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ABSTRACT. We use Salem’s method [13, 14] to prove an inequality of Kwapień and Pełczýnski
concerning a lower bound for partial sums of series of bi-orthogonal vectors in a Hilbert space, or
the dual vectors. This is applied to some lower bounds onL1 norms for orthogonal expansions.

Key words and phrases:Bi-orthogonal pair, Bessel’s inequality, Orthogonal expansion, Lebesgue constants.

2000Mathematics Subject Classification.42C15, 46C05.

1. I NTRODUCTION

Suppose thatH is a Hilbert space,n ∈ N, and thatJ = {1, . . . , n} or J = N. A pair of sets
{vj : j ∈ J} and{wj : j ∈ J} in H are said to bea bi-orthogonal pairwhen

〈vj, wk〉H = δjk, ∀j, k ∈ J.

The inequality in Theorem 2.1 below comes from Section 6 of [6], where it was proved using
Grothendieck’s inequality, absolutely summing operators, and estimates on the Hilbert matrix.
Here we present an alternate proof, based on earlier ideas from Salem [13, 14], where Bessel’s
inequality is combined with a result of Menshov [10]. Following the proof of Theorem 2.1,
we will describe Salem’s method of usingL2 inequalities to produceL1 estimates on maximal
functions. Such estimates are related to the stronger results of Olevskiı̆ [11], Kashin and Szarek
[4], and Bochkarev [1]. We conclude with an observation about the statement of Theorem 2.1
in a linear algebra setting. Some of these results were discussed in [9], where it was shown that
Salem’s methods emphasized the universality of the Rademacher-Menshov Theorem.
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2 CHRISTOPHERMEANEY

2. THE K WAPIE Ń-PEŁCZY ŃSKI I NEQUALITY

Theorem 2.1.There is a positive constantc with the following property. For everyn ≥ 1, every
Hilbert spaceH, and every bi-orthogonal pair{v1, . . . , vn} and{w1, . . . , wn} in H,

(2.1) log n ≤ c max
1≤m≤n

‖wm‖H max
1≤k≤n

∥∥∥∥∥
k∑

j=1

vj

∥∥∥∥∥
H

.

Proof. Equip [0, 1] with a Lebesgue measureλ and letV = L2 ([0, 1], H) be the space ofH-
valued square integrable functions on[0, 1], with inner product

〈F, G〉V =

∫ 1

0

〈F (x), G(x)〉H dx

and norm

‖F‖V =

(∫ 1

0

‖F (x)‖2
H dx

)
.

Suppose that{F1, . . . , Fn} is an orthonormal set inL2 ([0, 1]) and define vectorsp1, . . . , pn in
V by

pk(x) = Fk(x)wk, 1 ≤ k ≤ n, x ∈ [0, 1].

Then
〈pk(x), pj(x)〉H = Fk(x)Fj(x) 〈wk, wj〉H , 1 ≤ j, k ≤ n,

and so{p1, . . . , pn} is an orthogonal set inV . For everyP ∈ V , Bessel’s inequality states that

(2.2)
n∑

k=1

|〈P, pk〉V |
2

‖wk‖2
H

≤ ‖P‖2
V .

Note that here

〈P, pk〉V =

∫ 1

0

〈P (x), wk〉H Fk(x)dx, 1 ≤ k ≤ n.

Now consider a decreasing sequencef1 ≥ f2 ≥ · · · ≥ fn ≥ fn+1 = 0 of characteristic
functions of measurable subsets of[0, 1]. For each scalar-valuedG ∈ L2([0, 1]) define an
element ofV by setting

PG(x) = G(x)
n∑

j=1

fj(x)vj.

The Abel transformation shows that

PG(x) = G(x)
n∑

k=1

∆fk(x)σk,

where∆fk = fk − fk+1 andσk =
∑k

j=1 vj, for 1 ≤ k ≤ n. The functions∆f1, . . . , ∆fn are
characteristic functions of mutually disjoint subsets of[0, 1] and for each0 ≤ x ≤ 1 at most
one of the values∆fk(x) is non-zero. Notice that

‖PG(x)‖2
H = |G(x)|2

n∑
k=1

∆fk(x) ‖σk‖2
H .

Integrating over[0, 1] gives
‖PG‖2

V ≤ ‖G‖2
2 max

1≤k≤n
‖σk‖2

H .

