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Abstract

Let p, q > 0 satisfy % + % = 1. We prove that for any positive invertible operators
a and b in o-finite type Il factors acting on Hilbert spaces, there is a unitary u,
depending on « and b such that

. 1 1
u*lablu < —a” + -0
p q
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Young's inequality asserts that jpfandq are positive real numbers for which
pt+qt =1, then|\u| < p AP + ¢t ul?, for all complex numbera and
i, and the equality holds if and only fifi|? = |\[?.

R. Bhatia and F. Kittaneh’] established a matrix version of the Young in-
equality for the special cage= ¢ = 2. T. Ando [?] proved that for any pair
and B of n x n complex matrices there is a unitary matéix depending om
and B such that

1 1 Spectral Dom?na_nce and

(1-1) U*|AB|U S 5|A‘P + E|B‘q- Young’s Ineg:;l(l)t?/sm Type 1l
Ando’s methods were adapted recently to the case of compact operators act-  S- Mahmoud Manjegani
ing on infinite-dimensional separable Hilbert spaces by Erlijman, Farenick, and
Zeng [/]. In this paper by using the concept gfpectral dominance in Title Page
type Il factors, we prove a version of Young’s inequality for positive operators
in a type Il factorNV.

If $is ann-dimensional Hilbert space anddfandb are positive operators <« >
acting on$, thena is said to be spectrally dominated byf

Contents

< >
1.2 a; < @;, foreveryl < j<n,
(1.2) i <5 yi=j= Go Back
wherea; > -+ > «, > 0andp;, > --- > (3, > 0 are the eigenvalues -
of a andb, respectively, in nonincreasing order and with repeats according to ose
geometric multiplicities. It is a simple consequence of the Spectral Theorem Quit
a_nd the Min-Ma_x Variat_ional Principle that inequalitids?) are equivalent to a Page 3 of 19
single operator inequality:
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whereh < k, for Hermitian operatorg andk, denotegh¢, &) < (k&, ) for all
¢ € $H. One would like to investigate inequalities.?) and (L.3) for operators
acting on infinite-dimensional Hilbert spaces. Of course, as many operators on
infinite-dimensional space fail to have eigenvalues, inequality) fequires a
somewhat more general formulation. This can be achieved through the use of
spectral projections.

Let 5($)) denote the algebra of all bounded linear operators acting on a com-
plex Hilbert space), and suppose thal C B($) is a von Neumann algebra.

The cone of positive operators ivi and the projection lattice iV are denoted Spectral Dominance and
by Nt andP(N) respectively. The notation~ f, fore, f € P(N), shall in- el fnege 1 n gfpe 1
dicate the Murray—von Neumann equivalence ahdf : e = v*v andf = vv*
for somev € N. The notationf =< e denotes that there is a projectione N S- Mahmoud Manjegani
withe; < eandf ~ eq;thatis,f is subequivalent te.

Recall that a nonzero projectienc N is infinite if there exists a nonzero Title Page

projectionf € N suchthat ~ f < eandf # e. In afactor of type Ill, all

L e . . e o Contents
nonzero projections are infinite; inaafinite factor, all infinite projections are
equivalent. Thus, in a-finite type Il factor V, any two nonzero projections 44 >
in N are equivalent. (Examples, constructions, and properties of factors [von < >
Neumann algebras with-dimensional center] are described in detail’ih ps
are the assertions above concerning the equivalence of nonzero projections in Go Back
o-finite type Il factors.) Elesa

The spectral resolution of the identity of a Hermitian operdtoe N is .
denoted here by". Thus, the spectral representatiomads Quit
Page 4 of 19
h = / sdp(s).
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In [1], Akemann, Anderson, and Pedersen studied operator inequalities in
various von Neumann algebras. In so doing they introduced the following no-
tion of spectral preorder called “spectral dominance/i,lk € N are Hermi-
tian, then we say thdt spectrally dominates h, which is denoted by
the notation

h Sk,

if, for everyt € R,

ph[t7oo)§pk[t7oo> and pk(—OO7ﬂjph(—OO7t]

h andk are said to be equivalent in the spectral dominance senkeff,, %
andk =, h.

