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Abstract

In this paper, we deal with the problems of uniqueness of meromorphic func-
tions that share one finite value with their derivatives and obtain some results
that improve the results given by Rainer Briick and Qingcai Zhang.
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In this paper, a meromorphic function will mean meromorphic in the finite com-
plex plane. We say that two meromorphic functignandg share a finite value
a IM (ignoring multiplicities) whenf —a andg — a have the same zeros. fif-a
andg — a have the same zeros with the same multiplicities, then we sayf that
andg share the value CM (counting multiplicities). We say thgtandg share
oo CM provided thatl/f and1/g share 0 CM. It is assumed that the reader
is familiar with the standard symbols and fundamental results of Nevanlinna
Theory, as found in, 6].

Let f(z) be a meromorphic function. It is known that the hyper-order of
f(z), denoted by, (f), is defined by

loglog T
oo f) = lim sup 28108 T f).
r—00 log r
In 1996, R. Briick posed the following conjecture (ség. [

Conjecture 1.1. Let f be a non-constant entire function such that the hyper-
order oy (f) of f is not a positive integer aneh () < +oo. If f and f’ share a
finite valuea CM, then

f'—a

=c
f—a 7

wherec is nonzero constant.

In [1], Bruck proved that the conjecture holds wher-= 0. In 1998, Gun-
dersen and Yang’] proved that the conjecture is true whgis of finite order.
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In 1999, Yang {] confirmed that the conjecture is also true whiéis replaced
by f® (k > 2) andf is of finite order.

In 1996, Briick obtained the following result.
Theorem A ([1]). Let f be a nonconstant entire function. ifand f’ share the
value 1 CM, and ifV (r i) = S(r, f), then

7
S -1
f—1

=cC

for a non-zero constant
In 1998, Q. Zhang proved the next two resultsip [

Theorem B. Let f be a nonconstant meromorphic function.fland f’ share
the value 1 CM, and if

N(r, f)+ N <r, i/) < (A +o(W)T(r, f), <O <A< %) ,

then
r—1

f—1

~~

C

for some non-zero constant

Theorem C. Let f be a nonconstant meromorphic functighpe a positive
integer. If f and f*) share the value 1 CM, and if

2N(r, f)+ N (r, %) +N <r, %) <A +o(I)Tr, f®), (0<X<1),
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then
fk) —1

F-1

for some non-zero constant

The above results suggest the following question: What results can be ob-
tained if the condition thaf and f’ share the value 1 CM is replaced by the

condition thatf and f’ share the value 1 IM?
In this paper, we obtained the following results.

Theorem 1.2. Let f be a nonconstant meromorphic functionfiénd f’ share

the value 1 IM, and if
N(r, f)+ N ( f’) <A+ o()T(r, f) <O <A< i) ,

then

|
—_

Il
o

for some non-zero constant
Corollary 1.3. Let f be a nonconstant entire function. ffand f’ share the

value 1 IM, and if
1
)\ _
<O< < 4),

N( f,) A+ o(W)T(r, ).

then
r—1

F-1

~~

C

for some non-zero constant
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Theorem 1.4. Let f be a nonconstant meromorphic functignbe a positive
integer. If f and f*) share the value 1 IM, and if

(3k 4+ 6)N(r, f) + 5N (7’, %) < AN +o)T(r, f*), (0<X<1),

then

for some non-zero constant

Corollary 1.5. Let f be a nonconstant entire function. fifand f*) share the
value 1 IM, and if

N (r, %) < A+ o(1))T(r f), <o <A< %) ,

then

for some non-zero constant

Theorem 1.6. Let f be a nonconstant meromorphic functignbe a positive

integer. If f and f*) share the value # 0 CM, and satisfy one of the following

conditions,
(i) 6(0, f) +©(00, f) > 5k,

(i) N(r, f) + N (r, ;) <A +o()T(rf), (0<A<52),
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i) (k+2)N(r,f)+ 2N (r, ;) < A+ o(NT(r, f), (0<\<1)

Thenf = f®,

Theorem 1.7.Let f be a nonconstant meromorphic functionfland f’ share
the valuex # 0 IM, and if

N, f) + N (r, %) < O+ o()T(r f), (0 <A< %) ,
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Lemma 2.1 ([/]). Let f be a nonconstant meromorphic functiérye a positive
integer. Then

1 1 _

(2.1) N (r, W) <N (T‘, ?) + kN(r, f)+ S(r, f),
(2.2) N (r ﬁ) <kN(r, f)+ kN (7“ 1) + S(r, f)
' o f ’ f e
2.9 v (s %) <IN )+ (1 7) 4500

Suppose thaf andg share the value IM, and let z, be aa-point of f of

orderp, aa-point of f*) of orderq. We denote byV, (7‘, f(k> ) the counting
function of those:-points of f*) whereq > p.