Note that
〈PG(x), pk(x)〉H = G(x)fk(x)Fk(x) 〈vk, wk〉H , 1 ≤ k ≤ n,
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and

〈PG, pk〉V =

∫ 1

0

G(x)fk(x)Fk(x)dx 〈vk, wk〉H , 1 ≤ k ≤ n.

Combining this with Bessel’s inequality (2.2), we arrive at the inequality

(2.3)
n∑

k=1

∣∣∣∣∫
[0,1]

GfkFkdλ

∣∣∣∣2 1

‖wk‖2
H

≤ ‖G‖2
2 max

1≤k≤n
‖σk‖2

H .

This implies that

(2.4)

(
n∑

k=1

∣∣∣∣∫
[0,1]

GfkFkdλ

∣∣∣∣2
)
≤
(

max
1≤j≤n

‖wk‖2
H

)
‖G‖2

2

(
max
1≤k≤n

‖σk‖2
H

)
.

We now concentrate on the case where the functionsF1, . . . , Fn are given by Menshov’s result
(Lemma 1 on page 255 of Kashin and Saakyan [3]). There is a constantc0 > 0, independent of
n, so that

(2.5) λ

({
x ∈ [0, 1] : max

1≤j≤n

∣∣∣∣∣
j∑

k=1

Fk(x)

∣∣∣∣∣ > c0 log(n)
√

n

})
≥ 1

4
.

Let us useM(x) to denote the maximal function

M(x) = max
1≤j≤n

∣∣∣∣∣
j∑

k=1

Fk(x)

∣∣∣∣∣ , 0 ≤ x ≤ 1.

Define an integer-valued functionm(x) on [0, 1] by

m(x) = min

{
m :

∣∣∣∣∣
m∑

k=1

Fk(x)

∣∣∣∣∣ = M(x)

}
.

Furthermore, letfk be the characteristic function of the subset

{x ∈ [0, 1] : m(x) ≥ k} .

Then
n∑

k=1

fk(x)Fk(x) = Sm(x)(x) =

m(x)∑
k=1

Fk(x), ∀0 ≤ x ≤ 1.

For an arbitraryG ∈ L2 ([0, 1]) we have∫ 1

0

G(x)Sm(x)(x)dx =
n∑

k=1

∫ 1

0

G(x)fk(x)Fk(x)dx.

Using the Cauchy-Schwarz inequality on the right hand side, we have

(2.6)

∣∣∣∣∫ 1

0

G(x)Sm(x)(x)dx

∣∣∣∣ ≤ √
n

(
n∑

k=1

∣∣∣∣∫ 1

0

GfkFk dλ

∣∣∣∣2
)1/2

,

for all G ∈ L2([0, 1]). We will use the functionG which has|G(x)| = 1 everywhere on[0, 1],
with

G(x)Sm(x)(x) = M(x), ∀0 ≤ x ≤ 1.

In this case, the left hand side of (2.6) is

‖M‖1 ≥
c0

4
log(n)

√
n,
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4 CHRISTOPHERMEANEY

because of (2.5). Combining this with (2.6) we have

c0

4
log(n)

√
n ≤

√
n

(
n∑

k=1

∣∣∣∣∫ 1

0

GfkFk dλ

∣∣∣∣2
)1/2

.

This can be put back into (2.4) to obtain (2.1). Notice that‖G‖2 = 1 on the right hand side of
(2.3). �

3. APPLICATIONS

3.1. L1 estimates. In this section we useH = L2(X, µ), for a positive measure space(X, µ).
Suppose we are given an orthonormal sequence of functions(hn)∞n=1 in L2(X, µ), and suppose
that each of the functionshn is essentially bounded onX. Let(an)∞n=1 be a sequence of non-zero
complex numbers and set

Mn = max
1≤j≤n

‖hj‖∞ and S∗n(x) = max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj(x)

∣∣∣∣∣ , for x ∈ X, n ≥ 1.

Lemma 3.1. For a set of functions{h1, . . . , hn} ⊂ L2(X, µ)∩L∞(X, µ) and maximal function

S∗n(x) = max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj(x)

∣∣∣∣∣ ,
we have

|ajhj(x)| ≤ 2S∗n(x), ∀x ∈ X, 1 ≤ j ≤ n,

and ∣∣∣∑k
j=1 ajhj(x)

∣∣∣
S∗n(x)

≤ 1, ∀1 ≤ k ≤ n andx whereS∗n(x) 6= 0.

