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Abstract

By introducing parameters A and ., we give a generalization of the Hilbert's
type integral inequality. As applications, we give its equivalent form.
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|ff,g20,p>1,%+— da:<ooand0<f0 gl(z)dr <

00, then

(1.1) /Om/om%g;y)dxdy
st L e ([}

@ [ ( fi;d) dy<Lm<1/p>V/ffp<x>dx

where the constant fact%;#p) is the best possible. Inequality.() is known
as Hardy-Hilbert’s integral inequality (seg]]; it is important in analysis and
its applications (se€!]). Under the same condition of (1), we have the Hardy-
Hilbert type inequality similar to1(.1):

9 [ [ L [ {[ o}
at [T mrayte) wr< o0 [T

L0 < [55 fo(x
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where the constant factpr is the best possible. The corresponding inequality

for series is:
1
oo q
(E b%) ,
n=1

15 P
(.5) ;mzlmax{m n}<pq<2“>
where the constant factpy, is also the best possible. In particular, whes-
q = 2, we have the well-known Hilbert type inequality:

o) [ L0 gty s [ proras) ([}

In recent years, Kuang (se€]] gave a strengthened form as:

(.7 Z Z maX{m n}
< {Z[pq — G(p, n)]aﬁ}p {Z[pq — G(q,n)]bg}q ,

n=1 n=1

D=

whereG(r,n) = W >0 (r=p,q).

Yang (seef, 9]) gave: forA > 2 — min{p, ¢}
* [ f@)gly) pgA
9 /0 /0 max{z?, y*}dxdy StA-2@rr-2)

x {/O 2(P=1)(2=2)— LfP(x)d }p {/0 ﬂC(q—l)(2—>\)—lgq(@dx}q
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and
e flz)g(y) . P
(1.9) /0 /o maX{x%y*}d W< (P+A=2)(g+A-2)

< {/Oooxl’\fp(x)dx};{/oooxl e )dx};.

At the same time, Yang (se&,[/]) considered the refinement of other types of
Hilbert’s inequalities. Some Extensions of Hilbert's
~ In this paper, we give a generalization of Hilbert's type inequality and an Rl
improvement as:
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Lemma 2.1. Suppose > 1,1 +1 =1 )y, > 0. Then

& 1 z X 1 —1l—pe
2.1) / xem;;)l/ L= —0(1) (- o0*).
1 0

max{1,t}

Proof. There existn € N which is large enough, such that+ %@ > ( for
e € (0, ;] andz > 1, we have

T 1 e T e 1 1+#
/ R —/ T = ———— (x*%> .
o max{l,t} 0 14—+

Since fora > 1 the functiong(y) = y% (y € (0,00)) is decreasing, we find

>
=

1-1/n

1 L\ 1 i\
1+ =lee (‘T A) =5 ke <x A) ’

SO
_1
00 T A 1 L
0< / e / L
1 o  max{l,t}
00 1 S S VA —1— 1/n
—1 _ 1
</1 SRS ()
2
1 1
- /\ 1+ —1— l/n ’
Hence relationZ.1) is valid. The lemma is proved. O
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Now we study the following inequality
Theorem 2.2. Suppose ()

+>=1,A>0,p>0and
O</ o3 fP(x)dx < oo, 0</ xi_lgq(x)dx<oo
0 0

(2.2) / / maX{x y} dxdy

g(z) >0,p>1

Then

Proof. By Holder’s inequality, we have

I

_ll/ /
A Jo 0
_ll/“/“

HJo 0

< ?ql{/ 7%°
Arpa Lo

1
)\P'u,q

dxdy
y}
x%_l

f(x)] yi_lg(y)}

: 1fp(:c)dx}; {/OOO x;lt_lgq(:c)d:c}}]

where the constant facter+ is the best possible for = p.
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f

Some Extensions of Hilbert’s
Type Inequality and its
Applications

X
O\
8
c\
<
=2
=
|
Naw
=
Q
ke
/—/H%
& —~~
N RS
- SN—
<
T =
\W_/
QQ/—\
&
—
| =
>=l T
~
bS]
VRS
8 |<
N RS
N——
|
ISH
8
N
<
Q=

