A VARIANT OF JESSEN'S INEQUALITY OF MERCER'S TYPE FOR SUPERQUADRATIC FUNCTIONS

S. ABRAMOVICH, J. BARIĆ, AND J. PEČARIĆ
Department of Mathematics
University of Haifa
Haifa, 31905, IsRaEl
abramos@math.haifa.ac.il
Fac. of Electrical Engineering, Mechanical Engineering and Naval Architecture
University of Split, Rudjera Boškovića bb
21000 Split, Croatia
jbaric@fesb.hr
Faculty of Textile Technology
University of Zagreb
Pierottijeva 6, 10000 Zagreb
Croatia
pecaric@hazu.hr

Received 14 December, 2007; accepted 03 April, 2008
Communicated by I. Gavrea

Abstract. A variant of Jessen's inequality for superquadratic functions is proved. This is a refinement of a variant of Jessen's inequality of Mercer's type for convex functions. The result is used to refine some comparison inequalities of Mercer's type between functional power means and between functional quasi-arithmetic means.

Key words and phrases: Isotonic linear functionals, Jessen's inequality, Superquadratic functions, Functional quasi-arithmetic and power means of Mercer's type.

2000 Mathematics Subject Classification 26D15, 39B62.

1. Introduction

Let E be a nonempty set and L be a linear class of real valued functions $f: E \rightarrow \mathbb{R}$ having the properties:
$L 1: f, g \in L \Rightarrow(\alpha f+\beta g) \in L$ for all $\alpha, \beta \in \mathbb{R}$;
$L 2: 1 \in L$, i.e., if $f(t)=1$ for $t \in E$, then $f \in L$.
An isotonic linear functional is a functional $A: L \rightarrow \mathbb{R}$ having the properties:
$A 1: A(\alpha f+\beta g)=\alpha A(f)+\beta A(g)$ for $f, g \in L, \alpha, \beta \in \mathbb{R}$ (A is linear);
$A 2: f \in L, f(t) \geq 0$ on $E \Rightarrow A(f) \geq 0$ (A is isotonic).
The following result is Jessen's generalization of the well known Jensen's inequality for convex functions [10] (see also [12, p. 47]):

Theorem A. Let L satisfy properties L1, L2 on a nonempty set E, and let φ be a continuous convex function on an interval $I \subset \mathbb{R}$. If A is an isotonic linear functional on L with $A(1)=1$, then for all $g \in L$ such that $\varphi(g) \in L$, we have $A(g) \in I$ and

$$
\varphi(A(g)) \leq A(\varphi(g))
$$

Similar to Jensen's inequality, Jessen's inequality has a converse [7] (see also [12, p. 98]):
Theorem B. Let L satisfy properties L1, L2 on a nonempty set E, and let φ be a convex function on an interval $I=[m, M],-\infty<m<M<\infty$. If A is an isotonic linear functional on L with $A(1)=1$, then for all $g \in L$ such that $\varphi(g) \in L$ so that $m \leq g(t) \leq M$ for all $t \in E$, we have

$$
A(\varphi(g)) \leq \frac{M-A(g)}{M-m} \cdot \varphi(m)+\frac{A(g)-m}{M-m} \cdot \varphi(M)
$$

Inspired by I.Gavrea's [9] result, which is a generalization of Mercer's variant of Jensen's inequality [11], recently, W.S. Cheung, A. Matković and J. Pečarić, [8] gave the following extension on a linear class L satisfying properties $L 1, L 2$.
Theorem C. Let L satisfy properties L1, L2 on a nonempty set E, and let φ be a continuous convex function on an interval $I=[m, M],-\infty<m<M<\infty$. If A is an isotonic linear functional on L with $A(1)=1$, then for all $g \in L$ such that $\varphi(g), \varphi(m+M-g) \in L$ so that $m \leq g(t) \leq M$ for all $t \in E$, we have the following variant of Jessen's inequality

$$
\begin{equation*}
\varphi(m+M-A(g)) \leq \varphi(m)+\varphi(M)-A(\varphi(g)) \tag{1.1}
\end{equation*}
$$

In fact, to be more specific we have the following series of inequalities

$$
\begin{align*}
\varphi(m+M & -A(g)) \\
& \leq A(\varphi(m+M-g)) \\
& \leq \frac{M-A(g)}{M-m} \cdot \varphi(M)+\frac{A(g)-m}{M-m} \cdot \varphi(m) \tag{1.2}\\
& \leq \varphi(m)+\varphi(M)-A(\varphi(g)) .
\end{align*}
$$

If the function φ is concave, inequalities (1.1) and (1.2) are reversed.
In this paper we give an analogous result for superquadratic function (see also different analogous results in [6]). We start with the following definition.

Definition A ([1, Definition 2.1]). A function $\varphi:[0, \infty) \rightarrow \mathbb{R}$ is superquadratic provided that for all $x \geq 0$ there exists a constant $C(x) \in \mathbb{R}$ such that

$$
\begin{equation*}
\varphi(y)-\varphi(x)-\varphi(|y-x|) \geq C(x)(y-x) \tag{1.3}
\end{equation*}
$$

for all $y \geq 0$. We say that f is subquadratic if $-f$ is a superquadratic function.
For example, the function $\varphi(x)=x^{p}$ is superquadratic for $p \geq 2$ and subquadratic for $p \in(0,2]$.
Theorem D ([1, Theorem 2.3]). The inequality

$$
f\left(\int g d \mu\right) \leq \int\left(f(g(s))-f\left(\left|g(s)-\int g d \mu\right|\right)\right) d \mu(s)
$$

holds for all probability measures μ and all non-negative μ-integrable functions g, if and only if f is superquadratic.

