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ABSTRACT. By introducing parameters andu, we give a generalization of the Hilbert’s type
integral inequality. As applications, we give its equivalent form.
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1. INTRODUCTION
If f,g>0,p>1,5+;=1,0< [ fP(2)dx < coand0 < [ g/(z)dx < oo, then

(1.1) /OOO /OOO %géy)dxdy < m {/OOO fp(a:)dx}; {/Ooogq(x)dx}é,

p o)
(1.2) / ( fl )dx) dy < {L} / P (x)dz,
0 0o Tty sin(m/p) | Jo
where the constant factcgm(frrw Is the best possible. Inequali 1) is known as Hardy-

Hilbert’s integral inequality (see [1]); it is important in analysis and its applications (see [4]).
Under the same condition df (1.1), we have the Hardy-Hilbert type inequality similar fo (1.1):

@y [T eyt <l [ df};{/omgq“)d””};’
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(L.4) / ) ( / ) %dw) < oy | " prla)da

where the constant factpy is the best possible. The corresponding inequality for series is:

(1.5) Z Z max{m o] < pq (Z @p> g (Z bi) g |

n=1 m=1

where the constant factgr, is also the best possible. In particular, wher ¢ = 2, we have
the well-known Hilbert type inequality:

@ [ L0) gy [ [ sy [T )

In recent years, Kuang (se€ [3]) gave a strengthened form as:

(1.7) Z Z max{m o {Z[pq ~ G(p, n)]aﬁ}

n=1

Q=

S
—
(]
=)
Q
|

=

=

=
——

whereG(r,n) = W >0 (r=p,q).

Yang (seel[5,18]) gave: fox > 2 — min{p, ¢}
= flz)gly) PgA
08 [ | AT < B )

X {/ x(p_l)(2—’\)_1fp(x)dx}p {/ x(q_l)@—’\)_lgq(x)dx}q
0 0
and

e flz)g(y) P
(1.9) /0 /0 max{z?*, y*}dxdy = (P+A=2)(¢+A—2)

X {/Oooxl_’\fp(x)dm}; {/Oooxl Agl(x )dx};.

At the same time, Yang (sek! [6, 7]) considered the refinement of other types of Hilbert’s in-
equalities.
In this paper, we give a generalization of Hilbert’s type inequality and an improvement as:

/ / max{x y}d vdy < Aqu {/Oooxi—lfp(g;)dz}’l’ {/Oooxilgq(g:)dz}é’

whereX > 0 andu > 0.

|—=

2. MAIN RESULTS

Lemma 2.1. Suppose > 1,1 +1 =1\ pu,e>0.Then

&0 1 13 z A 1 —1l—pe
(2.1) / x5(5+M)1/ — =0(1) (e—o").
1 0

max{1,t}
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Proof. There exist» € N which is large enough, such that+ # > (0 fore € (0

L] and
? un
x > 1, we have

1
x X x X —1—pe
1 —1—pe —1—pe 1 ==
/ —t 1TM dt = / t 1’"H dt = PE— (l’i%) .
0 max{1, 1} 0 1+ —*

Since fora > 1 the functiong(y) = -%; (y € (0, 00)) is decreasing, we find

ya¥y

—1— ;LE 1-1/n

1 1\ 1+ 1 N\
1+ =lee (x A) = 14 <$ A) ’

r

SO

O</ ms(;+;;)1/ R S
1 o  max{l,t}
00 1 1+—1 1/n
—1 Y
< /1 vy i (+)
2

1 1

- >\ 14+ —1— l/n :
Hence relation (2]1) is valid. The Iemma is proved.

Now we study the following inequality:

Theorem 2.2. Supposéf (), g(z) >0, p>1, ; +.=1,A>0,u>0and

0< / x§_1fp(x)dx <oo, 0< / x%_lgq(x)dx < 00.
0 0

Then

(2.2) / / max{m y} F@IW") 4y < A]:fw {/OOO xi—lfp(x)dx}’l’ {/Ooo xtltlgq(a;)dx}}z,

where the constant facter- is the best possible foxr = p.
)\puq

Proof. By Holder’s inequallty, we have
yl’l’
J e
-1 w1
11 w3 f(l’)} [y g(y)}
:——/ / - — dzdy
K Jo 0 max{ by 7}
32 [ m/ e (O N A CEA N
S Ande o 1 v -5
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Qe
D=

1
T
1
m

0o o) 1
< ll / / Ip(%—l) fp(g;) (1 3)p/a X
“AwpJo Jo 3oy 1= y

1
max{xx,yu} yoon

) dxdy

1
0o poo (1-L)q/p LN »
1 9'(y) y o yr
/ / yq(u 1) - — = dzdy
0 0 max {xX , Y } T A T A

Define the weight functio(z), ¥ (y) as

Q=

o 1 x(lf%)p/q x% q
o) = [ B S A (0, 50)
0 max{xx,yu} y o# Y+
1 1 -
0 1 y( ﬁ)Q/p yﬁ P
v | — () ye o)
0 max{xi,yu} e oA Tx

then above inequality yields

([
< %% A e W Y AR e

For fixedz, lety» = 2%t, we have

Q|

a1
= dt
plr) = pal” / max{l t}
_ pgr-D0-D)

By the same token)(y) = Apgy'® "), thus

(2.3) / / max{x y}d vdy < Afiq {/Oooxilfp(x)dx}; {/Ooo :ci_lgq(x)dx}é.