Lemma 2.2. Let f be a nonconstant meromorphic functionf laind f*) share
the value 1 IM, then

(2.4) N, (r, ﬁ) <N (r, %) + N(r, f)+ S(r, f).

Lemma 2.3 ([/]). Let f be a nonconstant meromorphic functiérhe a positive
integer. If f and f(*) share the value 1 IM, then

T(r, f) < 3T(r, f*) +S(r, f),

specially if f is a nonconstant entire function, then

T(r, f) < 2T(r, f*) + S(r, f).
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1.2

Let Ny (7“, ﬁ) denote the counting function of the simple zerosfof a,
N(Q (r, ﬁ) denote the counting function of the multiptepoints of f. Each

pointin these counting functions is counted only once. We denoI@t(y, ﬁ)

the counting function of the zeros ¢t a, where a simple zero is counted once
and a multiple zero is counted twice. It follows that

1 1 — 1
%) = () e ()

_f_///_ 2f//_ f_//_ 2]0/
F_f// f/_l (f/ f_1>'

We suppose that’ # 0. By the lemma of logarithmic derivatives, we have

(3.1)

Set

(3.2) m(r, F) = S(r, f)

and

(3.3) N(r,F) < N(r,f)+ N (r, i)
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where N ( o 1) denotes the counting function of multiple 1-points fof

and each 1-point is counted only oncé; <r, f,,)
tions of f” which are not the zeros gf andf’ — 1.
Since f and f’ share the value 1 IM, we know thd@t— 1 has only simple

zeros. Iff' — 1 also has only simple zeros, thérand f’ share the value 1 CM,
and Theoreni..2 follows by the conclusion of TheoreB.

Now we assume thgt’ — 1 has multiple zeros. By calculation, we know that

denotes the counting func-

the common simple zeros ¢gf— 1 and f’ — 1 are the zeros of’; we denote I\/lset:omo(r)phii/ Flunctiqtr;]st:]hat
are One Value wi elr
by Ng) <r, = 1) the counting function of common simple zerosfof- 1 and Derivatives
f"— 1. It follows that Kai Liu and Lian-Zhong Yang
0 1 1
(3.4) Ny hﬁ <N T’f <T(r,F)=N(r,F)+S(r f). Title Page
From 3.3) and (3.4), we have Contents
<44 >
1 — — 1
. 1 . 1 Go Back
N N — .
Notice that e
1 1 1 Page 10 of 21
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By the second fundamental theorem, we have

B.7) T(r,f)<N(r,f)+N (7"7 %)

+N (7“7 ﬁ) — Ny (r, %) + S(r, f).

From Lemma?.2,

(3.8) N2 (r, ﬁ) =Ny <r, 7 1_ 1) < N(r,f)+N (r, %) +S(r, f).

Combining @.5), (3.6), (3.7) and @.8), we obtain

T(r, f) < N(r, f)+ N <Tfl) g (r, 1 1)

< 4N(7" f) + 4N (7", %) + S(’I“, f)7

which contradicts the condition of Theorein?. Therefore, we havé’ = 0. By

integrating twice, we have
1 A

= B
fm1iT -t
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whereA # 0 and B are constants.
We distinguish the following three cases.

Casel. If B #0,—1, then

f=

/=

and so

N

(B+1)f'+(A-B—1)

Bf'+(A—- D)
(B-A)f+(A-B-1

Bf —(B+1)

(7’, “;A_B> = N(T’, f)
B

By the second fundamental theorem

T(r,f) <N(r,f)+ N <r —> +N <r, ﬁ

1

,f/

1
!/

<2N(r,f)+ N (7’, —) + S(r, f),

which contradicts the ass
Case2. If B = —1, then

f
umption of Theorér

A

iy T Ry

)

Y
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and so

¥+ =t = ¥

We also get a contradiction by the second fundamental theorem.
Case3. If B =0, it follows that

f-1_

f—1
Meromorphic Functions that

and the proof of Theorer.2is thus complete. Share One Value with their
Derivatives
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1.4

Let (k+2) (k+1)

I
fo f /!
JE O I R TR
We suppose that # 0. Since the common zeros (with the same multiplicities)
of f — 1 andf* — 1 are not the poles of, and the common simple zeros of
f —1andf® — 1 are the zeros of, we have

F—

Meromorphic Functions that

1 1 ; :
41 Ny (n ﬁ) <N (r, F) < T(r,F) = N(r,F) + 5(r, f). S Ceetives
Kai Liu and Lian-Zhong Yang
and
— _ 1 _ 1 :
(4.2) N(r,F) < NG f)+ Ny ( 1) N, ( ﬁ) Title Page
f B f N Contents
_ N\ 1
~ ( 1 ) ~ ( 1 > S0 ), < >
+ T, + —+
’ ' " f(kH Go Back
whereN, (r, ﬁ) denotes the counting function of the zerog&f-Y) which Close
Quit
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of the zeros off” which are not the zeros gf. Since