If N is atype ), factor—say,N = B($)), where$) is n-dimensional—then,
for any positive operators, b € N,

(1.4) a3

S b ifandonlyif o; < 3;, foreveryl <j <n,

wherea; > -+ > «a,, > 0andg; > --- > (3, > 0 are the eigenvalues (with
multiplicities) of « andb in nonincreasing order. The first main result of the
present paper is Theoreinl below, which shows that in type Il factors the
conditiona 3, b is equivalent to an operator inequality in the form df3),
thereby giving a direct analogue df.{).

Theorem 1.1.1f N is ac-finite type Ill factor and ifu, b € N, thena =, b if
and only if there is a unitary, € N such thate < ubu*.

The second main result established herein is the following version of Young's
inequality, which extends Ando’s result (Equatidnl)) to positive operators in
type Il factors.
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Theorem 1.2.1f « andb are positive operators in type Il facta¥ such that
is invertible, then there is a unitary, depending o andb such that

1 1
ulablu® < —a? + =19,
p q

for anyp, ¢ € (1, 00) that satisfy, + ¢ = 1.
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The pupose of this section is to record some basic properties of spectral dom-
inance in arbitrary von Neumann algebras and to then prove Thebrefar
o-finite type Il factors. Some of the results in this section have been already
proved or outlined in]]. However, the presentation here simplifies or provides
additional details to several of the original arguments.

Unless it is stated otherwis@] is assumed to be an arbitrary von Neumann
algebra acting on a Hilbert spage

Spectral Dominance and

. . . . Young's Inequality in Type llI
Lemma 2.1.1f 0 # h € N is Hermitian,n € $ is a unit vector, and € R, ’ Eacto?/s yP

then: o
S. Mahmoud Manjegani

1. p"[t, co)n = Oimplies that(hn, n) < t;

2. p" (—oo, t]n = 0 implies that(hn, n) > t; Title Page
) . Contents
3. p"[t, 0o)n = nimplies that(hn, n) > t;
N 44 44
4. ph (—o0, t|n = nimplies that(hn, n) < t.
< >
Proof. This is a standard application of the spectral theorem. O
Go Back
Lemma 2.2.If h, k € N are hermitian anch < k, thenh 3, k. al
ose
Proof. Fix t € R. We first prove thap*(—oo,t] 2 p"(—oco,t]. Note that the Quit
condition» < k implies thatp*(—oo,t] A p"(t,00) = 0, for if ¢ is a unit
Page 7 of 19

vector inp*(—oo, t](H) N p"(t, 00)($), then we would have thdt<, &) < t <
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(h&, &), which contradicts < k. Kaplansky’s formula’j, Theorem 6.1.7] and
p*(—o0,t] A p(t,00) = 0 combine to yield
pk(—oo,t} = pk(—oo,t] - (pk(—oo,t] /\ph(t’ OO))
~ (pk(—OO,t] vph(t7 OO)) - ph(t> OO)
S 1-— ph(ta OO)
= ph(—oo,t} :

Usingp”[t, c0) A pF(—oo,t) = 0, one concludes that'[t, oo) = p*[t, o0) by a
proof similar to the one above. O

Theorem 2.3. Assume that, b, w € N, with a andb positive andu unitary. If
a < ubu*, thena 3, b.

Proof. By LemmaZ2.2, a < ubu* implies thate = ubu*. However, because
u € N is unitary, we have’(Q) ~ p“* (), for every Borel sef2. Hence,
a Zsp b. O

The converse of Theore3 will be shown to hold in Theoreri.7 under
the assumption thaV is ac-finite factor of type Ill. To arrive at the proof, we
follow [ 1] and define, for Hermitiang andk, the following real numbers:

at = max{\ : A€o (h)}, a” = min{\:A€o(h)},
pt = max{v:veo(k)}, - = min{v:veo(k)}.

