
+ c =

(c+ 1)f(z)

Lcf(z)
.

Again differentiating logarithmically both sides of(2.5) we have

(2.6) p(z) +
zp′(z)

c+ λ+ p(z)
=
zf ′(z)

f(z)
− λ,

wherep(z) = z(Lcf(z))′

Lcf(z)
− λ. Let us considerψ(u, v) = u + v

u+c+λ
. Thenψ is a

continuous function inD = {C− (−c− λ)} × C, (1, 0) ∈ D andRe ψ(1, 0) > 0.

If (iu2, v1) ∈ D with v1 ≤ −1+u2
2

2
, then

Reψ(iu2, v1) =
v1(c+ λ)

u2
2 + (c+ λ)2

≤ 0.
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Sincef ∈ S∗(λ), then(2.6) gives

Re(ψ(p(z), zp′(z))) = Re

{
zf ′(z)

f(z)
− λ

}
> 0.

Therefore Lemma1.1 concludes thatRe{p(z)} > 0 and this completes the proof.

Corollary 2.4. If c ≥ λ and zf ′(z)
f(z)

is an analytic function, thenf ∈ C(λ) implies
f ∈ Cc(λ).

Proof. We have

f ∈ C(λ) ⇔ zf ′∗(λ)Λzf ′∗c (λ) ⇔ Lczf
′ ∈ S∗(λ)

⇔ z(Lcf)′∗(λ) ⇔ Lcf ∈ C(λ) ⇔ f ∈ Cc(λ).
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