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ABSTRACT. Letp, q > 0 satisfy 1
p + 1

q = 1. We prove that for any positive invertible operators
a andb in σ-finite type III factors acting on Hilbert spaces, there is a unitaryu, depending ona
andb such that

u∗|ab|u ≤ 1
p
ap +

1
q
bq .
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1. I NTRODUCTION

Young’s inequality asserts that ifp andq are positive real numbers for whichp−1 + q−1 = 1,
then|λµ| ≤ p−1|λ|p + q−1|µ|q, for all complex numbersλ andµ, and the equality holds if and
only if |µ|q = |λ|p.

R. Bhatia and F. Kittaneh [3] established a matrix version of the Young inequality for the
special casep = q = 2. T. Ando [2] proved that for any pairA andB of n × n complex
matrices there is a unitary matrixU , depending onA andB such that

(1.1) U∗|AB|U ≤ 1

p
|A|P +

1

q
|B|q.

Ando’s methods were adapted recently to the case of compact operators acting on infinite-
dimensional separable Hilbert spaces by Erlijman, Farenick, and Zeng [4]. In this paper by us-
ing the concept ofspectral dominance in type III factors, we prove a version of Young’s
inequality for positive operators in a type III factorN .
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2 S. MAHMOUD MANJEGANI

If H is ann-dimensional Hilbert space and ifa andb are positive operators acting onH, then
a is said to be spectrally dominated byb if

(1.2) αj ≤ βj , for every 1 ≤ j ≤ n ,

whereα1 ≥ · · · ≥ αn ≥ 0 andβ1 ≥ · · · ≥ βn ≥ 0 are the eigenvalues ofa andb, respectively,
in nonincreasing order and with repeats according to geometric multiplicities. It is a simple
consequence of the Spectral Theorem and the Min-Max Variational Principle that inequalities
(1.2) are equivalent to a single operator inequality:

(1.3) a ≤ u∗bu , for some unitary operatoru : H → H ,

whereh ≤ k, for Hermitian operatorsh andk, denotes〈hξ, ξ〉 ≤ 〈kξ, ξ〉 for all ξ ∈ H. One
would like to investigate inequalities (1.2) and (1.3) for operators acting on infinite-dimensional
Hilbert spaces. Of course, as many operators on infinite-dimensional space fail to have eigen-
values, inequality (1.2) requires a somewhat more general formulation. This can be achieved
through the use of spectral projections.

LetB(H) denote the algebra of all bounded linear operators acting on a complex Hilbert space
H, and suppose thatN ⊆ B(H) is a von Neumann algebra. The cone of positive operators inN
and the projection lattice inN are denoted byN+ andP(N) respectively. The notatione ∼ f ,
for e, f ∈ P(N), shall indicate the Murray–von Neumann equivalence ofe andf : e = v∗v and
f = vv∗ for somev ∈ N . The notationf - e denotes that there is a projectione1 ∈ N with
e1 ≤ e andf ∼ e1; that is,f is subequivalent toe.

Recall that a nonzero projectione ∈ N is infinite if there exists a nonzero projectionf ∈ N
such thate ∼ f ≤ e andf 6= e. In a factor of type III, all nonzero projections are infinite;
in a σ-finite factor, all infinite projections are equivalent. Thus, in aσ-finite type III factor
N , any two nonzero projections inN are equivalent. (Examples, constructions, and properties
of factors [von Neumann algebras with1-dimensional center] are described in detail in [5], as
are the assertions above concerning the equivalence of nonzero projections inσ-finite type III
factors.)

The spectral resolution of the identity of a Hermitian operatorh ∈ N is denoted here byph.
Thus, the spectral representation ofh is

h =

∫
R

s dph(s).

In [1], Akemann, Anderson, and Pedersen studied operator inequalities in various von Neu-
mann algebras. In so doing they introduced the following notion of spectral preorder called
“spectral dominance." Ifh, k ∈ N are Hermitian, then we say thatk spectrally dominates
h, which is denoted by the notation

h -sp k,

if, for every t ∈ R,

ph [t ,∞) - pk [t ,∞) and pk (−∞ , t] - ph (−∞ , t] .