Lemma 2.4.1If h, k € N are Hermitian andh 3, k, then

1ot < gtandp” ({#7}) 3 p*({5*}), and
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2.4~ < a andp”({a7}) 2 p"({a }).

Proof. To prove statement (1), we prove first that < 5*. Assume, contrary
to what we wish to prove, that" < o*. Becausér 3, k,

pit, 00) ZpFft, 00), VEER.

In particular,p™ [a*, 0c0) =X p*[a’, 0o). The assumptio™ < aT implies
thatp” [a*, co) = 0, and so, also,

at,00) = 0.

By a similar argument)” [r, co) = 0, for eachr € (5, at). Hencea™ is
an isolated point of the spectrum bfand, thereforeq™ is an eigenvalue of.
Thus,

p'lat, 00) # 0,

which is a contradiction. Therefore, it must be true that< 5.
To prove thap” ({3*}) 3 p* ({8'}), we consider two cases. In the first
case, suppose that” < 3*. Then

p({B}) =0,

which leads, trivially, top" ({3*}) < p* ({8#%}). In the second case, assume
thata™ = *. Then

P {5} = p"a", 00) 3 plaT, 00) = PN ({BTY),

which completes the proof of statement (1).
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The proof of statement (2) follows the arguments in the proof of (1), except
that we use"® (—cc, t] = p" (-0, t]in place ofp" [t,00) =X p*[t, ). The
details are, therefore, omitted. O

If N is ao-finite type Il factor, then Lemma.4 has the following converse.

Lemma 2.5. Let N be ac-finite factor of type Ill. If Hermitian operators, i €
N satisfy

1. ot < gtandp” ({5} =
2.7 < a andp® ({a }) 32
thenh =, k.

“({#*}), and
"({a7}),

Proof. We need to show that, for eacle R,
ph[t7oo)jpk[tvoo) and pk(—OO,t];jph(—OO,t]

Fixt € R. BecauseV is ac-finite type Il factor, the projectiong” [t , o) and

p" [t,c0) will be equivalent if they are both zero or if they are both nonzero.
Thus, we shall show that jf*[t, , 00) = 0, thenp[ty,00) = 0. To this end,

if p¥[t,00) = 0, thent > g+ > a*. If, on the one hand, it is the case that
t > at, thenp”[t,00) = 0 and we have the result. If, on the other hand,
t = o', thent = o™ = 3" and

't 00) =p" o, 00) = p" ({a™})
=p" ({87} 3P {8
=p"[B7,00) = p*[t,00).

A similar argument proves that (—oco ,¢] = p" (—o0, 1. O
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A Hermitian operatof in a von Neumann algebrs is said to be aiagonal

operatorif
h = Zanen and 1= Zen,

where{a,} is a sequence of real numbers (not necessarily distinctj@idc
P(N) is a sequence of mutually orthogonal nonzero projections.in

The following interesting and useful theorem is due to Akemann, Anderson,
and Pedersen.

Spectral Dominance and

Theorem 2.6 ([.]). Let N be ao-finite type Il factor, and suppose that Her- Young's Inequality in Type I
mitian operatorsh, k € N are diagonal operators. Ik 3, k, then there is a Factors
unitaryu € N such thath < uku*.

S. Mahmoud Manjegani

The proof of the characterisation of spectral dominance by an operator in-
equality (Theoremnl..l) is completed by the following result. The method of

; _ Title Page
proof again borrows ideas from]f
) o ] Contents
Theorem 2.7.1f N is ao-finite type Ill factor, anci, b € N* satisfya =3, b,
then there is a unitary, € N such thata < ubu*. 4« 44
< >

Proof. Itis enough to prove that there are diagonal operatoksc N such that
a < h,k <b,andh 3, k—because, by Theorem6, there is a unitary. € N Go Back
such that, < uku*, which yieldsa < ubu*.

