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ABSTRACT. Letp,q > 0 satisfy% +% = 1. We prove that for any positive invertible operators
a andb in o-finite type Il factors acting on Hilbert spaces, there is a unitgrglepending om
andb such that
u*lablu < lap + 1bq.
p q

Key words and phrasesOperator inequality, Young's inequality, Spectral dominance, Type lll factor.

2000Mathematics Subject Classificat/oRrimary 47A63; Secondary 46L05.

1. INTRODUCTION

Young'’s inequality asserts thatjifandq are positive real numbers for whigh* + ¢! =1,
then|\u| < p AP + ¢~ *|p|?, for all complex numbers andy, and the equality holds if and
only if [u]? = |AJP.

R. Bhatia and F. Kittaneh [3] established a matrix version of the Young inequality for the
special cas@ = ¢ = 2. T. Ando [2] proved that for any paid and B of n x n complex
matrices there is a unitary matrix, depending om and B such that

1 1
(1.1) U*|AB|U < 51A|P+513|q.

Ando’s methods were adapted recently to the case of compact operators acting on infinite-
dimensional separable Hilbert spaces by Erlijman, Farenick, and Zeng [4]. In this paper by us-
ing the concept o$pectral dominance in type Il factors, we prove a version of Young’s
inequality for positive operators in a type Il factof.
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2 S. MAHMOUD MANJEGANI

If $ is ann-dimensional Hilbert space anddfandb are positive operators acting @) then
a is said to be spectrally dominated byf

(1.2) a; < B;, foreveryl <j<n,

wherea; > --- > «,, > 0andpg; > --- > 3, > 0 are the eigenvalues afandb, respectively,

in nonincreasing order and with repeats according to geometric multiplicities. It is a simple
consequence of the Spectral Theorem and the Min-Max Variational Principle that inequalities
(1.7) are equivalent to a single operator inequality:

(1.3) a <u'bu, forsome unitary operatot : $H — §,

whereh < k, for Hermitian operatoré andk, denotesh¢, &) < (k&€ €) for all £ € $. One
would like to investigate inequalitiels (1.2) afd (1.3) for operators acting on infinite-dimensional
Hilbert spaces. Of course, as many operators on infinite-dimensional space fail to have eigen-
values, inequality{ (1]2) requires a somewhat more general formulation. This can be achieved
through the use of spectral projections.

Let B($) denote the algebra of all bounded linear operators acting on a complex Hilbert space
$, and suppose thaf C B(9) is a von Neumann algebra. The cone of positive operatahé in
and the projection lattice ifV are denoted bW+ andP(N) respectively. The notation~ f,
fore, f € P(N), shall indicate the Murray—von Neumann equivalencearfdf : e = v*v and
f = vv* for somev € N. The notationf = e denotes that there is a projectience N with
e1 < eandf ~ eq;thatis,f is subequivalent te.

Recall that a nonzero projectienc N is infinite if there exists a nonzero projectigne N
suchthaie ~ f < eandf # e. In a factor of type lll, all nonzero projections are infinite;
in a o-finite factor, all infinite projections are equivalent. Thus, ia-dinite type IIl factor
N, any two nonzero projections iN are equivalent. (Examples, constructions, and properties
of factors [von Neumann algebras witkdimensional center] are described in detailin [5], as
are the assertions above concerning the equivalence of nonzero projectiofinite type 1|
factors.)

The spectral resolution of the identity of a Hermitian operater IV is denoted here by".
Thus, the spectral representatiomas

h= /deph(s).