Yongjin Li and Bing He

o0 1 2=3p/a 23\ 9 Title Page
olo):= [ B S A (0, 50)
0 max {xx S Y } Y Yn Contents
v = [ o S () de ye 000 <« | »
0 max{xX,y#} T A A
Go Back
then above inequality yields
Close
/ / g(y*) EASIEICIP Quit
max{:v y}
1 1 Page 8 of 15
(1-1) [T a(1-1) ‘
<l 90( )aP 3T fP(x)dx Y(y)y™ gl (y)dy|
)\ ,LL 0 0 J. Ineq. Pure and Appl. Math. 7(2) Art. 61, 2006

http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:stslyj@mail.sysu.edu.cn
mailto:
mailto:hzs314@163.com
http://jipam.vu.edu.au/

For fixedz, Ietgﬁ — z3t, we have

o 1 1
- (p1>(1;>/ R S S
plo) = p o max{l,t} ’
(r-1)(1-1)

(-1)(1-1)

= upqx
= upqx

By the same token)(y) = Apgy'® V%), thus

e [ ] ey

1 ~ 1
< }19(]1 {/ xi_lf”(:z:)dx}p {/ a:ulgq(a:)da:} :
Arpa Lo 0

If (2.3) takes the form of the equality, then there exist constaatgld, such
that Kuang (see’])

1 1

PG fr(z)  g-RPle (g5 )° . yQ(ﬁfl)gq(y) y(lfi)q/p yi »
c - —T — = el — LA

y* max {:z:X,yu} oA

max{z¥,yx} '
a.e. on(0, 0c0) x (0,00).

Then we have

e f7(x) = dy»g"(y)
a.e. on(0,00) x (0,00).
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Hence we have

cxifp(x) = dyigq(y) = constant
a.e. on(0, co0) x (0, 00),

which contradicts the facts that

0< / x%fp(m)dm <oo and 0< / yigq(x)dx < 00.
0 0
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Foro < e < 3, settingfg( ) 5 forz e [1,00); fi(x) = 0, for

€ (0,1), andg.(y) =y~ 7, fory € [1,00); g.(y) = 0, for y € (0,1).
Assume that the constant facte% in (2.2) is not the best possible, then there
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settingy» = 23, by (2.1), we find

I max{x D

S
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Since fore > 0 small enough, we have

pq

14 8
p+%q

+o(1)| < K.

1
A

It is obvious thatA%/ﬁ < 2 c+Le. 3 1+ p < ) by Young’s inequality.
,\P

ConS|der the case of taklng the form of the equallty for Young’s inequality, we
get;uz =\5 ,i.e. A\ = pu, Then

1
X[lpq,t +o(1)]| = 2L 1 o(1) < K.
» T AP i

Thus we get.+ < K, which contradicts the hypothesis. Hence the constant
AP pd

factor in (2.2) is best possible fok = p. [

l
)\P‘uq

Remark 1. For A = p, inequality €.2) becomes

(2.4) / / max{xy}ddy
< [Tei }{ /O“x;-lgq@dx};,

where the constant factdf is the best possible.
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Theorem 2.3.Supposg > 0,p > 1, A > 0and0 < [;°
Then

es [ { I %dx]pdy < 3oy [ et s,

where the constant factc%r(pq)p is the best possible. Inequalit®.f) is equiv-
alent to ¢.4).

3P (2)de < oo.

Proof. Settingg(y) as

p—1
/Oo I%_lf(x) dx >0
0 max{aﬁ,y§} ,
then by @.4), we find
- %) %_ . o 0 00 f(l,)\) p
v = | U md]dy
/ / max{x y}dxdy
.6 B [Catnpe { [T}

Hence we obtain

(2.7) 0</ yi‘lgq(y)dySAp(pq)p/ 3t
0 0

y € (0,00).

fP(z)dr < oo.
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By (2.4), both £.6) and @.7) take the form of strict inequality, so we ha&¥).

On the other hand, suppose thatg is valid. By Holder’s inequality, we
find

[ [
—/0 v—} |
eo ([ [[ ] ) ([ o)

Then by @.5), we have 2.4). Thus @.4) and @.5) are equivalent.

If the constant% (pq)P in (2.5) is not the best possible, b®.@), we may get
a contradiction that the constant factor in4) is not the best possible. Thus we
complete the proof of the theorem. ]

Remark 2.

(i) ForA = =1,(2.2 and .5) reduce respectively td (3) and (L.4). It fol-
lows that @.2) is a new extension of.(6) and (1.3) with some parameters
and the equivalent forn2(4) is a new extension of.(4).

(i) It is amazing thatZ.4) and (L.9) are different, although both of them are

the extensions ofL(6) with (p, ¢) —parameter and the best constant factor.
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