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Abstract

In this paper, some new nonlinear integral inequalities involving functions of one
and two independent variables which provide explicit bounds on unknown func-
tions are established. We also present some of its applications to the qualitative
study of retarded differential equations.
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1. Introduction
Nonlinear differential equations whose solutions cannot be found explicitly
arise in essentially every branch of modern science, engineering and mathemat-
ics. One of the most useful methods available for studying a nonlinear system
of ordinary differential equations is to compare it with a single first-order equa-
tion derived naturally from some bounds on the system. However, the bounds
provided by the comparison method are sometimes difficult or impossible to cal-
culate explicitly. In fact, in many applications explicit bounds are more useful
while studying the behavior of solutions of such systems. Another basic tool,
which is typical among investigations on this subject, is the use of nonlinear
integral inequalities which provide explicit bounds on the unknown functions.
Over the last scores of years several new nonlinear integral inequalities have
been developed in order to study the behavior of solutions of such systems.

One of the most useful inequalities in the development of the theory of dif-
ferential equations is given in the following theorem.If u, f are nonnegative
continuous functions onR+ = [0,∞), u0 ≥ 0 is a constant and

u2(t) ≤ u2
0 + 2

∫ t

0

f(s)u(s)ds

for t ∈ R+, then

u(t) ≤ u0

∫ t

0

f(s)ds, t ∈ R+.

It appears that this inequality was first considered by Ou-Iang [5], while investi-
gating the boundedness of certain solutions of certain second-order differential
equations.
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In the past few years this inequality given in [5] has been used considerably
in the study of qualitative properties of the solutions of certain abstract differ-
ential, integral and partial differential equations.

Recently, Pachpatte in [9] obtained a useful upper bound on the following
inequality:

(1.1) up(t) ≤ c+ p
n∑
i=1

∫ αi(t)

αi(t0)

[ai(s)u
p(s) + bi(s)u(s)]ds,

and its variants, under some suitable conditions on the functions involved in
(1.1), including the constantp > 1. In fact, the results given in [9] are gener-
alized versions of the inequalities established by Lipovan in [4], Qu-Iang in [5]
and Pachpatte in [6].

The main purpose of this paper is to obtain explicit bounds on the following
retarded integral inequality

(1.2) u(t) ≤ c+
n∑
i=1

[∫ t

t0

ai(s)u
p(s) +

∫ αi(t)

αi(t0)

bi(s)u
p(s)ds

]
,

and its variants, under some suitable conditions on the functions involved in
(1.2), including the constantp ≥ 0, p 6= 1, or p > 1. We also prove the two
independent variable generalization of the result and present some applications
of those to the global existence of solutions of differential equations with time
delay.
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2. The Integral Inequalities
We shall introduce some notation,R denotes the set of real numbers andR+ =
[0,∞), I = [t0, T ) are the given subsets ofR. The first order derivative of a
function z(t) with respect tot will be denoted byz′(t). Let C(M,N) denote
the class of continuous functions from the setM to the setN. In the following
theorems we prove some nonlinear integral inequalities.

Theorem 2.1. Let u, ai, bi ∈ C(I,R+), αi ∈ C1(I, I) be nondecreasing with
αi(t) ≤ t onI, for i = 1, 2, . . . , n. Letp ≥ 0, p 6= 1, andc ≥ 0 be constants. If

(2.1) u(t) ≤ c+
n∑
i=1

[∫ t

t0

ai(s)u
p(s) ds+

∫ αi(t)

αi(t0)

bi(s)u
p(s) ds

]

for t ∈ I, then

(2.2) u(t) ≤

[
cq + q

n∑
i=1

(∫ t

t0

ai(s) ds+

∫ αi(t)

αi(t0)

bi(s) ds

)] 1
q

for t ∈ [t0, T1), whereq = 1− p andT1 is chosen so that the expression inside
[. . . ] is positive on the subinterval[t0, T1).

Proof. From the hypotheses we observe thatα′(t) ≥ 0 for t ∈ I. Let c ≥ 0 and
define a functionz(t) by the right-hand side of (2.1). Then,z(t0) = c, z(t) is
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nondecreasing fort ∈ I, u(t) ≤ z(t), and

z′(t) =
n∑
i=1

[ai(t)u
p(t) + bi(αi(t))u

p(αi(t))α
′
i(t)]

≤
n∑
i=1

[ai(t)z
p(t) + bi(αi(t))z

p(αi(t))α
′
i(t)]

≤
n∑
i=1

[ai(t) + bi(αi(t))α
′
i(t)][z(t)]

p.