h andk are said to be equivalent in the spectral dominance sense if,h -sp k andk -sp h.
If N is a type In factor—say,N = B(H), whereH is n-dimensional—then, for any positive

operatorsa, b ∈ N ,

(1.4) a -sp b if and only if αj ≤ βj , for every 1 ≤ j ≤ n ,

whereα1 ≥ · · · ≥ αn ≥ 0 andβ1 ≥ · · · ≥ βn ≥ 0 are the eigenvalues (with multiplicities) of
a andb in nonincreasing order. The first main result of the present paper is Theorem 1.1 below,
which shows that in type III factors the conditiona -sp b is equivalent to an operator inequality
in the form of (1.3), thereby giving a direct analogue of (1.4).
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SPECTRAL DOMINANCE AND YOUNG’ S INEQUALITY IN TYPE III FACTORS 3

Theorem 1.1. If N is aσ-finite type III factor and ifa, b ∈ N+, thena -sp b if and only if there
is a unitaryu ∈ N such thata ≤ u b u∗.

The second main result established herein is the following version of Young’s inequality,
which extends Ando’s result (Equation (1.1)) to positive operators in type III factors.

Theorem 1.2. If a andb are positive operators in type III factorN such thatb is invertible, then
there is a unitaryu, depending ona andb such that

u|ab|u∗ ≤ 1

p
ap +

1

q
bq,

for anyp, q ∈ (1,∞) that satisfy1
p

+ 1
q

= 1.

2. SPECTRAL DOMINANCE

The pupose of this section is to record some basic properties of spectral dominance in arbi-
trary von Neumann algebras and to then prove Theorem 1.1 forσ-finite type III factors. Some of
the results in this section have been already proved or outlined in [1]. However, the presentation
here simplifies or provides additional details to several of the original arguments.

Unless it is stated otherwise,N is assumed to be an arbitrary von Neumann algebra acting on
a Hilbert spaceH.

Lemma 2.1. If 0 6= h ∈ N is Hermitian,η ∈ H is a unit vector, andt ∈ R, then:

(1) ph [t , ∞) η = 0 implies that〈h η , η〉 < t;
(2) ph (−∞ , t] η = 0 implies that〈h η , η〉 > t;
(3) ph [t , ∞) η = η implies that〈h η , η〉 ≥ t;
(4) ph (−∞ , t] η = η implies that〈h η , η〉 ≤ t.

Proof. This is a standard application of the spectral theorem. �

Lemma 2.2. If h, k ∈ N are hermitian andh ≤ k, thenh -sp k.

Proof. Fix t ∈ R. We first prove thatpk(−∞, t] - ph(−∞, t]. Note that the conditionh ≤ k
implies thatpk(−∞, t]∧ ph(t,∞) = 0, for if ξ is a unit vector inpk(−∞, t](H)∩ ph(t,∞)(H),
then we would have that〈kξ, ξ〉 ≤ t < 〈hξ, ξ〉, which contradictsh ≤ k. Kaplansky’s formula
[5, Theorem 6.1.7] andpk(−∞, t] ∧ ph(t,∞) = 0 combine to yield

pk(−∞, t] = pk(−∞, t] −
(
pk(−∞, t] ∧ ph(t,∞)

)
∼

(
pk(−∞, t] ∨ ph(t,∞)

)
− ph(t,∞)

≤ 1− ph(t,∞)

= ph(−∞, t] .

Usingph[t,∞) ∧ pk(−∞, t) = 0, one concludes thatph[t,∞) - pk[t,∞) by a proof similar to
the one above. �

Theorem 2.3. Assume thata, b, u ∈ N , with a andb positive andu unitary. If a ≤ ubu∗, then
a -sp b.

Proof. By Lemma 2.2,a ≤ ubu∗ implies thata - ubu∗. However, becauseu ∈ N is unitary,
we havepb(Ω) ∼ pubu∗(Ω), for every Borel setΩ. Hence,a -sp b. �
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4 S. MAHMOUD MANJEGANI

The converse of Theorem 2.3 will be shown to hold in Theorem 2.7 under the assumption that
N is aσ-finite factor of type III. To arrive at the proof, we follow [1] and define, for Hermitians
h andk, the following real numbers:

α+ = max {λ : λ ∈ σ (h)} , α− = min {λ : λ ∈ σ (h)} ,
β+ = max {ν : ν ∈ σ (k)} , β− = min {ν : ν ∈ σ (k)} .

Lemma 2.4. If h, k ∈ N are Hermitian andh -sp k, then

(1) α+ ≤ β+ andph ({β+}) - pk ({β+}), and
(2) β− ≤ α− andpk ({α−}) - ph ({α−}).