In [1], Akemann, Anderson, and Pedersen studied operator inequalities in various von Neu-
mann algebras. In so doing they introduced the following notion of spectral preorder called
“spectral dominance." li, k € N are Hermitian, then we say thaspectrally dominates
h, which is denoted by the notation

h Zsp K,
if, for everyt € R,
pt[t,00) 3 p[t,00) and p*(—oo,t] Z p"(—o0,1].

h andk are said to be equivalent in the spectral dominance sensedf,, £ andk 3, h.
If N is atype ), factor—say,N = B(%)), where$) is n-dimensional—then, for any positive
operators:,b € N,

(1.4) a 3 b ifandonlyif o; < 3;, foreveryl <j <n,

wherea; > --- > «,, > 0andpg; > --- > 5, > 0 are the eigenvalues (with multiplicities) of

a andb in nonincreasing order. The first main result of the present paper is Thgorem 1.1 below,
which shows that in type Il factors the conditiang, b is equivalent to an operator inequality

in the form of [1.8), thereby giving a direct analogue[of|1.4).
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Theorem 1.1.If N is ac-finite type Ill factor and its, b € N*, thena =, bif and only if there
is a unitaryu € N such thate < ubu®.

The second main result established herein is the following version of Young’s inequality,
which extends Ando’s result (Equatidn ([L.1)) to positive operators in type Il factors.

Theorem 1.2.1f a andb are positive operators in type Ill facta¥ such thab is invertible, then
there is a unitaryu, depending om andb such that

1 1
ulablu® < —a? + —b7,
D q

foranyp, g € (1, 00) that satisfy; + 1 = 1.

2. SPECTRAL DOMINANCE

The pupose of this section is to record some basic properties of spectral dominance in arbi-
trary von Neumann algebras and to then prove Theprem 1dtfiaite type 11l factors. Some of
the results in this section have been already proved or outlined in [1]. However, the presentation
here simplifies or provides additional details to several of the original arguments.

Unless it is stated otherwis#/ is assumed to be an arbitrary von Neumann algebra acting on
a Hilbert space.

Lemma 2.1.1f 0 # h € N is Hermitian,n € § is a unit vector, and € R, then:

(1) p"[t, oo)n = 0implies that(hn, n) < ¢;
(2) p" (—o0, t]n = 0 implies that(h 7, n) > t;
() p"[t, oo)n = nimplies that(hn, n) > t;
(4) p" (=0, t]n = nimplies that(hn, n) < t.

Proof. This is a standard application of the spectral theorem. O
Lemma 2.2.If h, k € N are hermitian andh < k, thenh 3, k.

Proof. Fix t € R. We first prove thap*(—oco,t] < p"(—oo,t]. Note that the conditioh < k
implies thatp*(—oo, t] A p"(t, 00) = 0, for if £ is a unit vector inp*(—oo, t]($) N p"(t, 0)($),
then we would have thdt¢, &) < t < (h¢, &), which contradicté < k. Kaplansky’s formula
[5, Theorem 6.1.7] ang(—oo, t] A p"(t, 00) = 0 combine to yield

~ (pk(—OO7t] vph(t7 OO)) - ph(tv OO)

S 1 - ph<t7 OO)

= p/'(—o00,1].

Usingp"[t, o) A p*(—o0,t) = 0, one concludes that'[t, o) 3 p*[t, co) by a proof similar to
the one above. O

Theorem 2.3. Assume that, b, u € N, with a andb positive andu unitary. If a < ubu*, then

a Zsp b.
Proof. By Lemmd 2.2a < ubu* implies thata 3 ubu*. However, because € N is unitary,
we havep®(Q) ~ pv* (Q), for every Borel sef). Hencea =, b. O
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The converse of Theoregm 2.3 will be shown to hold in Thedrein 2.7 under the assumption that
N is ao-finite factor of type Ill. To arrive at the proof, we follow![1] and define, for Hermitians
h andk, the following real numbers:
at = max{\: A€o (h)}, a” = min{\: A€o (h)
g = max{v :veo(k)}, f~ = min{v :veao(k)

}s
}

Lemma 2.4.1f h, k € N are Hermitian andh 34, k, then

(1) " < prandp" ({67}) 2 p" ({B*}), and
2) 6~ < a”andp* ({a}) 2 p" ({a}).