By making the constantq = 1 − p and using the functionz1(t) = zq(t)/q we
get

(2.3) z′1(t) ≤
n∑
i=1

[ai(t) + bi(αi(t))α
′
i(t)].

By takingt = s in (2.3) and integrating it with respect tos from t0 to t, t ∈ I,
we obtain

(2.4)
∫ t

t0

z′1(s) ds ≤
n∑
i=1

[∫ t

t0

ai(s) ds+

∫ t

t0

bi(αi(s))α
′
i(s) ds

]
.

Integrating, making the change of the function on the left side in (2.4) and
rewriting yields

zq(t)

q
≤ cq

q
+

n∑
i=1

[∫ t

t0

ai(s) ds+

∫ αi(t)

αi(t0)

bi(s) ds

]
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for t ∈ I. It follows that

(2.5) z(t) ≤

[
cq + q

n∑
i=1

(∫ t

t0

ai(s) ds+

∫ αi(t)

αi(t0)

bi(s) ds

)] 1
q

for t ∈ [t0, T1), whereT1 is chosen so that the expression inside[. . . ] is positive
on the subinterval[t0, T1). Using (2.5) in u(t) ≤ z(t) we get the inequality in
(2.2).

Corollary 2.2. Let u, bi ∈ C(I,R+), αi ∈ C1(I, I) be nondecreasing with
αi(t) ≤ t onI for i = 1, . . . , n, and letp ≥ 0, p 6= 1, andc ≥ 0 be constants. If

u(t) ≤ c+
n∑
i=1

∫ αi(t)

αi(t0)

bi(s)u
p(s) ds

for t ∈ I, then

u(t) ≤

[
cq + q

n∑
i=1

∫ αi(t)

αi(t0)

bi(s) ds

] 1
q

for t ∈ [t0, T1), whereq = 1− p andT1 is chosen so that the expression inside
[. . . ] is positive on the subinterval[t0, T1).

The following theorem deals with the constant1 < p < ∞ versions of the
inequalities established in Theorem2.1.

Theorem 2.3.Letu, a, bi, ci ∈ C(I,R+), αi ∈ C1(I, I) be nondecreasing with
αi(t) ≤ t on I, for i = 1, 2, . . . , n. Also, leta(t) be nondecreasing int, t ∈ I
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andp > 1 be constants. If

(2.6) u(t) ≤ a(t) +
n∑
i=1

[∫ t

t0

bi(s)u
p(s) ds+

∫ αi(t)

αi(t0)

ci(s)u
p(s) ds

]
for t ∈ I, then

(2.7) u(t) ≤ a(t)

[
1− (p− 1)ap−1(t)

×
n∑
i=1

(∫ t

t0

bi(s) ds+

∫ αi(t)

αi(t0)

ci(s) ds

)] 1
1−p

for t ∈ [t0, T ), where

T = sup

{
t ∈ I : (p− 1)ap−1(t)

n∑
i=1

(∫ t

t0

bi(s) ds+

∫ αi(t)

αi(t0)

ci(s) ds

)
< 1

}
.

Proof. From the hypotheses we observe thatα′(t) ≥ 0 for t ∈ I. Define a
functionv(t) by

v(t) =
n∑
i=1

[∫ t

t0

bi(s)u
p(s) ds+

∫ αi(t)

αi(t0)

ci(s)u
p(s) ds

]
.

Then,v(t0) = 0, v(t) is nondecreasing fort ∈ I, u(t) ≤ a(t) + v(t), and

v′(t) ≤
n∑
i=1

[bi(t) + ci(αi(t))α
′
i(t)][a(t) + z(t)]p

≤ R(t)[a(t) + v(t)],
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where

R(t) =
n∑
i=1

[bi(t) + ci(αi(t))α
′
i(t)][a(t) + z(t)]p−1.

Now by the comparison result for linear differential inequalities(see [1, Lemma
1.1., p. 2]), this implies that

v(t) ≤
∫ t

t0

R(s)a(s) exp

(∫ t

s

R(τ) dτ

)
ds

≤ a(t)

[∫ t

t0

R(s) exp

(∫ t

s

R(τ) dτ

)
ds

]
(2.8)

for s ≥ t0. By integrating on the right hand side in (2.8) we get

(2.9) v(t) + a(t) ≤ a(t) exp

(∫ t

t0

R(τ) dτ

)
.