Proof. To prove statement (1), we prove first thatα+ ≤ β+. Assume, contrary to what we wish
to prove, thatβ+ < α+. Becauseh -sp k,

ph [t , ∞) - pk [t , ∞) , ∀ t ∈ R .

In particular,ph [α+ , ∞) - pk [α+ , ∞). The assumptionβ+ < α+ implies thatpk [α+ , ∞) =
0, and so, also,

ph [α+ , ∞) = 0 .

By a similar argument,ph [r , ∞) = 0, for eachr ∈ (β+ , α+). Hence,α+ is an isolated point
of the spectrum ofh and, therefore,α+ is an eigenvalue ofh. Thus,

ph [α+ , ∞) 6= 0 ,

which is a contradiction. Therefore, it must be true thatα+ ≤ β+.
To prove thatph ({β+}) - pk ({β+}), we consider two cases. In the first case, suppose that

α+ < β+. Then

ph ({β+}) = 0 ,

which leads, trivially, toph ({β+}) - pk ({β+}). In the second case, assume thatα+ = β+.
Then

ph ({β+}) = ph [α+ , ∞) - pk [α+ , ∞) = pk ({β+}) ,

which completes the proof of statement (1).
The proof of statement (2) follows the arguments in the proof of (1), except that we use

pk (−∞ , t] - ph (−∞ , t] in place ofph [t ,∞) - pk [t ,∞). The details are, therefore,
omitted. �

If N is aσ-finite type III factor, then Lemma 2.4 has the following converse.

Lemma 2.5. LetN be aσ-finite factor of type III. If Hermitian operatorsh, k ∈ N satisfy

(1) α+ ≤ β+ andph ({β+}) - pk ({β+}), and
(2) β− ≤ α− andpk ({α−}) - ph ({α−}),

thenh -sp k.

Proof. We need to show that, for eacht ∈ R,

ph [t ,∞) - pk [t ,∞) and pk (−∞ , t] - ph (−∞ , t] .

Fix t ∈ R. BecauseN is aσ-finite type III factor, the projectionsph [t ,∞) andpk [t ,∞) will
be equivalent if they are both zero or if they are both nonzero. Thus, we shall show that if
pk[t0 ,∞) = 0, thenph[t0 ,∞) = 0. To this end, ifpk [t ,∞) = 0, thent ≥ β+ ≥ α+. If, on
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the one hand, it is the case thatt > α+, thenph [t ,∞) = 0 and we have the result. If, on the
other hand,t = α+, thent = α+ = β+ and

ph [t ,∞) = ph [α+ ,∞) = ph ({α+})
= ph ({β+}) - pk ({β+})
= pk [β+ ,∞) = pk [t ,∞) .

A similar argument proves thatpk (−∞ , t] - ph (−∞ , t]. �

A Hermitian operatorh in a von Neumann algebraN is said to be adiagonal operatorif

h =
∑

n

αn en and 1 =
∑

n

en,

where{αn} is a sequence of real numbers (not necessarily distinct) and{en} ⊂ P(N) is a
sequence of mutually orthogonal nonzero projections inN .

The following interesting and useful theorem is due to Akemann, Anderson, and Pedersen.

Theorem 2.6([1]). Let N be aσ-finite type III factor, and suppose that Hermitian operators
h, k ∈ N are diagonal operators. Ifh -sp k, then there is a unitaryu ∈ N such thath ≤ uku∗.

The proof of the characterisation of spectral dominance by an operator inequality (Theorem
1.1) is completed by the following result. The method of proof again borrows ideas from [1].

Theorem 2.7. If N is a σ-finite type III factor, anda, b ∈ N+ satisfya -sp b, then there is a
unitaryu ∈ N such thata ≤ u b u∗ .

Proof. It is enough to prove that there are diagonal operatorsh, k ∈ N such thata ≤ h, k ≤ b,
andh -sp k—because, by Theorem 2.6, there is a unitaryu ∈ N such thath ≤ uku∗, which
yieldsa ≤ ubu∗.

BecauseN is σ-finite, the point spectraσp(a) andσp(b) of a andb are countable. Letσp(b) =
{βn : n ∈ Λ}, whereΛ is a countable set. Letfn be a projection with kernel(b− βn1) and

q =
∑
n∈Λ

fn .

Then
qb = bq =

∑
n∈Λ

βnfn .