Proof. To prove statement (1), we prove first that < 5*. Assume, contrary to what we wish
to prove, thafi™ < o*. Becausé =3, k,
Pt 00) Zp(t, 00), ViER.

In particularp” [a™, 00) =X p*[a™, o). The assumptio™ < o' impliesthatp” [a™, o) =
0, and so, also,

plat, 00) = 0.
By a similar argumenty” [r, co) = 0, for eachr € (3%, a™). Hencen™ is an isolated point
of the spectrum of and, thereforept is an eigenvalue af. Thus,

plat, 00) # 0,

which is a contradiction. Therefore, it must be true that< 5.
To prove thap” ({3*}) 2 p* ({5*}), we consider two cases. In the first case, suppose that
at < [T. Then

P ({5} =0,

which leads, trivially, to" ({5*}) = p" ({#7}). In the second case, assume that = 3+.
Then

p"({57}) = e’ 00) X pflat, 00) = PP ({61)),
which completes the proof of statement (1).
The proof of statement (2) follows the arguments in the proof of (1), except that we use
pf(—oo,t] 2 p"(—o0,t] in place ofp” [t,c0) = pF[t,o0). The details are, therefore,
omitted. OJ

If N is ac-finite type Ill factor, then Lemmpa 2.4 has the following converse.

Lemma 2.5. Let NV be ac-finite factor of type Ill. If Hermitian operatori, k € N satisfy

(1) ot < grandp” ({6}) 2 " ({51}), and
2) 6~ < a”andp* ({a7}) 2 p" ({a7}),
thenh 3, k.

Proof. We need to show that, for eacle R,
ph[t,oo)jpk[t,()()) and pk(_ooat] jph(_ooat]

Fix t € R. BecauseV is ac-finite type Il factor, the projectiong” [t , c0) andp* [t oo) will
be equivalent if they are both zero or if they are both nonzero. Thus, we shall show that if
pF[to, 00) = 0, thenp”[ty, 00) = 0. To this end, ifp* [t,00) = 0, thent > g+ > a*. If, on
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the one hand, it is the case that o™, thenp” [t ,00) = 0 and we have the result. If, on the
other handt = o™, thent = o™ = T and
p'[t,00) =p" o™, 00) = p" ({a™})
=p"({67)) 2P {8
=p"[67,00) = p*t, 00).
A similar argument proves that (—oco ,¢] = p" (—o0, 1]. O

A Hermitian operatof. in a von Neumann algebrd is said to be aliagonal operatoiif

h:Zanen and 1 :Zen,

n

where{«,} is a sequence of real numbers (not necessarily distinct{and C P(N) is a
sequence of mutually orthogonal nonzero projection¥in
The following interesting and useful theorem is due to Akemann, Anderson, and Pedersen.

Theorem 2.6([1]). Let N be ao-finite type Il factor, and suppose that Hermitian operators
h,k € N are diagonal operators. Ik =, k, then there is a unitary € N such thath < uku*.

~Y

The proof of the characterisation of spectral dominance by an operator inequality (Theorem
[1.1) is completed by the following result. The method of proof again borrows ideas/from [1].

Theorem 2.7.1f N is ao-finite type Ill factor, andi, b € N satisfya =, b, then there is a
unitaryu € N such thate < ubu*.

Proof. It is enough to prove that there are diagonal operaiokse N such that: < h, k < b,
andh 3, k—because, by Theorem 2.6, there is a unitary N such thath < wku*, which
yieldsa < ubu*.

BecauséV is o-finite, the point spectra,(a) ando,(b) of e andb are countable. Let,(b) =
{B, : n € A}, whereA is a countable set. Left, be a projection with kernéb — 3,1) and

neA
Then
gb =bg =Y Bufa-

neA

Letb; = (1 —¢)b (=b(1 — ¢)). Thus, we may write
b= Bufoth.

By a similar argument foti, we may write
a = Z Qp €+ ay,
n

wherea; andb; have continuous spectrum.
For any Borel sef2, we define

P = (1—g)p" (D1 —q).