From (2.9) we successively obtain

[v(t) + a(t)]p−1 ≤ ap−1(t) exp

(∫ t

t0

(p− 1)R(τ) dτ

)
,

R(t) ≤ ap−1(t) exp

(∫ t

t0

(p− 1)R(τ) dτ

) n∑
i=1

[bi(t) + ci(αi(t))α
′
i(t)]

and

A(t) = (p− 1)R(t)

≤ (p− 1)ap−1(t) exp

(∫ t

t0

A(τ) dτ

) n∑
i=1

[bi(t) + ci(αi(t))α
′
i(t)].
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Consequently, we get

A(t) exp

(
−
∫ t

t0

A(τ) dτ

)
≤ (p− 1)ap−1(t)

n∑
i=1

[bi(t) + ci(αi(t))α
′
i(t)],

or

(2.10)
d

dt

[
− exp

(
−
∫ t

t0

A(τ) dτ

)]
≤ (p− 1)ap−1(t)

n∑
i=1

[bi(t) + ci(αi(t))α
′
i(t)],

By takingt = s in (2.10) and integrating it with respect tos from t0 to t, t ∈ I,
we obtain

(2.11) 1− exp

(
−
∫ t

t0

A(τ) dτ

)
≤ (p− 1)ap−1(t)

n∑
i=1

[∫ t

t0

bi(s) ds+

∫ t

t0

ci(αi(s))α
′
i(s) ds

]
.

Making the change of the variables on the right side in (2.11) and rewriting
yields

exp

(∫ t

t0

R(τ) dτ

)

≤

[
1− (p− 1)ap−1(t)

n∑
i=1

(∫ t

t0

bi(s) ds+

∫ αi(t)

αi(t0)

ci(s) ds

)] 1
1−p
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for t ∈ [t0, T ), whereT is chosen so that the expression inside[. . . ] is positive
in the subinterval[t0, T ). This, together with (2.9) andu(t) ≤ a(t)+v(t), gives
the inequality in (2.7).

In the following theorem we establish two independent-variable versions of
Theorem2.1which can be used in the qualitative analysis of hyperbolic partial
differential equations with retarded arguments. Let4 = I1 × I2, whereI1 =
[x0, X), I2 = [y0, Y ) are the given subsets of the real numbers,R. The first
order partial derivatives of a functionz(x, y) defined forx, y ∈ R with respect
to x andy are denoted by∂z(x, y)/∂x and∂z(x, y)/∂y respectively.

Theorem 2.4. Let u, ai, bi ∈ C(4,R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be
nondecreasing withαi(x) ≤ x on I1, βi(y) ≤ y on I2, for i = 1, 2, . . . , n. Let
p ≥ 0, p 6= 1, andc ≥ 0 be constants. If

(2.12) u(x, y) ≤ c+
n∑
i=1

(∫ x

x0

∫ y

y0

ai(s, t)u
p(s, t) dt ds

+

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi(s, t)u
p(s, t) dt ds

)

for (x, y) ∈ I1 × I2, then

(2.13) u(x, y)

≤

[
cq + q

n∑
i=1

(∫ x

x0

∫ y

y0

ai(s, t) dt ds +

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi(s, t) dt ds

)] 1
q
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for (x, y) ∈ [x0, X)× [y0, Y ), whereq = 1− p andX, Y are chosen so that the
expression inside[. . . ] is positive on the subintervals[x0, X) and [y0, Y ).

Proof. The details of the proof of Theorem2.4 follow by an argument similar
to that in the proof of Theorem2.1with suitable changes. From the hypotheses
we observe thatα′(x) ≥ 0 for x ∈ I1 andβ′(y) ≥ 0 for y ∈ I2. Let c ≥ 0
and define a functionz(x, y) by the right-hand side of (2.12). Then,z(x0, y) =
z(x, y0) = c, z(x, y) is nondecreasing for(x, y) ∈ 4, u(x, y) ≤ z(x, y), and

∂

∂x
z(x, y) ≤

n∑
i=1

[∫ y

y0

ai(x, t) dt+

∫ βi(y)

βi(y0)

bi(αi(x), t)α
′
i(x) dt

]
[z(x, y)]p .

By making the constantq = 1− p and using the functionv(x, y) = zq(x, y)/q
we get

(2.14)
∂

∂x
v(x, y) ≤

n∑
i=1

[∫ y

y0

ai(x, t) dt+

∫ βi(y)

βi(y0)

bi(αi(x), t)α
′
i(x) dt

]
.