The following discrete version that follows from the above theorem is also used in the sequel.

Lemma A. Suppose that f is superquadratic. Let $x_{r} \geq 0,1 \leq r \leq n$ and let $\bar{x}=\sum_{r=1}^{n} \lambda_{r} x_{r}$ where $\lambda_{r} \geq 0$ and $\sum_{r=1}^{n} \lambda_{r}=1$. Then

$$
\sum_{r=1}^{n} \lambda_{r} f\left(x_{r}\right) \geq f(\bar{x})+\sum_{r=1}^{n} \lambda_{r} f\left(\left|x_{r}-\bar{x}\right|\right)
$$

In [3] and [4] the following converse of Jensen's inequality for superquadratic functions was proved.

Theorem E. Let (Ω, A, μ) be a measurable space with $0<\mu(r)<\infty$ and let $f:[0, \infty) \rightarrow \mathbb{R}$ be a superquadratic function. If $g: \Omega \rightarrow[m, M] \leq[0, \infty)$ is such that $g, f \circ g \in L_{1}(\mu)$, then we have

$$
\begin{aligned}
& \frac{1}{\mu(\Omega)} \int_{\Omega} f(g) d \mu \leq \frac{M-\bar{g}}{M-m} f(m)+\frac{\bar{g}-m}{M-m} f(M) \\
& \quad-\frac{1}{\mu(\Omega)} \frac{1}{M-m} \int_{\Omega}((M-g) f(g-m)+(g-m) f(M-g)) d \mu,
\end{aligned}
$$

for $\bar{g}=\frac{1}{\mu(\Omega)} \int_{\Omega} g d \mu$.
The discrete version of this theorem is:
Theorem F. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a superquadratic function. Let $\left(x_{1}, \ldots, x_{n}\right)$ be an $n-$ tuple in $[m, M]^{n}(0 \leq m<M<\infty)$, and $\left(p_{1}, \ldots, p_{n}\right)$ be a non-negative $n-t u p l e$ such that $P_{n}=$ $\sum_{i=1}^{n} p_{i}>0$. Denote $\bar{x}=\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}$, then

$$
\begin{aligned}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \leq & \frac{M-\bar{x}}{M-m} f(m)+\frac{\bar{x}-m}{M-m} f(M) \\
& \quad \frac{1}{P_{n}(M-m)} \sum_{i=1}^{n} p_{i}\left[\left(M-x_{i}\right) f\left(x_{i}-m\right)+\left(x_{i}-m\right) f\left(M-x_{i}\right)\right]
\end{aligned}
$$

In Section 2 we give the main result of our paper which is an analogue of Theorem for superquadratic functions. In Section 3 we use that result to derive some refinements of the inequalities obtained in [8] which involve functional power means of Mercer's type and functional quasi-arithmetic means of Mercer's type.

2. MAin Results

Theorem 2.1. Let L satisfy properties $L 1, L 2$, on a nonempty set $E, \varphi:[0, \infty) \rightarrow \mathbb{R}$ be a continuous superquadratic function, and $0 \leq m<M<\infty$. Assume that A is an isotonic linear functional on L with $A(1)=1$. If $g \in L$ is such that $m \leq g(t) \leq M$, for all $t \in E$, and such that $\varphi(g), \varphi(m+M-g),(M-g) \varphi(g-m),(g-m) \varphi(M-g) \in L$, then we have

$$
\begin{aligned}
& \varphi(m+M-A(g)) \\
& \leq \frac{A(g)-m}{M-m} \varphi(m)+\frac{M-A(g)}{M-m} \varphi(M) \\
& \quad-\frac{1}{M-m}[(A(g)-m) \varphi(M-A(g))+(M-A(g)) \varphi(A(g)-m)]
\end{aligned}
$$

$$
\begin{align*}
\leq \varphi(m) & +\varphi(M)-A(\varphi(g)) \tag{2.1}\\
& -\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m)) \\
& -\frac{1}{M-m}[(A(g)-m) \varphi(M-A(g))+(M-A(g)) \varphi(A(g)-m)] .
\end{align*}
$$

If the function φ is subquadratic, then all the inequalities above are reversed.
Proof. From Lemma Afor $n=2$, as well as from Theorem F we get that for $0 \leq m \leq t \leq M$,

$$
\begin{equation*}
\varphi(t) \leq \frac{M-t}{M-m} \varphi(m)+\frac{t-m}{M-m} \varphi(M)-\frac{M-t}{M-m} \varphi(t-m)-\frac{t-m}{M-m} \varphi(M-t) \tag{2.2}
\end{equation*}
$$

Replacing t with $M+m-t$ in (2.2) it follows that

$$
\begin{aligned}
& \varphi(M+m-t) \leq \frac{t-m}{M-m} \varphi(m)+\frac{M-t}{M-m} \varphi(M) \\
& \quad-\frac{t-m}{M-m} \varphi(M-t)-\frac{M-t}{M-m} \varphi(t-m) \\
&= \varphi(m)+ \\
& \varphi(M)-\left[\frac{t-m}{M-m} \varphi(M)+\frac{M-t}{M-m} \varphi(m)\right] \\
& \quad-\frac{t-m}{M-m} \varphi(M-t)-\frac{M-t}{M-m} \varphi(t-m)
\end{aligned}
$$

