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Abstract

We investigate monotonicity and logarithmic convexity properties of one-parameter
family of means

Fy(r;a,b;x,y) = E(r,r + h;az,by)/E(r,r + h;a,b)

where E is the Stolarsky mean. Some inequalities between classic means are
obtained.
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Extended mean values of positive numbeys introduced by Stolarsky ind]
are defined as

1
(=) (s =) —y) A0,
1
(=) ra—y) £0,5=0,

1

1
¢ <3> o or=sr(z—y) £0,
NG r=s=0,z—-y#0,

L T xr=y.

(1.1) E(r,s;x,y) =

This mean is also called the Stolarsky mean.
In [9] the author extended the Stolarsky means to a four-parameter family of
means by adding positive weightsb:

E(r, s;az,by)

1.2 F(r,s;a,b; = —".
( ) (7’,3,@>b7xay) E(T’, s a, b)

From the continuity ofZ it follows that F' is continuous ifR? x R? x R2. Our
goal in this paper is to investigate the logarithmic convexity of
(1.3) Fy(rya,b;z,y) = F(r,r + ha, bz, y).

In [1] Horst Alzer investigated the one-parameter mean

(1.4) J(r)=J(r;x,y) = E(r,r+ 1;2,y)
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and proved that for # y, J is strictly log-convex forr < —1/2 and strictly
log-concave for- > —1/2. He also proved thaf(r)J(—r) < J?(0). In[2] he
obtained a similar result for the Lehmer means

xT—i-l + ,yr—H

(15) L) = Lirsay) = L

With an appropriate choice of parameters In2{ one can obtain both the
one-parameter mean and the Lehmer mean. Namely,

Convexity of Weighted
J(T;I,y) = F(Tﬂ“+1;1,1;$,y) Stolarsky Means

and Alfred Witkowski
L(r,z,y) = F(r,r+ 1L, 2,y;2,9).

Another example may be the mean created the same way from the Heronian Title Page
mean Contents
$T+1 + /l.y""i‘l +yT+1 “ }}
(1.6) N(rizy)=F(rr+Lve,/yizy) = :
v Tt Tty ) ,
The folloyving monotonicity properties of weighted Stolarsky means have Go Back
been established [
_ _ Close
Property 1.1. F' increases inc andy. -
ul
Property 1.2. F increases i ands if (x — y)(a*x — b?y) > 0 and decreases
Page 4 of 14

if (x —y)(a®x — b?y) < 0.
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Definition 1.1. A functionf : R —R is said to be symmetrically convex (con-
cave) with respect to the poing if f is convex (concave) itry, oo) and for
everyt >0 f(ro+1t) + f(ro —t) = 2f(ro).

Definition 1.2. A functionf : R — R, is said to be symmetrically log-convex
(log-concave) with respect to the pointif log f is symmetrically convex (con-
cave) W.r.t. 7.

For symmetrically log-convex functions the symmetry condition refdds+
t)f(ro —t) = f*(ro). We shall recall now two properties of convex functions.

Property 1.4. If f is convex (concave) then fér > 0 the functiong(t) =
f(t+ h) — f(t) is increasing (decreasing). Fdr < 0 the monotonicity of
reverses.

For log-convexf the same holds faj(¢t) = f(t + h)/f(¢).

Property 1.5. If f is convex (concave) then for arbitranthe functionh,(t) =
f(z —1t)+ f(x +t) is increasing (decreasing) if0, co). For log-convexf the
same holds foh,(t) = f(z —t) f(z + t).

The propertyl.5holds also for symmetrically convex (concave) functions:

Lemma 1.6. Let f be symmetrically convex w.ritg, and letz > r,. Then the
functionh,(t) = f(xz —t) + f(x + ¢) is increasing (decreasing) ifD, co). If
x < 1o thenh,(t) decreases.

For f symetrically concave the monotonicity/gfis reverse.