If (2.3) takes the form of the equality, then there exist constaatsld, such that Kuang (see

[2])

>

T

1
xP(%—l)fp<x> x(l_%)p/q I% a d yq(%_l)gq(y) y(l_i)q/p yi
c : = ’ L
yr ;

max{x%,yi} Y ; max {xiyi} 't
a.e. on(0,00) x (0,00).

Then we have
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Hence we have
cx%fp(x) = dy%gq(y) = constant
a.e. on(0, c0) x (0, 00),

which contradicts the facts that
0< / 2x fP(z)de < 0o and 0 < / y%gq(x)dx < 0.
0 0

Hence [(2.B) takes the form of strict inequality. So we haveg (2.2).
—e—1/X
For0 < ¢ < 1, settingf.(z) = z v ,forz € [1,00); fo(z) = 0, forz € (0,1), and

2!
g:(y) = y = , fory € [1,00); ¢9-(y) = 0, fory € (0,1). Assume that the constant factor
P4 in s not the best possible, then there exists a positive nuiibeith X <

T
AP pa AP pa

such that 22) is valid by changlnq; to K. We have

/ / max{x y} dxdy < K{/OOO xilfp(x)dx}; {/OOO xi_lgq(:v)dx}; - g

Since
/m '
— 1
o max{l,t}

settingy» = xit, by ) we find

d d
I max{x i
fia) [% v)
/ / — dxdy
max Tx yf}
~1)+—= y(r1)+
/ / — dmdy
max xx,yﬁ}
- (-p+ =k
" L1)+—
/ /1 ( z3) ottt dadt
A max{xi,txX}
_ / —6( -‘r)\q) /OO ;t*;u
1 % max{l,t}
_ ! / g / L
Ay o max{l,t}

Todt=pg+o(1) (e —07),

> =

1

X
. 1 t_I;w
/0 max{1,t}

L1 g
= = +o(1)
1
AE v + _/\%
Since fore > 0 small enough, we have

1
= pq +o(1)] < K.
Mt
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It is obvious thatqu <2 c+bie.

< —) by Young’s mequallty Consider the case
AP Iy

of taking the form of the equality for Young’s inequality, we get_ A5 ,l.e. A =pu, Then

1
)\ +Aq

1

A

pq
1
__|_)\Lq

= 4o01) <K

)\pluq

+o(1)

Thus we getA < K, which contradicts the hypothesis. Hence the constant fag¥er in
/\P q
(2.9) is best p055|ble fox = . g

Remark 2.3. For \ = p, inequality (2.2) becomes

(24) / max{x m dxdy<pf { /0 w37 P (a)d }{ /0 Ooxi_lgq(x)dx};,

where the constant factdf is the best possible.

Theorem 2.4.Supposg > 0,p > 1, A > 0 and0 < | 2371 fP(z)dz < co. Then

(2.5) I { | %dw}pdy <oy [t e,

where the constant factdr(pq)? is the best possible. Inequalify (R.5) is equivalent to|(2.4).
Proof. Settingg(y) as

~ s |7
|:/o m:X {x§,2i}dx] > 0, y € (0, 00).
then by [2.4), we find
A2 /Ooo yx g (y)dy = A /OO [/Oo %daﬁrd@/
/ / max{a: y} d dy
26) <B [T ap@an{ [T

Hence we obtain
27) 0< [T yA gy < Xpgy [t e < .
0 0
By (2.4), both|[(2.5) and (2, 7) take the form of strict inequality, so we (2.5).

On the other hand, suppose ttﬂZ.S) is valid. By Holder’s inequality, we find

[ [
T
co <[ [ L (e
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Then by [2.5), we havé¢ (3.4). Thys (R.4) and)(2.5) are equivalent.

If the constant; (pq)” in (2.5) is not the best possible, Hy (2.8), we may get a contradiction
that the constant factor ifi (2.4) is not the best possible. Thus we complete the proof of the
theorem. 0

Remark 2.5.

(i) For A = u = 1, (2.2) and[(2.p) reduce respectively fo {1.3) gnd](1.4). It follows that
(2.2) is a new extension df (1.6) and (1.3) with some parameters and the equivalent form

(2.4) is a new extension df (1.4).
(i) It is amazing that[(2}4) and (1.9) are different, although both of them are the extensions

of (1.6) with (p, ¢)—parameter and the best constant factor.
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