Since $m \leq g(t) \leq M$ for all $t \in E$, it follows that $m \leq A(g) \leq M$ and we have

$$
\begin{align*}
\varphi(m+M-A(g)) \leq \varphi(m) & +\varphi(M)-\left[\frac{A(g)-m}{M-m} \varphi(M)+\frac{M-A(g)}{M-m} \varphi(m)\right] \tag{2.3}\\
& -\frac{A(g)-m}{M-m} \varphi(M-A(g))-\frac{M-A(g)}{M-m} \varphi(A(g)-m)
\end{align*}
$$

On the other hand, since $m \leq g(t) \leq M$ for all $t \in E$ it follows that

$$
\begin{aligned}
\varphi(g(t)) \leq \frac{M-g(t)}{M-m} \varphi(m) & +\frac{g(t)-m}{M-m} \varphi(M) \\
& -\frac{M-g(t)}{M-m} \varphi(g(t)-m)-\frac{g(t)-m}{M-m} \varphi(M-g(t))
\end{aligned}
$$

Using functional calculus we have

$$
\begin{align*}
A(\varphi(g)) \leq \frac{M-A(g)}{M-m} \varphi(m)+\frac{A(g)-m}{M-m} \varphi(M) & -\frac{1}{M-m} A((M-g(t) \varphi(g(t)-m)) \tag{2.4}\\
& -\frac{1}{M-m} A((g(t)-m) \varphi(M-g(t)))
\end{align*}
$$

Using inequalities (2.3) and (2.4), we obtain the desired inequality (2.1).
The last statement follows immediately from the fact that if φ is subquadratic then $-\varphi$ is a superquadratic function.

Remark 1. If a function φ is superquadratic and nonnegative, then it is convex [1, Lema 2.2]. Hence, in this case inequality (2.1) is a refinement of inequality (1.1).

On the other hand, we can get one more inequality in (2.1) if we use a result of S. Banić and S. Varosănec [5] on Jessen's inequality for superquadratic functions:

Theorem 2.2 ([5], Theorem 8, Remark 1]). Let L satisfy properties L1, L2, on a nonempty set E, and let $\varphi:[0, \infty) \rightarrow \mathbb{R}$ be a continuous superquadratic function. Assume that A is an isotonic linear functional on L with $A(1)=1$. If $f \in L$ is nonnegative and such that $\varphi(f)$, $\varphi(|f-A(f)|) \in L$, then we have

$$
\begin{equation*}
\varphi(A(f)) \leq A(\varphi(f))-A(\varphi(|f-A(f)|)) \tag{2.5}
\end{equation*}
$$

If the function φ is subquadratic, then the inequality above is reversed.
Using Theorem 2.2 and some basic properties of superquadratic functions we prove the next theorem.

Theorem 2.3. Let L satisfy properties $L 1, L 2$, on a nonempty set E, and let $\varphi:[0, \infty) \rightarrow \mathbb{R}$ be a continuous superquadratic function, and let $0 \leq m<M<\infty$. Assume that A is an isotonic linear functional on L with $A(1)=1$. If $g \in L$ is such that $m \leq g(t) \leq M$, for all $t \in E$, and such that $\varphi(g), \varphi(m+M-g),(M-g) \varphi(g-m),(g-m) \varphi(M-g), \varphi(|g-A(g)|) \in L$, then we have

$$
\begin{align*}
& \varphi(m+M-A(g)) \\
& \leq A(\varphi(m+M-g))-A(\varphi(|g-A(g)|)) \tag{2.6}\\
& \leq \frac{A(g)-m}{M-m} \varphi(m)+\frac{M-A(g)}{M-m} \varphi(M) \tag{2.7}\\
& \quad-\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|)) \\
& \leq \varphi(m)+\varphi(M)-A(\varphi(g)) \tag{2.8}\\
& \quad-\frac{2}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|))
\end{align*}
$$

If the function φ is subquadratic, then all the inequalities above are reversed.
Proof. Notice that $(m+M-g) \in L$. Since $m \leq g(t) \leq M$ for all $t \in E$, it follows that $m \leq m+M-g(t) \leq M$ for all $t \in E$. Applying (2.5) to the function $f=m+M-g$ we get

$$
\begin{aligned}
& \varphi(A(m+M-g)) \\
& =\varphi(m+M-A(g)) \\
& \leq A(\varphi(m+M-g))-A(\varphi(|m+M-g-A(m+M-g)|)) \\
& =A(\varphi(m+M-g))-A(\varphi(|m+M-g-m-M+A(g)|)) \\
& =A(\varphi(m+M-g))-A(\varphi(|g-A(g)|)),
\end{aligned}
$$

which is the inequality (2.6).
From the discrete Jensen's inequality for superquadratic functions we get for all $m \leq x \leq M$,

$$
\begin{equation*}
\varphi(x) \leq \frac{M-x}{M-m} \varphi(m)+\frac{x-m}{M-m} \varphi(M)-\frac{M-x}{M-m} \varphi(x-m)-\frac{x-m}{M-m} \varphi(M-x) . \tag{2.9}
\end{equation*}
$$