By taking x = s in (2.14) and integrating it with respect tos from x0 to x,
x ∈ I1, we obtain

(2.15)
∫ x

x0

∂

∂s
v(s, y) ds

≤
n∑
i=1

[∫ x

x0

∫ y

y0

ai(s, t) dt ds+

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi(s, t) dt ds

]
.
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Integrating with respect tos from x0 to x, making the change of the function on
the left side in (2.15) and rewriting yields

zq(x, y)

q
≤ cq

q
+

n∑
i=1

[∫ x

x0

∫ y

y0

ai(s, t) dt ds+

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi(s, t) dt ds

]
for (x, y) ∈ 4. This implies

(2.16) z(x, y)

≤

[
cq + q

n∑
i=1

(∫ x

x0

∫ y

y0

ai(s, t) dt ds +

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

bi(s, t) dt ds

)] 1
q

for (x, y) ∈ [x0, X) × [y0, Y ), whereX, Y are chosen so that the expression
inside[. . . ] is positive on the subintervals[x0, X) and[y0, Y ). Using (2.16) in
u(x, y) ≤ z(x, y) we get the inequality in (2.13).

The following theorem deals with the constant1 < p < ∞ versions of the
inequalities established in Theorem2.4.

Theorem 2.5. Let u, ai, bi ∈ C(4,R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be
nondecreasing withαi(x) ≤ x on I1, βi(y) ≤ y on I2, for i = 1, 2, . . . , n. Let
a(x, y) be nondecreasing in(x, y) ∈ 4 and1 < p <∞ be constant. If

(2.17) u(x, y) ≤ a(x, y) +
n∑
i=1

[∫ x

x0

∫ y

y0

bi(s, t)u
p(s, t) dt ds

+

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ci(s, t)u
p(s, t) dt ds

]
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for (x, y) ∈ I1 × I2, then

(2.18) u(x, y) ≤ a(x, y)

[
1− (p− 1)ap−1(x, y)

n∑
i=1

Ψi(x, y)

] 1
1−p

for (x, y) ∈ 41, where

Ψi(x, y) =

∫ x

x0

∫ y

y0

bi(s, t) dt ds+

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ci(s, t) dt ds

and

41 = sup

{
(x, y) ∈ 4 : (p− 1)ap−1(x, y)

n∑
i=1

ξi(x, y) < 1

}
.

Proof. The details of the proof of Theorem2.5 follows by an argument similar
to that in the proof of Theorem2.3with suitable changes. From the hypotheses
we observe thatα′(x) ≥ 0 for x ∈ I1 andβ′(y) ≥ 0 for y ∈ I2. Define a
functionv(x, y) by

v(x, y) =
n∑
i=1

[∫ x

x0

∫ y

y0

bi(s, t)u
p(s, t) dt ds+

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ci(s, t)u
p(s, t) dt ds

]
.

Then, v(x0, y) = v(x, y0) = 0, v(x, y) is nondecreasing for(x, y) ∈ 4,
u(x, y) ≤ a(x, y) + v(x, y), and

∂

∂x
v(x, y) ≤ R(x, y)[a(x, y) + v(x, y)],
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where

R(x, y) =
n∑
i=1

[∫ y

y0

bi(x, t) dt+

∫ βi(y)

βi(y0)

ci(α(x), t)α′(x) dt

]
[a(x, y)+v(x, y)]p−1.

Now by keepingy fixed and using the comparison result for linear differential
inequalities (see [1, Lemma 1.1., p. 2]), this implies that

(2.19) v(x, y) ≤
∫ x

x0

R(s, y)ai(s, y) exp

(∫ x

s

R(τ, y) dτ

)
ds

for s ≥ x0. By integrating on the right hand side in (2.19) we get

(2.20) v(x, y) + a(x, y) ≤ a(x, y) exp

(∫ x

x0

R(τ, y) dτ

)
.

From (2.20) we successively obtain

[v(x, y) + a(x, y)]p−1 ≤ ap−1(x, y) exp

(∫ x

x0

(p− 1)R(τ, y) dτ

)
,

A(x, y) = (p− 1)R(x, y)

≤ (p− 1)ap−1(x, y) exp

(∫ x

x0

R(τ, y) dτ

) n∑
i=1

ψi(x, y),

where

ψi(x, y) =

∫ y

y0

bi(x, t) dt+

∫ βi(y)

βi(y0)

ci(α(x), t)α′(x) dt.
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Consequently, we have

(2.21)
∂

∂x

[
− exp

(
−
∫ x

x0

A(τ, y) dτ

)]
≤ (p− 1)ap−1(x, y)

n∑
i=1

ψi(x, y).