For the case wherg is symmetrically log-convex (log-concave)t) = f(x +
t)f(z — t) is monotone accordingly.
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Proof. We shall prove the lemma fgf symmetrically convex and > r,. For
x < ro or f symmetrically convex the proofs are similar.
Consider two cases:

e 0 <t<xz—rg. Inthiscase,(t)isincreasing by Property.5.

ot >u—rg. Nowh,(t) = f(x +1t) + f(x —t) = 2f(ro) + f(z + 1) —
f(t — x + 2ry) increases by Property.4 because¢ — x + 2ry > ro and
(x+1t)—(t —x+ 2ry) > 0.

]
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It is obvious that the monotonicity af;, matches that of". The main result
consists of the following theorem:

Theorem 2.1.1f (z —y)(a*x—b%y) > 0 (resp.< 0) thenFy,(r) is symmetrically
log-concave (resp. log-convex) with respect to the peiht2).
To prove it we need the following
Lemma 2.2. Let
Atlog? A Btlog’B

g(t7A7B> = (At_l)Q - (Bt_l)Z'

Then
1' g(t7A7B) = g(:tthil7Bil)’

2. g is increasing int on (0,00) if log? A — log> B > 0 and decreasing
otherwise.

Proof. (1) becomes obvious when we write

log? A log”> B
t,A B) = — :
9(t. 4, B) At —2+ At Bt—2+4+ Bt
From (1) if follows that replacingA, B with A=, B! if necessary we may
assume thatl, B > 1. In this casegn(log® A — log® B) = sgn(A* — BY).
dg  AY(A'+1)log® A BY(B'+1)log’B

ot (At—1)3 (Bt — 1)

= (64" — 6(BY) = 5 (A~ BYS(©),
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where¢ > 1 lies betweem! and B* and

u(u + 1) log® u
(u—1)°

To complete the proof it is enough to show ti&t:) < 0 for u > 1.

¢(u) =

(u® 4 4u + 1) log?u [ 3(u® —1)

/
= —1
¢'(u) (u—1)* Prdut1 8l
so the sign ofY is the same as the signofu) = 52(+4u+1 —logu. Buty(1) =
andy’(u) = —(u — 1)*/u(u® + 4u 4+ 1)* < 0, sog(u) < 0. D
Proof of Theoren2.1 First of all note that
log? —log? = =1o 10 Gl
g b g b &, o8 s,
and becausezn(z — y) = sgn log 7 we see that
(2.1) sgn(r — y)(a’z — bY) = sgn (log o log? Z)

Let A = ¢ andB = . Suppose thati, B # 1 (in other cases we use a
standard continuity argument);, () can be written as

Ar+h_1 AT —1 %
Fh(r):y(BT-l—h_l/Br_l) )
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We show symmetry by performing simple calculations:
FlM(—=h/2 —7)F(=h/2 +7)

oh Ah/Q—r -1 B—h/?—r -1 Ah/2+r -1 B—h/2+r

—1
Bh/2—r _

1 A-h/2—r _1 PBh/2tr _1 A-h/2+r _q
o BN Ah/er -1 1-— Bh/2+r Ah/2+r -1 1-— Bh/er

7 TA-h Bh/2—r — 1 1 — Ah2+r  Bh/24r — 1 1 — Ah/2—r

- (5) — (ay)" = FP'(—1/2).

Differentiating twice we obtain

(2.2)

2 g(r, A, B) — g(r + h, A, B)
dr? log Fiy(r) = h
A — A
_g(r,A B) !}JL(|7’+h|’ . B) (by Lemma2.2 (1)),

hence by Lemma&.2(2)
2
sgn - log F3,(r) = sgn h(|r| — |r + h[)(log® A — log® B)
”
= sgu(r + h/2)(z — y)(a®x — b%y).