Replacing x in 2.9] with $m+M-g(t) \in[m, M]$ for all $t \in E$, we have

$$
\begin{aligned}
\varphi(m+M-g(t)) \leq \frac{g(t)-m}{M-m} \varphi(m) & +\frac{M-g(t)}{M-m} \varphi(M) \\
& -\frac{g(t)-m}{M-m} \varphi(M-g(t))-\frac{M-g(t)}{M-m} \varphi(g(t)-m)
\end{aligned}
$$

Since A is linear, isotonic and satisfies $A(1)=1$, from the above inequality it follows that
(2.10) $\quad A(\varphi(m+M-g)) \leq \frac{A(g)-m}{M-m} \varphi(m)+\frac{M-A(g)}{M-m} \varphi(M)$

$$
-\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m)) .
$$

Adding $-A(\varphi(|g-A(g)|))$ on both sides of 2.10 we get

$$
\begin{align*}
& A(\varphi(m+M-g))-A(\varphi(|g-A(g)|)) \leq \frac{A(g)-m}{M-m} \varphi(m)+\frac{M-A(g)}{M-m} \varphi(M) \tag{2.11}\\
& -\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|)),
\end{align*}
$$

which is the inequality (2.7).
The right hand side of (2.11) can be written as follows

$$
\begin{align*}
\varphi(m) & +\varphi(M)-\frac{M-A(g)}{M-m} \varphi(m)-\frac{A(g)-m}{M-m} \varphi(M) \tag{2.12}\\
& -\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|))
\end{align*}
$$

On the other hand, replacing x, in $\sqrt{2.9}$, with $g(t) \in[m, M]$, for all $t \in E$, we get

$$
\begin{align*}
\varphi(g(t)) \leq \frac{M-g(t)}{M-m} & \varphi(m)+\frac{g(t)-m}{M-m} \varphi(M) \tag{2.13}\\
& -\frac{M-g(t)}{M-m} \varphi(g(t)-m)-\frac{g(t)-m}{M-m} \varphi(M-g(t)) .
\end{align*}
$$

Applying the functional A on (2.13) we have

$$
\begin{align*}
& A(\varphi(g)) \leq \frac{M-A(g)}{M-m} \varphi(m)+\frac{A(g)-m}{M-m} \varphi(M) \tag{2.14}\\
& \quad \quad-\frac{1}{M-m} A((M-g) \varphi(g-m)+(g-m) \varphi(M-g))
\end{align*}
$$

The inequality (2.14) can be written as follows

$$
\begin{aligned}
& -\frac{M-A(g)}{M-m} \varphi(m)-\frac{A(g)-m}{M-m} \varphi(M) \\
& \quad \quad \leq-A(\varphi(g))-\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m)) .
\end{aligned}
$$

Using (2.12) we get

$$
\begin{aligned}
& \frac{A(g)-m}{M-m} \varphi(m)+\frac{M-A(g)}{M-m} \varphi(M) \\
& \quad-\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|))
\end{aligned}
$$

$$
\begin{aligned}
& \leq \varphi(m)+\varphi(M)-A(\varphi(g)) \\
& \quad-\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m)) \\
& \quad-\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|)) \\
& = \\
& \quad \varphi(m)+\varphi(M)-A(\varphi(g)) \\
& \quad-\frac{2}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|)) .
\end{aligned}
$$

Now, it follows that

$$
\begin{aligned}
& \frac{A(g)-m}{M-m} \varphi(m)+\frac{M-A(g)}{M-m} \varphi(M) \\
& \quad-\frac{1}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|)) \\
& \leq \varphi(m)+\varphi(M)-A(\varphi(g)) \\
& \quad-\frac{2}{M-m} A((g-m) \varphi(M-g)+(M-g) \varphi(g-m))-A(\varphi(|g-A(g)|)),
\end{aligned}
$$

which is the inequality (2.8).

3. Applications

Throughout this section we suppose that:
(i) L is a linear class having properties $L 1, L 2$ on a nonempty set E.
(ii) A is an isotonic linear functional on L such that $A(1)=1$.
(iii) $g \in L$ is a function of E to $[m, M](0<m<M<\infty)$ such that all of the following expressions are well defined.
Let ψ be a continuous and strictly monotonic function on an interval $I=[m, M],(0<m<$ $M<\infty)$.

For any $r \in \mathbb{R}$, a power mean of Mercer's type functional

$$
Q(r, g):= \begin{cases}{\left[m^{r}+M^{r}-A\left(g^{r}\right)\right]^{\frac{1}{r}},} & r \neq 0 \\ \frac{m M}{\exp (A(\log g))}, & r=0\end{cases}
$$

and a quasi-arithmetic mean functional of Mercer's type

$$
\widetilde{M}_{\psi}(g, A)=\psi^{-1}(\psi(m)+\psi(M)-A(\psi(g)))
$$

are defined in [8] and the following theorems are proved.
Theorem G. If $r, s \in \mathbb{R}$ and $r \leq s$, then

$$
Q(r, g) \leq Q(s, g)
$$

Theorem H.