By taking x = s in (2.21) and integrating it with respect tos from x0 to x,
x ∈ I1, we obtain

(2.22) 1− exp

(
−
∫ x

x0

A(τ, y) dτ

)
≤ (p− 1)ap−1(x, y)

n∑
i=1

Ψi(x, y),

where

Ψi(x, y) =

∫ x

x0

∫ y

y0

bi(s, t) dt ds+

∫ αi(x)

αi(x0)

∫ βi(y)

βi(y0)

ci(s, t) dt ds.

Making the change of the function on the inequality (2.22) and rewriting yields

exp

(∫ x

x0

R(τ, y) dτ

)
≤

[
1− (p− 1)ap−1(x, y)

n∑
i=1

Ψi(x, y)

] 1
1−p

for (x, y) ∈ 41, where41 is chosen so that the expression inside[. . . ] is pos-
itive in the subinterval41. This, together with (2.20) andu(x, y) ≤ a(x, y) +
v(x, y), gives the inequality in (2.18).
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3. Applications
In this section we will show that our results are useful in proving the global ex-
istence of solutions to certain differential equations with time delay. First con-
sider the functional differential equation involving several retarded arguments
with the initial condition

(3.1)

{
x′(t) = F (t, x(t), x(t− h1(t)), . . . , x(t− hn(t)), t ∈ I,

x(t0) = x0,

wherex0 is constant,F ∈ C(I × Rn+1,R) and for i = 1, . . . , n, let hi ∈
C1(I,R+) be nonincreasing and such thatt− hi(t) ≥ 0, x− hi(t) ∈ C1(I, I),
h′i(t) < 1, andh(t0) = 0. The following theorem deals with a bound on the
solution of the problem (3.1).

Theorem 3.1. Assume thatF : I × Rn+1 → R is a continuous function for
which there exist continuous nonnegative functionsai(t), bi(t) for t ∈ I such
that

(3.2) |F (t, v, u1, . . . , un)| ≤
n∑
i=1

[ai(t) |v|p + bi(t) |ui|p],

wherep ≥ 0, p 6= 1 is constant, and let

(3.3) Mi = max
t∈I

1

1− h′i(x)
, i = 1, . . . , n.
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If x(t) is any solution of the problem (3.1), then

|x(t)| ≤

[
|x0|q + q

n∑
i=1

(∫ t

t0

ai(σ) dσ +

∫ t−hi(t)

t0

bi(σ) dσ

)] 1
q

for t ∈ I, wherebi(σ) = Mibi(σ + hi(s)), σ, s ∈ I.

Proof. The solutionx(t) of the problem (3.1) can be written as

(3.4) x(t) = x0 +

∫ t

t0

F (s, x(s), x(s− h1(s)), . . . , x(s− hn(s)) ds.

From (3.2), (3.3), (3.4) and making the change of variables we have

|x(t)| ≤ |x0|+
n∑
i=1

(∫ t

t0

ai(s)|x(s)|p ds+

∫ t

t0

bi(s)|x(s− hi(s))|p ds
)

≤ |x0|+
n∑
i=1

(∫ t

t0

ai(s)|x(s)|p ds+

∫ t−hi(t)

t0

bi(σ)|x(σ)|p dσ

)
(3.5)

for t ∈ I, wherebi(σ) = Mibi(σ + hi(s)), σ, s ∈ I. Now a suitable application
of the inequality in Theorem2.1to (3.5) yields the result.
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Remark 1.

(i) For 1 < p <∞, a suitable application of the inequality in Theorem2.3to
(3.5) yields the following result

|x(t)| ≤

[
|x0| − (p− 1)|x0|p

n∑
i=1

(∫ t

t0

ai(s) ds+

∫ t−hi(t)

t0

bi(σ) dσ

)] 1
1−p

.

This shows in particular that the solutionx(t) is bounded on[t0, T ),where
T is chosen so that the expression inside[. . . ] is positive in the subinterval
[t0, T ).

(ii) Consider the functional differential equation

(3.6)

{
x′(t) = F (t, x(t− h1(t)), . . . , x(t− hn(t)), t ∈ I,

x(t0) = x0.