Proof. The first inequality follows from the triangle inequality and the fact that

ajhj(x) =

j∑
k=1

akhk(x)−
j−1∑
k=1

akhk(x)

for 2 ≤ j ≤ n. The second inequality is a consequence of the definition ofS∗n.
Fix n ≥ 1 and let

vj(x) = ajhj(x) (S∗n(x))−1/2 andwj(x) = a−1
j hj(x) (S∗n(x))1/2

for all x ∈ X whereS∗n(x) 6= 0 and1 ≤ j ≤ n. From their definition,

{v1, . . . , vn} and {w1, . . . , wn}

are a bi-orthogonal pair inL2(X,µ). The conditions we have placed on the functionshj give:

‖wj‖2
2 = |aj|−2

∫
X

|hj|2 (S∗n) dµ ≤ M2
n

min1≤k≤n |ak|2
‖S∗n‖1

and ∥∥∥∥∥
k∑

j=1

vj

∥∥∥∥∥
2

2

=

∫
X

1

(S∗n)

∣∣∣∣∣
k∑

j=1

ajhj

∣∣∣∣∣
2

dµ ≤

∥∥∥∥∥
k∑

j=1

ajhj

∥∥∥∥∥
1

.
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We can put these estimates into (2.1) and find that

log n ≤ c
Mn

min1≤k≤n |ak|
‖S∗n‖

1/2
1 max

1≤k≤n

∥∥∥∥∥
k∑

j=1

ajhj

∥∥∥∥∥
1/2

1

.

We could also say that

max
1≤k≤n

∥∥∥∥∥
k∑

j=1

ajhj

∥∥∥∥∥
1

≤ ‖S∗n‖1

and so

log(n) ≤ c
Mn

min1≤k≤n |ak|
‖S∗n‖1 .

�

Corollary 3.2. Suppose that(hn)∞n=1 is an orthonormal sequence inL2 (X,µ) consisting of
essentially bounded functions. For each sequence(an)∞n=1 of complex numbers and eachn ≥ 1,(

min
1≤k≤n

|ak| log n

)2

≤ c

(
max
1≤k≤n

‖hk‖∞
)2
∥∥∥∥∥max

1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj

∣∣∣∣∣
∥∥∥∥∥

1

max
1≤k≤n

∥∥∥∥∥
k∑

j=1

ajhj

∥∥∥∥∥
1

and

min
1≤k≤n

|ak| log n ≤ c

(
max
1≤k≤n

‖hk‖∞
)∥∥∥∥∥max

1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj

∣∣∣∣∣
∥∥∥∥∥

1

.

The constantc is independent ofn, and the sequences involved here.

As observed in [4], this can also be obtained as a consequence of [11]. In addition, see [7].
The following is a paraphrase of the last page of [13]. For the special case of Fourier series

on the unit circle, see Proposition 1.6.9 in [12].

Corollary 3.3. Suppose that(hn)∞n=1 is an orthonormal sequence inL2 (X,µ) consisting of
essentially bounded functions with‖hn‖∞ ≤ M for all n ≥ 1. For each decreasing sequence
(an)∞n=1 of positive numbers and eachn ≥ 1,

(an log n)2 ≤ cM2

∥∥∥∥∥max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj

∣∣∣∣∣
∥∥∥∥∥

1

max
1≤k≤n

∥∥∥∥∥
k∑

j=1

ajhj

∥∥∥∥∥
1

and

an log n ≤ cM

∥∥∥∥∥max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj

∣∣∣∣∣
∥∥∥∥∥

1

.

In particular, if (an log n)∞n=1 is unbounded then∥∥∥∥∥max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj

∣∣∣∣∣
∥∥∥∥∥

1

∞

n=1

is unbounded.

The constantc is independent ofn, and the sequences involved here.
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3.2. Salem’s Approach to the Littlewood Conjecture. We concentrate on the case where
H = L2 (T) and the orthonormal sequence is a subset of{einx : n ∈ N}. Let

m1 < m2 < m3 < · · ·

be an increasing sequence of natural numbers and let

hk(x) = eimkx

for all k ≥ 1 andx ∈ T. In addition, let

Dm(x) =
m∑

k=−m

eikx

be themth Dirichlet kernel. For allN ≥ m ≥ 1, there is the partial sum∑
mk≤m

akhk(x) = Dm ∗

( ∑
mk≤N

akhk

)
(x).