(i) If either $\chi \circ \psi^{-1}$ is convex and χ is strictly increasing, or $\chi \circ \psi^{-1}$ is concave and χ is strictly decreasing, then

$$
\begin{equation*}
\widetilde{M}_{\psi}(g, A) \leq \widetilde{M}_{\chi}(g, A) \tag{3.1}
\end{equation*}
$$

(ii) If either $\chi \circ \psi^{-1}$ is concave and χ is strictly increasing, or $\chi \circ \psi^{-1}$ is convex and χ is strictly decreasing, then the inequality (3.1) is reversed.

Applying the inequality (2.1) to the adequate superquadratic functions we shall give some refinements of the inequalities in Theorems G and H. To do this, we will define following functions.

$$
\begin{aligned}
\diamond(m, M, r, s, g, A)= & \frac{1}{M^{r}-m^{r}} A\left(\left(M^{r}-g^{r}\right)\left(g^{r}-m^{r}\right)^{\frac{s}{r}}\right) \\
& +\frac{1}{M^{r}-m^{r}} A\left(\left(g^{r}-m^{r}\right)\left(M^{r}-g^{r}\right)^{\frac{s}{r}}\right) \\
& +\frac{1}{M^{r}-m^{r}}\left(A\left(g^{r}\right)-m^{r}\right)\left(M^{r}-A\left(g^{r}\right)\right)^{\frac{s}{r}} \\
& +\frac{1}{M^{r}-m^{r}}\left(M^{r}-A\left(g^{r}\right)\right)\left(A\left(g^{r}\right)-m^{r}\right)^{\frac{s}{r}} .
\end{aligned}
$$

and

$$
\begin{aligned}
& \diamond(m, M, \psi, \chi, g, A) \\
& \left.=\frac{1}{\psi(M)-\psi(m)} A\left((\psi(M)-\psi(g)) \chi\left(\psi^{-1}(\psi(g)-\psi(m))\right)\right)\right) \\
& \quad+\frac{1}{\psi(M)-\psi(m)} A\left((\psi(g)-\psi(m)) \chi\left(\psi^{-1}(\psi(M)-\psi(g))\right)\right) \\
& \quad+\frac{1}{\psi(M)-\psi(m)}(A(\psi(g))-\psi(m)) \chi\left(\psi^{-1}(\psi(M)-A(\psi(g)))\right) \\
& \quad+\frac{1}{\psi(M)-\psi(m)}(\psi(M)-A(\psi(g))) \chi\left(\psi^{-1}(A(\psi(g))-\psi(m))\right)
\end{aligned}
$$

Now, the following theorems are valid.
Theorem 3.1. Let $r, s \in \mathbb{R}$.
(i) If $0<2 r \leq s$, then

$$
\begin{equation*}
Q(r, g) \leq\left[(Q(s, g))^{s}-\diamond(m, M, r, s, g, A)\right]^{\frac{1}{s}} . \tag{3.2}
\end{equation*}
$$

(ii) If $2 r \leq s<0$, then for $(Q(s, g))^{s}-\diamond(M, m, r, s, g, A)>0$

$$
\begin{equation*}
Q(r, g) \leq\left[(Q(s, g))^{s}-\diamond(M, m, r, s, g, A)\right]^{\frac{1}{s}} \tag{3.3}
\end{equation*}
$$

where we used $\diamond(M, m, r, s, g, A)$ to denote the new function derived from the function $\diamond(m, M, r, s, g, A)$ by changing the places of m and M.
(iii) If $0<s \leq 2 r$, then for $(Q(s, g))^{s}-\diamond(M, m, r, s, g, A)>0$ the reverse inequality (3.2) holds.
(iv) If $s \leq 2 r<0$, then the reversed inequality (3.3) holds.

Proof.

(i) It is given that

$$
0<m \leq g \leq M<\infty .
$$

Since $0<2 r \leq s$, it follows that

$$
0<m^{r} \leq g^{r} \leq M^{r}<\infty .
$$

Applying Theorem 2.1, or more precisely inequality (2.1) to the superquadratic function $\varphi(t)=t^{\frac{s}{r}}$ (note that $\frac{s}{r} \geq 2$ here) and replacing g, m and M with g^{r}, m^{r} and M^{r}, respectively, we have

$$
\begin{aligned}
{\left[m^{r}\right.} & \left.+M^{r}-A\left(g^{r}\right)\right]^{\frac{s}{r}} \\
& +\frac{1}{M^{r}-m^{r}}\left(A\left(g^{r}\right)-m^{r}\right)\left(M^{r}-A\left(g^{r}\right)\right)^{\frac{s}{r}} \\
\quad & +\frac{1}{M^{r}-m^{r}}\left(M^{r}-A\left(g^{r}\right)\right)\left(A\left(g^{r}\right)-m^{r}\right)^{\frac{s}{r}} \\
\leq m^{s} & +M^{s}-A\left(g^{s}\right) \\
& -\frac{1}{M^{r}-m^{r}} A\left(\left(M^{r}-g^{r}\right)\left(g^{r}-m^{r}\right)^{\frac{s}{r}}\right) \\
& -\frac{1}{M^{r}-m^{r}} A\left(\left(g^{r}-m^{r}\right)\left(M^{r}-g^{r}\right)^{\frac{s}{r}}\right) .
\end{aligned}
$$

i.e.

$$
\begin{equation*}
[Q(r, g)]^{s} \leq[Q(s, g)]^{s}-\diamond(m, M, r, s, g, A) . \tag{3.4}
\end{equation*}
$$