Assume thatF : I × Rn+1 → R is a continuous function for which there
exist continuous nonnegative functionsbi(t) for t ∈ I such that

(3.7) |F (t, u1, . . . , un)| ≤
n∑
i=1

bi(t) |ui| ,

wherep ≥ 0, p 6= 1 is constant. LetMi be a function defined by (3.3). If
x(t) is any solution of (3.6), the solutionx(t) can be written as

(3.8) x(t) = x0 +

∫ t

t0

F (s, x(s− h1(s)), . . . , x(s− hn(s)) ds.
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From (3.7), (3.8) and making the change of variables we have

(3.9) |x(t)| ≤ |x0|+ p
n∑
i=1

∫ t−hi(t)

t0

bi(σ)|x(σ)|p dσ

for t ∈ I, wherebi(σ) = Mibi(σ + hi(s)), σ, s ∈ I. Now a suitable
application of the inequality in Corollary2.2to (3.8) yields

|x(t)| ≤

[
|x0|q + q

n∑
i=1

∫ t−hi(t)

t0

bi(σ) dσ

] 1
q

for t ∈ I, whereq = 1− p, bi(σ) = Mibi(σ + hi(s)), σ, s ∈ I.

In the following we present an application of the inequality given in Section2
to study the boundedness of the solutions of the initial boundary value problem
for hyperbolic partial delay differential equations of the form

(3.10)


∂
∂y

[
∂
∂x
z(x, y)

]
= F (x, y, z(x, y), z(x− h1(x), y − g1(y)), . . . ,

z(x− hn(x), y − gn(y)),

z(x, y0) = e1(x), z(x0, y) = e2(y), e1(x0) = e2(y0) = 0,

wherep > 0, p 6= 1 is constant,F ∈ C(4 × Rn+1,R), e1 ∈ C1(I1,R), e2 ∈
C1(I2,R), andhi ∈ C1(I1,R+), gi ∈ C1(I2,R+) are nonincreasing and such
thatx−hi(x) ≥ 0, x−hi(x) ∈ C1(I1, I1), y−gi(y) ≥ 0, y−hi(y) ∈ C1(I2, I2),
h′i(t) < 1, g′i(t) < 1, andhi(x0) = gi(y0) = 0 for i = 1, . . . , n.
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Theorem 3.2. Assume thatF : 4 × Rn+1 → R is a continuous function for
which there exists continuous nonnegative functionsai(x, y), bi(x, y) for i =
1, . . . , n; x ∈ I1, y ∈ I2 such that

(3.11)

{
|F (x, y, v, u1, . . . , un)| ≤

∑n
i=1[ai(x, y) |v|

p + bi(x, y) |ui|p],

|e1(x) + e2(y)| ≤ c

for c ≥ 0, p ≥ 0, p 6= 1, and let

(3.12) Mi = max
x∈I1

1

1− h′i(x)
, Ni = max

y∈I2

1

1− g′i(y)
, i = 1, . . . , n.

If z(x, y) is any solution of the problem (3.10), then

|z(x, y)| ≤

[
cq + q

n∑
i=1

(∫ x

x0

∫ y

y0

ai(σ, τ) dτ dσ+

∫ φ(x)

x0

∫ ψ(y)

y0

bi(σ, τ)] dτ dσ

)] 1
q

for (x, y) ∈ 41, whereq = 1 − p, φ(x) = x − hi(x), ψ(y) = y − gi(y) and
b(σ, τ) = MiNibi(σ + hi(s), τ + gi(t)), σ, s ∈ I1, τ, t ∈ I2.

Proof. It is easy to see that the solutionz(x, y) of the problem (3.10) satisfies
the equivalent integral equation

(3.13) z(x, y) = e1(x) + e2(y)

+

∫ x

x0

∫ y

y0

F (s, t, z(s, t), z(s− h1(s), t− g1(t)),

. . . , z(s− hn(s), t− gn(t)) dt ds.
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From (3.11), (3.13) and making the change of variables, we have

(3.14) |z(x, y)|

≤ c+

∫ x

x0

∫ y

y0

n∑
i=1

(
ai |z(s, t)|p + bi |z(s− hi(s), t− gi(t))|p

)
ds dt.

Now a suitable application of the inequality given in Theorem2.4 to (3.14)
yields the desired result.

Remark 2. For 1 < p <∞, a suitable application of the inequality in Theorem
2.5to (3.14) yields the following result

|z(x, y)| ≤

[
c− cp(p− 1)

n∑
i=1

Ψi(x, y)

] 1
1−p

,

where

Ψi(x, y) =

∫ x

x0

∫ y

y0

ai(σ, τ) dτ dσ +

∫ φ(x)

x0

∫ ψ(y)

y0

bi(σ, τ) dτ dσ.
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