The last equation follows fron2(1) and from the fact that the inequality] <
|r + h|is valid if and only ifr > —h/2 andh > 0 orr < —h/2andh < 0. O

The following theorem is an immediate consequence of Thedrdnand
Lemmal.6.
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Theorem 2.3.1f (x — y)(a?z — b?y)(ro + h/2) > 0 then the function
D(t) = Fp(ro —t)Fu(ro +t)
is decreasing in0, co). In particular for every reak
(2.3) Fi(ro — t)Fi(ro +t) < Fi(ro).
If (x — y)(a*xz — b?y)(ro + h/2) < 0 thend(t) is increasing in(0,00). In
particular for every real
(2.4) Fy(ro — ) Fn(ro +1) > Fi(ro).

The following corollaries are immediate consequences of Theozehand
2.3

Corollary 2.4. For x # y the one-parameter meaf(r) defined by1.4) is log-
convex forr < —1/2 and log-concave for > —1/2. If r, > —1/2 then for all
realt, J(ro —t)J(ro +t) < J*(ro). Forro < —1/2 the inequality reverses.

Proof. J(r;x,y) = Fi(r;1,1;2,y). .

Corollary 2.5. For z # y the Lehmer mea# () defined by(1.5) is log-convex
for r < —1/2 and log-concave for > —1/2. If r, > —1/2 then for all realt,
L(rg — t)L(ro + t) < L*(rg). Forry < —1/2 the inequality reverses.

Proof. L(r;x,y) = Fi(r;x,y;z,y). O

Corollary 2.6. For x # y the meanN(r) defined by(1.6) is log-convex for
r < —1/2 and log-concave for > —1/2. If r, > —1/2 then for all realt,
N(rg —t)N(ro+t) < N%(ry). Forry < —1/2 the inequality reverses.

Proof. N(r;z,y) = Fi(r; Vv, \/y; %, y). =
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In this section we show some inequalities between classic means:

Power means

Harmonic mean
Geometric mean

Logarithmic mean

Heronian mean

Arithmetic mean

Centroidal mean

Root-mean-square

Contrharmonic mean

1
xr+yr T
Ar:Ar(x7y):( 9 ) )
2z
H=Auwy) ="
G:A()('Tay) = VY,
r—y
L=L(xy) = —"—Y
(z) logz — logy’

T+ /Ty +y
N:N(xuy):fa

A= Aylay) =2,
T=ﬂa@=§ﬁ%%§f
R = As(z,y) = \/IQ;yQ,
Oza%m:iig.

Corollary 3.1 (Tung-Po Lin inequality [ 4]).

L< Ays.
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Proof. By Theorem2.3
Fiys(0:1,1,52,y) Fiys(2/3;1, 12, y) < Fs(1/351, L, y)

or

(s ) (22 < (Vi)
logxz — logy 3V — y? 2 Vr—y )

i (:I;’ y) S 43/ (:E y) Co VEX”:y (0] Welg ted

Stolarsky Means

O Alfred Witkowski

Inequalities in the table below can be shown the same way as above by an
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No Inequality h To t a b
1 L?>GN 1/2 0 1 1 1
2 L?> HT 1 0 2 1 1
3 Af/Q > AG 1/2 0 1/2 x Y
4 A2, >LN 12 12 12 1 1
5 N2 > AL 1 /2 12 1 1
6 A2 > LT 1 1 1 1 1
7 A2 > CH 1 0 1 x Y
8 LN > AG  1/2  1/2 1 1 1
9 GN > HT 1 -1 1/2 T y
10 AN > TG 1/2 0 1 x Yy
11 LT > HC 1 1 2 1 1
12 TA> NR 1 1/2 1/2 x y
13 L3 > AG? 1 0 1 1 1
14 S>GA%, 12 12 12 1 |
15 N¥>AA7,  1)2 112 1 1
16 T3 > AR? 1 2 1 1 1
17 LN? > GT 1 12 3/2 1 1
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Note that 4 is stronger than 3 (due to inequality 8), 14 is stronger than 13

(due to 3). Also, 1 is stronger than 2 because of 9.
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