Raising both sides of (3.4) to the power $\frac{1}{s}>0$, we get desired inequality 3.2 .
(ii) In this case we have

$$
0<M^{r} \leq g^{r} \leq m^{r}<\infty .
$$

Applying Theorem 2.1 or, more precisely, the reversed inequality (2.1) to the subquadratic function $\varphi(t)=t^{\frac{s}{r}}$ (note that now we have $0<\frac{s}{r} \leq 2$) and replacing g, m and M with g^{r}, m^{r} and M^{r}, respectively, we get

$$
\begin{aligned}
& {\left[M^{r}\right.}\left.+m^{r}-A\left(g^{r}\right)\right]^{\frac{s}{r}} \\
&+\frac{1}{m^{r}-M^{r}}\left(A\left(g^{r}\right)-M^{r}\right)\left(m^{r}-A\left(g^{r}\right)\right)^{\frac{s}{r}} \\
&+\frac{1}{m^{r}-M^{r}}\left(m^{r}-A\left(g^{r}\right)\right)\left(A\left(g^{r}\right)-M^{r}\right)^{\frac{s}{r}} \\
& \geq M^{s}+m^{s}-A\left(g^{s}\right) \\
&-\frac{1}{m^{r}-M^{r}} A\left(\left(m^{r}-g^{r}\right)\left(g^{r}-M^{r}\right)^{\frac{s}{r}}\right) \\
&-\frac{1}{m^{r}-M^{r}} A\left(\left(g^{r}-M^{r}\right)\left(m^{r}-g^{r}\right)^{\frac{s}{r}}\right) .
\end{aligned}
$$

Since $2 r \leq s<0$, raising both sides to the power $\frac{1}{s}$, it follows that

$$
\left[M^{r}+m^{r}-A\left(g^{r}\right)\right]^{\frac{1}{r}} \leq\left[M^{s}+m^{s}-A\left(g^{s}\right)-\diamond(M, m, r, s, g, A)\right]^{\frac{1}{s}},
$$

or

$$
Q(r, g) \leq\left[(Q(s, g))^{s}-\diamond(M, m, r, s, g, A)\right]^{\frac{1}{s}} .
$$

(iii) In this case we have $0<\frac{s}{r} \leq 2$. Since $0<m^{r} \leq g^{r} \leq M^{r}<\infty$, we can apply Theorem 2.1. or more precisely, the reversed inequality (2.1) to the subquadratic function $\varphi(t)=$ $t^{\frac{2}{r}}$. Replacing g, m and M with g^{r}, m^{r} and M^{r}, respectively, it follows that

$$
\begin{aligned}
& {\left[m^{r}\right.}\left.+M^{r}-A\left(g^{r}\right)\right]^{\frac{s}{r}} \\
&+\frac{1}{M^{r}-m^{r}}\left(A\left(g^{r}\right)-m^{r}\right)\left(M^{r}-A\left(g^{r}\right)\right)^{\frac{s}{r}} \\
&+\frac{1}{M^{r}-m^{r}}\left(M^{r}-A\left(g^{r}\right)\right)\left(A\left(g^{r}\right)-m^{r}\right)^{\frac{s}{r}} \\
& \geq m^{s}+M^{s}-A\left(g^{s}\right) \\
&-\frac{1}{M^{r}-m^{r}} A\left(\left(M^{r}-g^{r}\right)\left(g^{r}-m^{r}\right)^{\frac{s}{r}}\right) \\
&-\frac{1}{M^{r}-m^{r}} A\left(\left(g^{r}-m^{r}\right)\left(M^{r}-g^{r}\right)^{\frac{s}{r}}\right),
\end{aligned}
$$

i.e.

$$
\begin{equation*}
[Q(r, g)]^{s} \geq[Q(s, g)]^{s}-\diamond(m, M, r, s, g, A) . \tag{3.5}
\end{equation*}
$$

Raising both sides of 3.5 to the power $\frac{1}{s}>0$ we get

$$
Q(r, g) \geq\left[(Q(s, g))^{s}-\diamond(m, M, r, s, g, A)\right]^{\frac{1}{s}} .
$$

(iv) Since $r<0$, from $0<m \leq g \leq M<\infty$ it follows that $0<M^{r} \leq g^{r} \leq m^{r}<\infty$.

Now, we are applying Theorem 2.1 to the superquadratic function $\varphi(t)=t^{\frac{s}{r}}$, because $\frac{s}{r} \geq 2$ here, and analogous to the previous theorem we get

$$
[Q(r, g)]^{s} \leq[Q(s, g)]^{s}-\diamond(M, m, r, s, g, A) .
$$

Raising both sides to the power $\frac{1}{s}<0$ it follows that

$$
Q(r, g) \geq\left[(Q(s, g))^{s}-\diamond(M, m, r, s, g, A)\right]^{\frac{1}{s}} .
$$

Theorem 3.2. Let $r, s \in \mathbb{R}$.
(i) If $0<2 s \leq r$, then

$$
\begin{equation*}
Q(r, g) \geq\left[(Q(s, g))^{r}+\diamond(m, M, s, r, g, A)\right]^{\frac{1}{r}} \tag{3.6}
\end{equation*}
$$

where we used $\diamond(m, M, s, r, g, A)$ to denote the new function derived from the function $\diamond(m, M, r, s, g, A)$ by changing the places of r and s.
(ii) If $2 s \leq r<0$, then

$$
\begin{equation*}
Q(r, g) \leq\left[(Q(s, g))^{r}+\diamond(M, m, s, r, g, A)\right]^{\frac{1}{r}} \tag{3.7}
\end{equation*}
$$

(iii) If $0<r \leq 2 s$, then the reversed inequality (3.6) holds.
(iv) If $r \leq 2 s<0$, then the reversed inequality (3.7) holds.