It is a fact thatDm is an even function which satisfies the inequalities:

(3.1) |Dm(x)| ≤

{
2m + 1 for all x,

1/|x| for 1
2m+1

< x < 2π − 1
2m+1

.

Lemma 3.4. If p is a trigonometric polynomial of degreeN, then the maximal function of its
Fourier partial sums

S∗p(x) = sup
m≥1

|Dm ∗ p(x)|

satisfies
‖S∗p‖1 ≤ c log (2N + 1) ‖p‖1 .

Proof. For such a trigonometric polynomialp, the partial sums are all partial sums ofp ∗ DN ,
and all the Dirichlet kernelsDm for 1 ≤ m ≤ N are dominated by a function whoseL1 norm
is of the order oflog(2N + 1). �

We can combine this with the inequalities in Corollary 3.2, since∥∥∥∥∥max
1≤k≤n

∣∣∣∣∣
k∑

j=1

ajhj

∣∣∣∣∣
∥∥∥∥∥

1

≤ c log (2mn + 1)

∥∥∥∥∥
m∑

j=1

ajhj

∥∥∥∥∥
1

.

We then arrive at the main result in [14].

Corollary 3.5. For an increasing sequence(mn)∞n=1 of natural numbers and a sequence of
non-zero complex numbers(an)∞n=1 the partial sums of the trigonometric series

∞∑
k=1

ake
imkx

satisfy

min
1≤k≤n

|ak|
log n√

log(2mn + 1)
≤ c max

1≤k≤n

∥∥∥∥∥
k∑

j=1

aje
imj(·)

∥∥∥∥∥
1

.

This was Salem’s attempt at Littlewood’s conjecture, which was subsequently settled in [5]
and [8].
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3.3. Linearly Independent Sequences.Notice that if{v1, . . . , vn} is an arbitrary linearly in-
dependent subset ofH then there is a unique subset{

wn
j : 1 ≤ j ≤ n

}
⊆ span({v1, . . . , vn})

so that{v1, . . . , vn} and{wn
1 , . . . , wn

n} are a bi-orthogonal pair. See Theorem 15 in Chapter 3
of [2]. We can apply Theorem 2.1 to the pair in either order.

Corollary 3.6. For eachn ≥ 2 and linearly independent subset{v1, . . . , vn} in an inner-
product spaceH, with dual basis{wn

1 , . . . , wn
n},

log n ≤ c max
1≤k≤n

‖wn
k‖H max

1≤k≤n

∥∥∥∥∥
k∑

j=1

vj

∥∥∥∥∥
H

and

log n ≤ c max
1≤k≤n

‖vk‖H max
1≤k≤n

∥∥∥∥∥
k∑

j=1

wn
j

∥∥∥∥∥
H

.

The constantc > 0 is independent ofn, H, and the sets of vectors.

3.4. Matrices. Suppose thatA is an invertiblen×n matrix with complex entries and columns

a1, . . . , an ∈ Cn.

Let b1, . . . , bn be the rows ofA−1. From their definition
n∑

j=1

bijajk = δik

and so the two sets of vectors{
bT
1 , . . . , bT

n

}
and {a1, . . . , an}

are a bi-orthogonal pair inCn. Theorem 2.1 then says that

log(n) ≤ c max
1≤k≤n

‖bk‖ max
1≤k≤n

∥∥∥∥∥
k∑

j=1

aj

∥∥∥∥∥ .

The norm here is the finite dimensional`2 norm. This brings us back to the material in [6]. Note
that [4] has logarithmic lower bounds for`1-norms of column vectors of orthogonal matrices.

REFERENCES

[1] S.V. BOCHKAREV, A generalization of Kolmogorov’s theorem to biorthogonal systems,Proceed-
ings of the Steklov Institute of Mathematics,260(2008), 37–49.

[2] K. HOFFMAN AND R.A. KUNZE, Linear Algebra, Second ed., Prentice Hall, 1971.

[3] B.S. KASHIN AND A.A. SAAKYAN, Orthogonal Series, Translations of Mathematical Mono-
graphs, vol. 75, American Mathematical Society, Providence, RI, 1989.

[4] B.S. KASHIN, A.A. SAAKYAN AND S.J. SZAREK, Logarithmic growth of theL1-norm of the
majorant of partial sums of an orthogonal series,Math. Notes, 58(2) (1995), 824–832.

[5] S.V. KONYAGIN, On the Littlewood problem,Izv. Akad. Nauk SSSR Ser. Mat., 45(2) (1981), 243–
265, 463.
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