BecauseV is o-finite, the point spectra, (a) ando,(b) of « andb are count- Close
able. Leto,(b) = {f#, : n € A}, whereA is a countable set. Lef, be a Quit
projection with kerne(b — 3,1) and Page 11 of 19
q - TLGX/:\ fn ) J. Ineq. Pure and Appl. Math. 7(3) Art. 82, 2006
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Then
gb =bg =Y Bufa

neA
Letb; = (1 —q)b (= b(1 —q)). Thus, we may write

By a similar argument fos, we may write
a = Z Oy €y + aq ,
n

wherea; andb; have continuous spectrum.
For any Borel sef2, we define

P () = (1—g)p"((1—q).

Thusp” is a spectral measure on the Borel setg@f). For eachn € A and
Borel set? we have

(2.1) Fa"(Q) = P () fn = 0.

Let 5t and3~ denote the spectral endpointsiand choose infinite sequences
{61} and{g,} such that3, 5, € (3, 5") and

G = (BT 4 67) < BE < G5 <o < BT - BT

Spectral Dominance and
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Bi = 387+ 57) > B0 > B > > Gy = B

Let f,;" denote the spectral projectioniafassociated with the intervat!, 5,7, ),
n=0,1,2,...,andf, denote the spectral projection associated With ,, 5, ).

Write
k= Bafu+ D Bifi + > Buikn
and observe that is a diagonal operator. Moreover, by the choicedpfand

D OBTEE Y Braky < b

n

n !

The construction of yields

op(b) Cop(k) ={B, : ne A} U{B, :me A} U{BL, : meA}
C convo(b),

whereA, A; andA, are countable sets and canih) denotes the convex hull of
the spectrum 0b. Thus,0 < k < b andk has the same spectral endpoint$.as
Furthermoref has an eigenvalue at a spectral endpoint if and oniyhids an
eigenvalue at that same point.
Arguing similarly fora, let o™ anda~ denote the spectral endpoints @f
and select sequencés;'} and{«;, } such thaty,", o, € (™, a™) and
1

aarzﬁ(a++a_)<af<a;<---<04:[—>a

+

1
ozg:é(a++oz_)>oz1_>a2_>--->a; —
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Denote the spectral projection @f associated witfn;, o', ) by e; and, sim-
ilarly, e, for p™ [, 4, v, ). Let

h:Zanen + Za;ﬁrle:{ + Za;e;.
Note that
ay < Zaiﬂe:{ + Za;e;.

Thus,a < h andh has the same spectral endpointszasnoreover,h has an
eigenvalue at an endpoint if and onlyuihas an eigenvalue at that point.
By the hypothesisy 3, b; thus, by Lemma&.4,

(2.2) BT >at and B~ < a7,
and
(2.3) " ({8 2B} and p"({a™}) S p*({a7}).

Now, we use Lemma.5to prove that: 3, k. Because the spectral endpoints
of h area™ anda™, and the spectral endpoints bfare 5~ and 5", we need
only to show that

PPAATH Z0°{ATY) and pf({a}) 0" ({a7}).

(We already know from4.2) thata™ < 5 anda™ > (57.)
As we have pointed out in previous proofs, becabsés a o-finite type
Il factor, to prove thatp"({3*}) = p*({B*}) it is enough to show that if
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P*({p+}) = 0, thenp"({B+}) = 0. Thus, assume that'({3*}) = 0; then,
5% is not an eigenvalue of and, therefore, it is not eigenvalue &f Thus,
p’({8*}) = 0. Butp*({#*}) 3 p"({B*}), by 2.9, and sop*({5*}) = 0.
Hencep"({3*}) = 0.

By a similar argument, we can proyé ({a~}) = p"* ({a7}). O

Corollary 2.8 (Theorem 1.1). Let N be ac-finite type lll factor and:, b € N ™.
Thena 3, bif and only if there is a unitary. € N such thats < ubu’.