Proof.

(i) Applying inequality 2.1 to the superquadratic function $\varphi(t)=t^{\frac{r}{s}}$ (note that $\frac{r}{s} \geq 2$ here) and replacing g, m and M with g^{s}, m^{s} and $M^{s},\left(0<m^{s} \leq g^{s} \leq M^{s}<\infty\right)$
respectively, we have

$$
\begin{aligned}
{\left[m^{s}\right.} & \left.+M^{s}-A\left(g^{s}\right)\right]^{\frac{r}{s}} \\
& +\frac{1}{M^{s}-m^{s}}\left(A\left(g^{s}\right)-m^{s}\right)\left(M^{s}-A\left(g^{s}\right)\right)^{\frac{r}{s}} \\
& +\frac{1}{M^{s}-m^{s}}\left(M^{s}-A\left(g^{s}\right)\right)\left(A\left(g^{s}\right)-m^{s}\right)^{\frac{r}{s}} \\
\geq m^{r} & +M^{r}-A\left(g^{r}\right) \\
& -\frac{1}{M^{s}-m^{s}} A\left(\left(M^{s}-g^{s}\right)\left(g^{s}-m^{s}\right)^{\frac{r}{s}}\right) \\
& -\frac{1}{M^{s}-m^{s}} A\left(\left(g^{s}-m^{s}\right)\left(M^{s}-g^{s}\right)^{\frac{r}{s}}\right),
\end{aligned}
$$

i.e.

$$
[Q(s, g)]^{r} \leq[Q(r, g)]^{r}-\diamond(m, M, s, r, g, A) .
$$

Raising both sides to the power $\frac{1}{r}>0$, the inequality (3.6) follows.
(ii) Since $s<0$, we have $0<M^{s} \leq g^{s} \leq m^{s}<\infty$ so the function \diamond will be of the form $\diamond(M, m, s, r, g, A)$. Since $0<\frac{r}{s} \leq 2$, we will apply Theorem 2.1 to the subquadratic function $\varphi(t)=t^{\frac{r}{s}}$ and, as in previous case, it follows that

$$
[Q(s, g)]^{r}+\diamond(M, m, s, r, g, A) \geq[Q(r, g)]^{r}
$$

Raising both sides to the power $\frac{1}{r}<0$, the inequality 3.7 follows.
(iii) Since $0<\frac{r}{s} \leq 2$, we will apply Theorem 2.1 to the subquadratic function $\varphi(t)=t^{\frac{r}{s}}$ and then it follows that

$$
[Q(s, g)]^{r}+\diamond(m, M, s, r, g, A) \geq[Q(r, g)]^{r}
$$

Raising both sides to the power $\frac{1}{r}>0$, we get

$$
Q(r, g) \leq\left[(Q(s, g))^{r}+\diamond(m, M, s, r, g, A)\right]^{\frac{1}{r}} .
$$

(iv) Since $\frac{r}{s} \geq 2$, we will apply Theorem 2.1 to the superquadratic function $\varphi(t)=t^{\frac{r}{s}}$ and use the function $\diamond(M, m, s, r, g, A)$ instead of $\diamond(m, M, s, r, g, A)$. Then we get

$$
[Q(s, g)]^{r}+\diamond(M, m, s, r, g, A) \leq[Q(r, g)]^{r}
$$

Raising both sides to the power $\frac{1}{r}<0$, it follows that

$$
Q(r, g) \geq\left[(Q(s, g))^{r}+\diamond(M, m, s, r, g, A)\right]^{\frac{1}{r}} .
$$

Remark 2. Notice that some cases in the last theorems have common parts. In some of them we can establish double inequalities. For example, if $0<r \leq 2 s$ and $0<s \leq 2 r$, then for $(Q(s, g))^{s}-\diamond(M, m, r, s, g, A)>0$

$$
\left[(Q(s, g))^{r}+\diamond(m, M, s, r, g, A)\right]^{\frac{1}{r}} \geq Q(r, g) \geq\left[(Q(s, g))^{s}-\diamond(m, M, r, s, g, A)\right]^{\frac{1}{s}} .
$$

Theorem 3.3. Let $\psi \in C([m, M])$ be strictly increasing and let $\chi \in C([m, M])$ be strictly monotonic functions.
(i) If either $\chi \circ \psi^{-1}$ is superquadratic and χ is strictly increasing, or $\chi \circ \psi^{-1}$ is subquadratic and χ is strictly decreasing, then

$$
\begin{equation*}
\widetilde{M}_{\psi}(g, A) \leq \chi^{-1}\left(\chi\left(\widetilde{M}_{\chi}(g, A)\right)-\diamond(m, M, \psi, \chi, g, A)\right), \tag{3.8}
\end{equation*}
$$

(ii) If either $\chi \circ \psi^{-1}$ is subquadratic and χ is strictly increasing or $\chi \circ \psi^{-1}$ is superquadratic and χ is strictly decreasing, then the inequality (3.8) is reversed.