Let b1 = (1− q)b (= b(1− q)). Thus, we may write

b =
∑

n

βn fn + b1 .

By a similar argument fora, we may write

a =
∑

n

αn en + a1 ,

wherea1 andb1 have continuous spectrum.
For any Borel setΩ, we define

pb1(Ω) = (1− q)pb(Ω)(1− q) .

Thuspb1 is a spectral measure on the Borel sets ofσ(b1). For eachn ∈ Λ and Borel setΩ we
have

(2.1) fnp
b1(Ω) = pb1(Ω)fn = 0.
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6 S. MAHMOUD MANJEGANI

Let β+ andβ− denote the spectral endpoints ofb and choose infinite sequences{β+
n } and{β−n }

such thatβ+
n , β−n ∈ (β−, β+) and

β+
0 =

1

2
(β+ + β−) < β+

1 < β+
2 < · · · < β+

n → β+ ,

β−0 =
1

2
(β+ + β−) > β−1 > β−2 > · · · > β−n → β− .

Letf+
n denote the spectral projection ofb1 associated with the interval[β+

n , β+
n+1), n = 0, 1, 2, . . . ,

andf−n denote the spectral projection associated with[β−n+1, β
−
n ). Write

k =
∑

n

βnfn +
∑

n

β+
n f+

n +
∑

n

β−n+1f
−
n ,

and observe thatk is a diagonal operator. Moreover, by the choice ofβ+
n andβ−n ,∑

n

β+
n f+

n +
∑

n

β−n+1f
−
n ≤ b1 .

The construction ofk yields

σp(b) ⊆ σp(k) = {βn : n ∈ Λ} ∪ {β+
m : m ∈ Λ1} ∪ {β+

m+1 : m ∈ Λ2}
⊆ convσ(b) ,

whereΛ, Λ1 andΛ2 are countable sets and convσ(b) denotes the convex hull of the spectrum
of b. Thus,0 ≤ k ≤ b andk has the same spectral endpoints asb. Furthermore,k has an
eigenvalue at a spectral endpoint if and only ifb has an eigenvalue at that same point.

Arguing similarly for a, let α+ andα− denote the spectral endpoints ofa, and select se-
quences{α+

n } and{α−n } such thatα+
n , α−n ∈ (α−, α+) and

α+
0 =

1

2
(α+ + α−) < α+

1 < α+
2 < · · · < α+

n → α+

α−0 =
1

2
(α+ + α−) > α−1 > α−2 > · · · > α−n → α− .

Denote the spectral projection ofa1 associated with[α+
n , α+

n+1) by e+
n and, similarly,e−n for

pa1 [α−n+1, α
−
n ). Let

h =
∑

n

αnen +
∑

n

α+
n+1e

+
n +

∑
n

α−n e−n .

Note that
a1 ≤

∑
n

α+
n+1e

+
n +

∑
n

α−n e−n .

Thus,a ≤ h andh has the same spectral endpoints asa; moreover,h has an eigenvalue at an
endpoint if and only ifa has an eigenvalue at that point.

By the hypothesis,a -sp b; thus, by Lemma 2.4,

(2.2) β+ ≥ α+ and β− ≤ α− ,

and

(2.3) pa ({β+}) - pb ({β+}) and pb ({α−}) - pa ({α−}) .

Now, we use Lemma 2.5 to prove thath -sp k. Because the spectral endpoints ofh areα− and
α+, and the spectral endpoints ofk areβ− andβ+, we need only to show that

ph ({β+}) - pk ({β+}) and pk ({α−}) - ph ({α−}) .

(We already know from (2.2) thatα+ ≤ β+ andα− ≥ β−.)
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As we have pointed out in previous proofs, becauseN is aσ-finite type III factor, to prove that
ph({β+}) - pk ({β+}) it is enough to show that ifpk({β+}) = 0, thenph({β+}) = 0. Thus,
assume thatpk({β+}) = 0; then,β+ is not an eigenvalue ofk and, therefore, it is not eigenvalue
of b. Thus,pb({β+}) = 0. But pa({β+}) - pb({β+}), by (2.3), and sopa({β+}) = 0. Hence,
ph({β+}) = 0.

By a similar argument, we can provepk ({α−}) - ph ({α−}). �

Corollary 2.8 (Theorem 1.1). Let N be aσ-finite type III factor anda, b ∈ N+. Thena -sp b
if and only if there is a unitaryu ∈ N such thata ≤ u b u∗.