Thusp” is a spectral measure on the Borel sets@f). For eachn € A and Borel sef) we
have

(2.1) fap™ () = P () fn = 0.
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Let 5+ and/3~ denote the spectral endpointshaind choose infinite sequencg$ } and{5, }
suchthatt, 3. € (5~,4") and

S = 35T+ BT) < BE < B < < 57— B

Sy = 557+ 5) > B> B > > Gy B

Let /7 denote the spectral projectiongfassociated with the interved,", 57, ), n = 0,1,2, ...,
and f, denote the spectral projection associated \Wifh ,, 5, ). Write

k= Bufu+ > BTf5 + ) Bunifu s
and observe thdt is a diagonal operator. Moreover, by the choicgpfands;,
SN BEEE Y Boafs < bi
The construction ok yields ’ ’
0p(0) C op(k) = {8 : nE A} U (B, : me A} U {Bh,, - me Ay}

C convo(b),

whereA, A; andA, are countable sets and conib) denotes the convex hull of the spectrum
of b. Thus,0 < k£ < b andk has the same spectral endpointshag-urthermoref has an
eigenvalue at a spectral endpoint if and only ifas an eigenvalue at that same point.

Arguing similarly fora, let o™ anda~ denote the spectral endpoints @fand select se-
quenceda;} and{«;,, } such thaty, o, € (o=, a™) and

n)»-n
1
a325(0ﬁ+of)<ozf<oz§r<-~<a,f—>oz+
N S _ _ _ _ _
040:5(04 +a7)>a] >a; > > —al.

Denote the spectral projection of associated witho;', ot |) by e and, similarly,e, for

" [051:+17O‘_)' Let
h = Zanen + Za:{He:{ + Za;e;.

n
o <) araer + Y e,
n n

Thus,a < h andh has the same spectral endpointsiamoreover,h has an eigenvalue at an
endpoint if and only itz has an eigenvalue at that point.
By the hypothesis; =, b; thus, by Lemma 24,

Note that

(2.2) BT >at and B~ < a7,
and
(2.3) p* ({8} 2" ({6*}) and p"({a™}) 2 p*({a7}).

Now, we use Lemm@.s to prove thats,, k. Because the spectral endpoints:airea™ and
o, and the spectral endpointsiofire 3~ and3*, we need only to show that

"B 2B and pf({e}) 3P ({a}).
(We already know fronf (2]2) that" < 3+ anda~ > 57.)
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As we have pointed out in previous proofs, becadigs ac-finite type Il factor, to prove that
p"({B+}) 2 p* ({BT}) itis enough to show that if*({37}) = 0, thenp"({3T}) = 0. Thus,
assume that*({3*}) = 0; then,3" is not an eigenvalue df and, therefore, it is not eigenvalue
of b. Thus,p*({#+}) = 0. Butp*({8*}) 3 p*({B8*}), by (2.3), and s@*({3*}) = 0. Hence,

h(fR+1) —
p"({B*}) = 0.

By a similar argument, we can proyé ({a~}) =X p" ({a™}). O
Corollary 2.8 (Theorenj 1.]1) Let N be ac-finite type Il factor andz,b € N*. Thena 3, b
if and only if there is a unitary: € N such thatu < ubu*.

Proof. The sufficiency is Theorefn 2.3 and the necessity is Theprem 2.7. O

3. YOUNG' S INEQUALITY

In this section we use properties of spectral dominance to prove the second main result. We
begin with two lemmas that are needed in the proof of Thegremn 3.3. A compressed form of
Young's inequality was established i [4], based on an idea originating with Ando [2], and was
used to prove Young's inequality—relative to the Lowner partial ordds(@)—for compact
operators. Although the focus afl[4] was upon compact operators, the following important
lemma from [[4] in fact holds in arbitrary von Neumann algebras.