Proof. Suppose that $\chi \circ \psi^{-1}$ is superquadratic. Letting $\varphi=\chi \circ \psi^{-1}$ in Theorem 2.1 and replacing g, m and M with $\psi(g), \psi(m)$ and $\psi(M)$ respectively, we have

$$
\begin{aligned}
& \chi\left(\psi^{-1}(\psi(m)+\psi(M)-A(\psi(g)))\right) \\
& \quad+\frac{1}{\psi(M)-\psi(m)}\left((A(\psi(g))-\psi(m)) \chi\left(\psi^{-1}(\psi(M)-A(\psi(g)))\right)\right) \\
& \quad+\frac{1}{\psi(M)-\psi(m)}\left((\psi(M)-A(\psi(g))) \chi\left(\psi^{-1}(A(\psi(g))-\psi(m))\right)\right) \\
& \leq \chi(m)+\chi(M)-A(\chi(g)) \\
& \quad-\frac{1}{\psi(M)-\psi(m)} A\left((\psi(M)-\psi(m)) \chi\left(\psi^{-1}(\psi(g)-\psi(m))\right)\right) \\
& \quad-\frac{1}{\psi(M)-\psi(m)} A\left((\psi(g)-\psi(m)) \chi\left(\psi^{-1}(\psi(M)-\psi(g))\right)\right),
\end{aligned}
$$

i.e.,

$$
\begin{align*}
\chi\left(\widetilde{M}_{\psi}(g, A)\right) & \leq \chi(m)+\chi(M)-A(\chi(g))-\diamond(m, M, \psi, \chi, g, A) \\
& \leq \chi \circ \chi^{-1}(\chi(m)+\chi(M)-A(\chi(g)))-\diamond(m, M, \psi, \chi, g, A) \tag{3.9}\\
& \leq \chi\left(\widetilde{M}_{\chi}(g, A)\right)-\diamond(m, M, \psi, \chi, g, A) .
\end{align*}
$$

If χ is strictly increasing, then the inverse function χ^{-1} is also strictly increasing and inequality (3.9) implies the inequality (3.8). If χ is strictly decreasing, then the inverse function χ^{-1} is also strictly decreasing and in that case the reverse of (3.9) implies (3.8). Analogously, we get the reverse of (3.8) in the cases when $\chi \circ \psi^{-1}$ is superquadratic and χ is strictly decreasing, or $\chi \circ \psi^{-1}$ is subquadratic and χ is strictly increasing.

Remark 3. If the function ψ in Theorem 3.3 is strictly decreasing, then the inequality (3.8) and its reversal also hold under the same assumptions, but with m and M interchanged.

Remark 4. Obviously, Theorem 3.1 and Theorem 3.2 follow from Theorem 3.3 and Remark 3 by choosing $\psi(t)=t^{r}$ and $\chi(t)=t^{s}$, or vice versa.

References

[1] S. ABRAMOVICH, G. JAMESON AND G. SINNAMON, Refining Jensen's iInequality, Bull. Math. Soc. Math. Roum., 47 (2004), 3-14.
[2] S. ABRAMOVICH, G. JAMESON and G. SINNAMON, Inequalities for averages of convex and superquadratic functions, J. Inequal. in Pure \& Appl. Math., 5(4) (2004), Art. 91. [ONLINE: http://jipam.vu.edu.au/article.php?sid=444].
[3] S. BANIĆ, Superquadratic Functions, PhD. Thesis, (2007), Zagreb, (in Croatian).
[4] S. BANIĆ, J. PEČARIĆ AND S. VAROŠANEC, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc., to appear
[5] S. BANIĆ AND S. VAROŠANEC, Functional inequalities for superquadratic functions, submitted for publication.
[6] J. BARIĆ, A. MATKOVIĆ AND J.E. PEČARIĆ, A variant of Mercer's operator inequality for superquadratic functions, Scientiae Mathematicae Japonicae.
[7] P.R. BEESACK AND J.E. PEČARIĆ, On the Jessen's inequality for convex functions, J. Math. Anal., 110 (1985), 536-552.
[8] W.S. CHEUNG, A. MATKOVIĆ AND J.E. PEČARIĆ, A variant of Jessen's inequality and generalized means, J. Inequal. in Pure \& Appl. Math., 7(1) (2006), Art. 10. [ONLINE: http: //jipam.vu.edu.au/article.php?sid=623].
[9] I. GAVREA, Some considerations on the monotonicity property of power mean, J. Inequal. in Pure \& Appl. Math., 5(4) (2004), Art. 93. [ONLINE: http://jipam.vu.edu.au/article. php?sid=448].
[10] B. JESSEN, Bemaerkinger om konvekse Funktioner og Uligheder imellem Middelvaerdier I., Mat.Tidsskrift, B, (1931), 17-28.
[11] A.McD. MERCER, A variant of Jensen's inequality, J. Inequal. in Pure \& Appl. Math., 4(4) (2003), Art. 73. [ONLINE: http://jipam.vu.edu.au/article.php?sid=314].
[12] J.E. PEČARIĆ, F. PROSCHAN AND Y.L. TONG, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc. (1992).