Proof. The sufficiency is Theorem 2.3 and the necessity is Theorem 2.7. �

3. YOUNG’ S I NEQUALITY

In this section we use properties of spectral dominance to prove the second main result. We
begin with two lemmas that are needed in the proof of Theorem 3.3. A compressed form of
Young’s inequality was established in [4], based on an idea originating with Ando [2], and was
used to prove Young’s inequality—relative to the Löwner partial order ofB(H)—for compact
operators. Although the focus of [4] was upon compact operators, the following important
lemma from [4] in fact holds in arbitrary von Neumann algebras.

Lemma 3.1. Assume thatp ∈ (1, 2]. If N is any von Neumann algebra anda, b ∈ N+, with b
invertible, then for anys ∈ R+

0 ,

sfs ≤ fs

(
p−1ap + q−1bq

)
fs and fs ∼ p|ab|( [s,∞) ) ,

wherefs = R[b−1p|ab|( [s,∞) )].

Lemma 3.2. If a andb are positive operators in a von-Neumann algebraN , then|ab| and |ba|
are equivalent in the spectral dominance sense.

Proof. It is well known that the spectral measures for|x| and|x∗| are equivalent in the Murry-
von Neumann sense, the equivalence being given by the phase part of the polar decomposition
of x. (If x = w|x| is the polar decomposition ofx, thenxx∗ = w|x|2w∗, so|x∗|2 = (w|x|w∗)2,
and therefore|x∗| = (w|x|w∗).)

In particular, fora, b ≥ 0 the two absolute value parts|ab|, |ba| are equivalent in the spectral
dominance sense. �

Theorem 3.3. If a and b are positive invertible operators in type III factorN , then there is a
unitaryu, depending ona andb such that

u|ab|u∗ ≤ 1

p
ap +

1

q
bq,

for anyp, q ∈ (1,∞) that satisfy1
p

+ 1
q

= 1.

Proof. By Theorem 2.7, it is enough to prove that

(3.1) |ab| -sp p−1ap + q−1bq.

We assume, thatp ∈ (1, 2] and thatb ∈ N+ is invertible. The assumption onp entails no loss
of generality because if inequality (3.1) holds for1 < p ≤ 2, then in cases, wherep > 2 the
conjugateq satisfiesq < 2, and so by Lemma 3.2

(3.2) |ab| -sp |ba| -sp p−1ap + q−1bq .

To prove the inequality (3.1) we need to prove that for each real numbert,

p|ab|[t , ∞) - pp−1ap + q−1bq

[t , ∞)
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8 S. MAHMOUD MANJEGANI

and
pp−1ap + q−1bq

(−∞ , t] - p|ab|(−∞ , t] .

SinceM is a type III factor, it is sufficient to prove that ifpp−1ap + q−1bq
[t , ∞) = 0 (p|ab|(−∞ , t] =

0), thenp|ab|[t , ∞) = 0 (pp−1ap + q−1bq
(−∞ , t] = 0) .

Suppose there is at0 ∈ R such thatpp−1ap + q−1bq
[t0 , ∞) = 0 andp|ab|[t0 , ∞) 6= 0. Then

by the Compression Lemma,ft0 6= 0, so there is a unit vectorη ∈ H such thatft0η = η and
pp−1ap + q−1bq

[t0 , ∞)η = 0. Thus, by Lemma 2.1 and the Compression Lemma we have that

t0 = 〈t0ft0η , η〉 ≤ 〈ft0(p
−1ap + q−1bq)ft0η , η〉 = 〈(p−1ap + q−1bq)η , η〉 < t0 ,

which is a contradiction.
Similarly, if p|ab|(−∞ , t0] = 0 andpp−1ap + q−1bq

(−∞ , t0] 6= 0 for somet0 ∈ R, then
p|ab|(t0 , ∞) = 1 andpp−1ap + q−1bq

(t0 , ∞) 6= 1.
Let η be a unit vector inH such thatpp−1ap + q−1bq

(t0 , ∞)η = 0 andp|ab|(t0 , ∞)η = η.
Again we have contradiction by Lemma 2.1 and the Compression Lemma (3.1). Thus,

|ab| -sp p−1ap + q−1bq.

By Theorem 2.7, there is a unitaryu in M such that

u |ab|u∗ ≤ p−1ap + q−1bq.

�
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