Proof. The sufficiency is Theorer.3and the necessity is Theorehy. O Spectral Dominance and
Young’s Inequality in Type Ill

Factors
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In this section we use properties of spectral dominance to prove the second main
result. We begin with two lemmas that are needed in the proof of Thedrém

A compressed form of Young'’s inequality was established/Jnjased on an

idea originating with Ando 7], and was used to prove Young’s inequality—
relative to the Lowner partial order &f($))—for compact operators. Although

the focus of {] was upon compact operators, the following important lemma
from [4] in fact holds in arbitrary von Neumann algebras.

Spectral Dominance and

. Y 'S | lity in T Il
Lemma 3.1. Assume thap € (1,2]. If N is any von Neumann algebra and g e s T

a,b € N*, with b invertible, then for any € R,

S. Mahmoud Manjegani

sfs < fo(p™'a® + ¢ '07) f, and  f, ~ pl™l([s,00)) ,

Title Page
wheref, = R[b~"'p'([s, 00) )].
Contents
Lemma 3.2. If a and b are positive operators in a von-Neumann algelva =
then|ab| and |ba| are equivalent in the spectral dominance sense. .
: : < 4
Proof. It is well known that the spectral measures figrand|x*| are equivalent
in the Murry-von Neumann sense, the equivalence being given by the phase part Go Back
of the polar decomposition af. (If z = w|z| is the polar decomposition of, Close
thenzz* = w|z|*w*, so|z*|* = (w|z|w*)?, and thereforér*| = (w|x|w*).) _
In particular, fora, b > 0 the two absolute value parisb|, [ba| are equiva- Quit
lent in the spectral dominance sense. ] Page 16 of 19
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Theorem 3.3.If « andb are positive invertible operators in type 1l factay,
then there is a unitary, depending om andb such that

ulablu® < 1ap + 1bq,
p q
for anyp, ¢ € (1, 00) that satisfy: + ¢ = 1.
Proof. By Theorem?2.7, it is enough to prove that
(3.1) lab| Zop p'a” + 7107

We assume, that € (1,2] and thath € Nt is invertible. The assumption on
p entails no loss of generality because if inequaliyl) holds forl < p < 2,
then in cases, whene > 2 the conjugate satisfies; < 2, and so by Lemma
3.2

(3.2) lab| Zsp [ba| Zsp p~la? + g B .
To prove the inequality3.1) we need to prove that for each real number
Pt 00) 3 p7 Tt 00)

and
—1.p —11q
pp el (—OO, t] r\_<.1 p\ab|(_oo’ t]

SincelM is a type Il factor, it is sufficient to prove thatjf «"+9 [t o0) =
0(pl**l(—o00, 1] = 0), thenpl™/[t, co) = 0(pr "+ " (—o0,1] = 0).
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Suppose there istg € R such thap? @ +47 ¥ [t, 00) = 0 andp!®l[ty, co) #
0. Then by the Compression Lemm#&, # 0, so there is a unit vectoy € §
such thatf,,n = n andp? " +9 ¥ [ty co)n = 0. Thus, by Lemm&.1and the
Compression Lemma we have that

to = (tofrmsm) < (fro(p™ '@ + 70 from,m) = ((p~'a” + ¢~ b)), ) < to,

which is a contradiction.

Similarly, if pl*l(—co, to] = 0 andp? ' *+7 " (—o0, 5] # 0 for somet, €
R, thenpl®!(ty, 00) = 1 andp?™ "+ (1), 00) # 1.

Let  be a unit vector in§) such thatp? *"*¢ ' (¢y,00)np = 0 and
pl®®l(ty, 00)n = n. Again we have contradiction by Lemn2al and the Com-
pression Lemma3(1). Thus,

|abl Sep p_lap + q_lbq-
By Theorem?2.7, there is a unitary. in M such that

ulablu* < p~taf +q 'bY.
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