— 1 — 1
_N1)< ! — )+ g(

— 1 — 1
o ( e 1) B T’f"“—l)’
M hic Functions that
we obtain from ¢.1), (4.2) and @.3) that Share One Value with thei
o ' ' Derivatives
N 1 N T 1 (2 1 Kai Liu and Lian-Zhong Yang
N(r,— <N(r, f)+ 2Ny |, + Ny |,
f(k)_l)— f—1 f—1
N 1 N 1 IN 1 Title Page
+ N 7 + 07",? + 2N T’f(k)—l
Contents
— 1 — 1
+N(2 T;W +NU T,m +S<7",f) <« Y
_ — 1 — 1 < 4
< N(r,f)+2N T7?>+2NL<7’,W)
o Go Back
— 1 — 1
+N(2 (Ty W) +N0 (7’, W) +S<T,f), Close
Quit
—(2
whereN ( T 1) is the counting function of common multiple zerosfof 1 Page 15 of 21
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and Lemm&.2, we have

— — 1 — 1
(k) _
T 59) <K )4 (71 ) 45 (59— )
— 1
- NO (T, f(k.+1)) +S(Taf)
— — 1 — 1
SN(?”, )+N ram +N(T,f)+2N 717?
o 1 o 1 Meromorphic Functic_)ns tha_t
+ 2NL <T, f(k;) — 1) + N(2 (7,’ W) + S(T’ f) Share Ogir}(/izse\gnth their
— 1 —— 1 Kai Liu and Lian-Zhong Yang
<2N(r,f)+ N <T, W) + 2N <(r, F)
— 1 :
+2N (r f(k)) +2N(r, )+ S(r, f) Tite Page
1 Contents
< (Bk+6)N(r,f)+5N (7‘,?> +S(r, f), « b
which contradicts the assumption of Theor&a HenceF' = 0. S 2
Go Back
By integrating twice, we get Close
1 C -
_ D Quit
o1 jm—1
Page 16 of 21
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Remarkl. Let f be a non-constant entire function. Then we obtain from
Lemma2.3that

ST(r ) < T(r, /%) + S0 ).
By Theoreml.4, Corollary1.5holds.
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1.6 1.7
Suppose thaf #Z f*). Let

_f
F —_— W.
Then
1 1 f)
(5.1) T(r, F) :m(r, F) +N<7“, F) :N(r, —) + S(r, f).
f Meromorphic Functions that
. Share One Value with their
Sincef and f(*) share the value # 0 CM, we have Derivatives
1 1 Kai Liu and Lian-Zhong Yang
62 N ( — ) <N ( e f(k))
1 O Title Page
<N |, <T(r,F)+ O(1).
B (r F— 1) =T F) @ Contents
By the lemma of logarithmic derivatives and the second fundamental theorem, ) >»
we obtain < >
1 1 1 Go Back
(5.3) m r,? +m r,fT <m r,m + S(r, f),
“ Close
and Quit
_ 1 — — 1 Page 18 of 21
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from (5.4), we have

(5.5) m <r, %) <N, f)+N (r, ﬁ) +S(r, f).

Combining with £.1), (5.2), (5.3, (5.4), (5.5 and @.2) of LemmaZ2.1, we
obtain

1 1 1
2T(r, f) <m (r, W) N <7“, ?) + N (7’, m) + S(r, f)

I
(r, f(k)l_ a) +N (r, %) +N (r, ﬁ) +S(r, f)
§N(r,f)—|—N( ,l) + 2N (rL> + S(r, f)
(

f—a

l) + 2N (r, ?) +S(r, f)

< F(r f) + 26F(r, ) + kN (7‘, %) N (r, %) + S0, f)

< (k+1DN(r, f)+ 2k +1)N (7“, %) + S(r, f),

which contradicts the assumptions (i) and (i) of Theoref Hencef = f*.
Similarly, by the above inequality an@.¢) of LemmaZ2.1, and suppose that
(iii) is satisfied, then we get a contradictionfif f(*), and we complete the
proof of Theoren.6.
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Remark2. For a nonconstant meromorphic functignif f and f’ share the
valuea # 0 IM and f # f*), since as-point of f is not a zero off’, we know
that f — a has only simple zeros, and we have

N(r,fia) gN(r,Fl_l) < T(r, F) +O(1),

whereF’ = f/f'. By the arguments similar to the proof of Theorémg, Theo-
rem1.7follows.
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