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ABSTRACT. In this paper, we obtain aq-analogue of a double inequality involving the Euler
gamma function which was first proved geometrically by Alsina and Tomás [1] and then analyt-
ically by Sándor [6].
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1. I NTRODUCTION

F. H. Jackson defined theq-analogue of the gamma function as

Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1, cf. [2, 4, 5, 7],

and

Γq(x) =
(q−1; q−1)∞
(q−x; q−1)∞

(q − 1)1−xq(
x
2), q > 1,
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where

(a; q)∞ =
∞∏

n=0

(1− aqn).

It is well known thatΓq(x) → Γ(x) as q → 1−, whereΓ(x) is the ordinary Euler gamma

function defined by

Γ(x) =

∫ ∞

0

e−ttx−1dt, x > 0.

Recently Alsina and Tomás [1] have proved the following double inequality on employing a

geometrical method:

Theorem 1.1.For all x ∈ [0, 1], and for all nonnegative integersn, one has

(1.1)
1

n!
≤ Γ(1 + x)n

Γ(1 + nx)
≤ 1.

Sándor [6] has obtained a generalization of (1.1) by using certain simple analytical argu-

ments. In fact, he proved that for all real numbersa ≥ 1, and allx ∈ [0, 1],

(1.2)
1

Γ(1 + a)
≤ Γ(1 + x)a

Γ(1 + ax)
≤ 1.

But to prove (1.2), Sándor used the following result:

Theorem 1.2.For all x > 0,

(1.3)
Γ′(x)

Γ(x)
= −γ + (x− 1)

∞∑
k=0

1

(k + 1)(x+ k)
.

In an e-mail message, Professor Sándor has informed the authors that, relation (1.2) follows

also from the log-convexity of the Gamma function (i.e. in fact, the monotonous increasing

property of theψ -function). However, (1.3) implies many other facts in the theory of gamma

functions. For example, the functionψ(x) is strictly increasing forx > 0, having as a conse-

quence that, inequality (1.2) holds true with strict inequality (in both sides) fora > 1. The main

purpose of this paper is to obtain aq-analogue of (1.2). Our proof is simple and straightforward.

2. M AIN RESULT

In this section, we prove our main result.

Theorem 2.1. If 0 < q < 1, a ≥ 1 andx ∈ [0, 1], then

1

Γq(1 + a)
≤ Γq(1 + x)a

Γq(1 + ax)
≤ 1.

Proof. We have

(2.1) Γq(1 + x) =
(q; q)∞

(q1+x; q)∞
(1− q)−x

and

(2.2) Γq(1 + ax) =
(q; q)∞

(q1+ax; q)∞
(1− q)−ax.
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Taking the logarithmic derivatives of (2.1) and (2.2), we obtain

(2.3)
d

dx
(log Γq(1 + x)) = − log(1− q) + log q

∞∑
n=0

q1+x+n

1− q1+x+n
, cf. [3, 4, 5],

and

(2.4)
d

dx
(log Γq(1 + ax)) = −a log(1− q) + a log q

∞∑
n=0

q1+ax+n

1− q1+ax+n
.

Sincex ≥ 0, a ≥ 1, log q < 0 and

q1+ax+n

1− q1+ax+n
− q1+x+n

1− q1+x+n
=

q1+ax+n − q1+x+n

(1− q1+ax+n)(1− q1+x+n)
≤ 0,

we have

(2.5)
d

dx
(log Γq(1 + ax)) ≥ a

d

dx
(log Γq(1 + x)) .

Let

g(x) = log
Γq(1 + x)a

Γq(1 + ax)
, a ≥ 1, x ≥ 0.

Then

g(x) = a log Γq(1 + x)− log Γq(1 + ax)

and

g′(x) = a
d

dx
(log Γq(1 + x))− d

dx
(log Γq(1 + ax)) .

By (2.5), we getg′(x) ≤ 0, sog is decreasing. Hence the function

f(x) =
Γq(1 + x)a

Γq(1 + ax)
, a ≥ 1

is a decreasing function ofx ≥ 0. Thus forx ∈ [0, 1] anda ≥ 1, we have

Γq(2)
a

Γq(1 + a)
≤ Γq(1 + x)a

Γq(1 + ax)
≤ Γq(1)a

Γq(1)
.

We complete the proof by noting thatΓq(1) = Γq(2) = 1. �

Remark 2.2. Letting q to 1 in the above theorem. we obtain (1.2).

Remark 2.3. Letting q to 1 and then puttinga = n in the above theorem, we get (1.1).
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