Lemma 3.1. Assume thap € (1,2]. If N is any von Neumann algebra andb € N, with b
invertible, then for any € R,

sfo < fo(p'a” + ¢7'0) £ and fo ~pl([s,00))
wheref, = R[b~"pl*"l( [s, 00) )].
Lemma 3.2. If a andb are positive operators in a von-Neumann algebfathen|ab| and |ba|
are equivalent in the spectral dominance sense.

Proof. It is well known that the spectral measures fefand|z*| are equivalent in the Murry-
von Neumann sense, the equivalence being given by the phase part of the polar decomposition
of z. (If z = wlz| is the polar decomposition af, thenzz* = w|x|*w*, so|z*|* = (w|x|w*)?,
and thereforéz*| = (w|z|w*).)

In particular, fora, b > 0 the two absolute value parigh|, |ba| are equivalent in the spectral
dominance sense. O

Theorem 3.3.1f « and b are positive invertible operators in type Ill factdy, then there is a
unitary v, depending om andb such that

1 1
ulablu® < —aP 4+ —b,
p q

foranyp, ¢ € (1,00) that satisfyl + 1 = 1.
Proof. By Theorenj 2.7, it is enough to prove that
(3.1) labl Zop p~la? + ¢ 07

We assume, that € (1,2] and thath € N is invertible. The assumption gnentails no loss
of generality because if inequality (8.1) holds fox p < 2, then in cases, whepe > 2 the
conjugatey satisfies; < 2, and so by Lemmja 3.2

(3.2) ab| Zsp [ba] Zep p_lap + q_lbq .
To prove the inequality (3]1) we need to prove that for each real number
P, o0) 3Tt o0)
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and
Pt (oo, ] 3 plM(—o00, 1],
SincelM is a type Il factor, itis sufficient to prove thatif '@ +¢ [t o0) = 0 (pl*¥l(—oc , ] =
0), thenpll[t | co) = 0 (p? @+ ¥ (—c0, t] = 0).
Suppose there ista € R such thap? " +7 [ty co) = 0 andp!™[ty, co) # 0. Then
by the Compression Lemmg,, # 0, so there is a unit vector € $ such thatf,,n = n and
pp Y [ so)y = 0. Thus, by Lemml and the Compression Lemma we have that

to = (tofwn 1) < (fup™'a” + ¢7'0") fin, m) = ((p™"a” + ¢"'%)n, n) < to,
which is a contradiction.
Similarly, if pl*l(—oo, tg] = 0andpr @ +4 " (—oo, tg] # 0 for somet, € R, then
pll(ty, 00) = 1 andpp71“p+q71bq(t0, o0) 1;& 1. 1
Let , be a unit vector i such thap? 7 (¢, co)n = 0 andpl®l(ty, o)y = 7.
Again we have contradiction by Lemrpa.1 and the Compression Lemna (3.1). Thus,

|abl Zsp pla’ + ¢ b
By Theoren 2.J7, there is a unitawyin A/ such that
ulablu* < p~ta? + ¢ b

REFERENCES

[1] C.A. AKEMANN, J. ANDERSONAND G.K. PEDERSEN, Triangle inequalities in operators alge-
bras,Linear Multilinear Algebra,11(1982), 167-178.

[2] T. ANDO, Matrix Young inequalitiesQper. Theory Adv. Appl75 (1995), 33—-38.

[3] R. BHATIA AND F. KITTANEH, On the singular values of a product of operat@g\M J. Matrix
Anal. Appl.,11(1990), 272-277.

[4] J. ERLIJMAN, D.R. FARENICKAND R. ZENG, Young's inequality in compact operato@yer.
Theory Adv. Appl.130(2001), 171-184.

[5] R.V. KADISON AND J.R. RINGROSEFundamentals of the Theory of Operator Algehrésiume
II, Academic Press, New York, 1986.

J. Inequal. Pure and Appl. Math?(3) Art. 82, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. Spectral Dominance
	3. Young's Inequality
	References

