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The famous Young’s inequality states that

Theorem 1.If f : [0, A] — R is continuous and a strictly increasing function
satisfyingf (0) = 0 then for every positive < a < Aand0 < b < f(A),

(1) /f dt+/f t)dt > ab

holds with equality if and only f = f(a)

This theorem has an easy geometric interpretation. It is so easy that some
monographs simply refer to it omitting the proot]) or give the idea of a
proof disregarding the details/]). Some authors make additional assumptions
to simplify the proof (B]) while some others obtain the Young inequality as
a special case of quite complicated theorem$).([An overview of available
proofs and a complete proof of Theordncan be found in7]. In this note we
offer two simple proofs of Young’s inequality and present its reverse version.

The proofs are based on the following
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Lemma 2. If f satisfies the assumptions of Theorgrthen

a f(a)
@) | rwars [T wa = o)

The graph off divides the rectangle with diagoné,0) — (a, f(a)) into
lower and upper parts, and the integrals represent their respective areas. Of
course this is just a geometric idea, so at the end of this note we give the formal
proof of Lemma2 (another proof can be found in]).

The first proof is based on the fact that the graph of a convex function lies
above its supporting line.
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Second proof of Theorefin Sincef is strictly decreasing, we have

IO pydt — [ f(t)dt
@ g < OSSR TOT ) =
if a < f~'(b) and reverse inequalitiesdf> f— ( ).
Replacingfof_l(b) f(t)dtbybf~! fo t)dt and simplifying we obtain

in both cases
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Fa
/f dt+ /f t)dt < ab.

If a > f~1(b), we apply the same reasonlng to the functitin) = [ f~*

obtaining
a b
[ s [ 5o < o

Proof of Lemm&. Let0 = 2y < 271 < --- < x, = a be a partition of the
interval [0, a| and lety; = f(x;) andAx; = x; — z;_;.

S(f,x) =0, f(zio1)Az; andS(f,x) = >, f(x;)Az; are lower and
upper Riemann sums fgrcorresponding to the partitiata

Fore > 0 selectx in such a way thaf\y; < £/a. Then

SO

O

= i Ax;Ay; < e.

=1

S(f.x)=S(fx)=S(f"y) - S(fy)

We have
= Z yiAz; + Z Ax; Z Ay;

Jj=i+1

i Aya’)

j=it1
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